

DAC1020/DAC1021/DAC1022
10-Bit Binary Multiplying D/A Converter
DAC1220/DAC1222
12-Bit Binary Multiplying D/A Converter

General Description
The DAC1020 and the DAC1220 are, respectively, 10 and 12-bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.0002%/°C linearity error temperature coefficient maximum). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption (30 mW max) and low output leakages (200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference. All inputs are protected from damage due to static discharge by diode clamps to V+ and ground.

This part is available with 10-bit (0.05%), 9-bit (0.10%), and 8-bit (0.20%) non-linearity guaranteed over temperature (note 1 of electrical characteristics). The DAC1020, DAC1021 and DAC1022 are direct replacements for the 10-bit resolution AD7520 and AD7530 and equivalent to the AD7533 family. The DAC1220 and DAC1222 are direct replacements for the 12-bit resolution AD7521 and AD7531 family.

Features
- Linearity specified with zero and full-scale adjust only
- Non-linearity guaranteed over temperature
- Integrated thin film on CMOS structure
- 10-bit or 12-bit resolution
- Low power dissipation 10 mW @15V typ
- Accepts variable or fixed reference – 25V ≤ VREF ≤ 25V
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time—500 ns typ
- Low feedthrough error—½ LSB @100 kHz typ

Equivalent Circuit
Note. Switches shown in digital high state

Ordering Information

10-BIT D/A CONVERTERS

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>0°C to 70°C</th>
<th>– 40°C to 85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Linearity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05%</td>
<td>DAC1020LCN</td>
<td>AD7520LN,AD7530LN</td>
</tr>
<tr>
<td>0.10%</td>
<td>DAC1021LCN</td>
<td>AD7520KN,AD7530KN</td>
</tr>
<tr>
<td>0.20%</td>
<td>DAC1022LCN</td>
<td>AD7520JN,AD7530JN</td>
</tr>
<tr>
<td>Package Outline</td>
<td>N16A</td>
<td>V20A</td>
</tr>
</tbody>
</table>

12-BIT D/A CONVERTERS

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>0°C to 70°C</th>
<th>– 40°C to + 85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Linearity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05%</td>
<td>DAC1220LCN</td>
<td>AD7521LN,AD7531LN</td>
</tr>
<tr>
<td>0.20%</td>
<td>DAC1222LCN</td>
<td>AD7521JN,AD7531JN</td>
</tr>
<tr>
<td>Package Outline</td>
<td>N18A</td>
<td>J18A</td>
</tr>
</tbody>
</table>

Note. Devices may be ordered by either part number.

Absolute Maximum Ratings (Note 5)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- **V**⁺ to Gnd: 17V
- **V**REF to Gnd: ±25V
- Digital Input Voltage Range: V⁺ to Gnd
- DC Voltage at Pin 1 or Pin 2 (Note 3): -100 mV to V⁺
- Storage Temperature Range: -65°C to +150°C
- Lead Temperature (Soldering, 10 sec.):
 - Dual-In-Line Package (plastic): 260°C
 - Dual-In-Line Package (ceramic): 300°C
- ESD Susceptibility (Note 4): 800V

Operating Ratings

<table>
<thead>
<tr>
<th>Temperature (T_A)</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC1020LIV, DAC1220LCJ</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>DAC1222LCJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC1020LCN, DAC1020LCV, DAC1021LCN</td>
<td>0</td>
<td>+70</td>
<td>°C</td>
</tr>
<tr>
<td>DAC1022LCN, DAC1220LCN, DAC1222LCN</td>
<td>0</td>
<td>+70</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics (V⁺ = 15V, VREF = 10.000V, T_A = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>DAC1020, DAC1021, DAC1022</th>
<th>DAC1220, DAC1222</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>T_MIN < T_A < T_MAX, -10V < VREF < +10V, (Note 1)</td>
<td>10</td>
<td>12</td>
<td>Bits</td>
</tr>
<tr>
<td>10-Bit Parts</td>
<td>DAC1020, DAC1220</td>
<td>0.05</td>
<td>0.05%</td>
<td>FSR</td>
</tr>
<tr>
<td>9-Bit Parts</td>
<td>DAC1021</td>
<td>0.10</td>
<td>0.10%</td>
<td>FSR</td>
</tr>
<tr>
<td>8-Bit Parts</td>
<td>DAC1022, DAC1222</td>
<td>0.20</td>
<td>0.20%</td>
<td>FSR</td>
</tr>
<tr>
<td>Linearity Error Tempco</td>
<td>T_MIN < T_A < T_MAX, -10V < VREF < +10V, (Note 2)</td>
<td>0.0002</td>
<td>0.0002%</td>
<td>% FS/°C</td>
</tr>
<tr>
<td>Full-Scale Error</td>
<td>-10V < VREF ≤ +10V, (Notes 1 and 2)</td>
<td>0.3</td>
<td>1.0</td>
<td>% FS</td>
</tr>
<tr>
<td>Full-Scale Error Tempco</td>
<td>-10V < VREF ≤ +10V, (Notes 1 and 2)</td>
<td>0.001</td>
<td>0.001%</td>
<td>% FS/°C</td>
</tr>
<tr>
<td>Output Leakage Current IOUT 1</td>
<td>T_MIN < T_A < T_MAX, All Digital Inputs Low</td>
<td>0.005</td>
<td>0.005%</td>
<td>% FS/V</td>
</tr>
<tr>
<td>IOUT 2</td>
<td>All Digital Inputs High</td>
<td>0.005</td>
<td>0.005%</td>
<td>% FS/V</td>
</tr>
<tr>
<td>Power Supply Sensitivity</td>
<td>All Digital Inputs High, 14V < V⁺ ≤ 16V, (Note 2), (Figure 2)</td>
<td>0.005</td>
<td>0.005%</td>
<td>% FS/V</td>
</tr>
<tr>
<td>VREF Input Resistance</td>
<td></td>
<td>10</td>
<td>15</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>Full-Scale Current Setting Time</td>
<td>R_L = 100Ω from 0 to 99. 95% FSV</td>
<td>500</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td>VREF Feedthrough</td>
<td>All Digital Inputs Low, VREF = 20 Vp-p @ 100 kHz J Package (Note 4)</td>
<td>10</td>
<td>10</td>
<td>mVp-p</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>IOUT 1</td>
<td>40</td>
<td>40</td>
<td>pF</td>
</tr>
<tr>
<td>IOUT 2</td>
<td>All Digital Inputs Low</td>
<td>200</td>
<td>200</td>
<td>pF</td>
</tr>
<tr>
<td>All Digital Inputs High</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>pF</td>
</tr>
</tbody>
</table>

http://www.national.com
Electrical Characteristics (V⁺ = 15V, VREF = 10.000V, T_A = 25°C unless otherwise specified) (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>DAC1020, DAC1021, DAC1022</th>
<th>DAC1220, DAC1222</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input Low Threshold</td>
<td>(Figure 1)</td>
<td>Min Typ Max</td>
<td>Min Typ Max</td>
<td>V</td>
</tr>
<tr>
<td>High Threshold</td>
<td>T_MIN < T_A < T_MAX</td>
<td>2.4 0.8 2.4</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Digital Input Current</td>
<td>T_MIN < T_A < T_MAX</td>
<td>Digital Input High</td>
<td>1 100</td>
<td>μA</td>
</tr>
<tr>
<td>All Digital Inputs Low</td>
<td>T_MIN < T_A < T_MAX</td>
<td>Digital Input Low</td>
<td>−50 −200</td>
<td>μA</td>
</tr>
<tr>
<td>Operating Power Supply Range</td>
<td>(Figures 1 and 2)</td>
<td>All Digital Inputs High</td>
<td>0.2 1.6</td>
<td>mA</td>
</tr>
<tr>
<td>All Digital Inputs Low</td>
<td></td>
<td>All Digital Inputs Low</td>
<td>0.6 2</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: VREF = ± 10V and VREF = ± 1V. A linearity error temperature coefficient of 0.0002% FS for a 45°C rise only guarantees 0.009% maximum change in linearity error. For instance, if the linearity error at 25°C is 0.045% FS it could increase to 0.054% at 70°C and the DAC will no longer a 10-bit part. Note, however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it includes the linearity error temperature coefficient.

Note 2: Using internal feedback resistor as shown in Figure 3.

Note 3: Both I_OUT1 and I_OUT2 must go to ground or the virtual ground of an operational amplifier. If VREF = 10V, every millivolt offset between I_OUT1 or I_OUT2 will be 0.005% linearity error will be introduced.

Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 6: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_JMAX, R_JA, and the ambient temperature, T_A. The maximum allowable power dissipation at any temperature is P_D = (T_JMAX − T_A)/R_JA or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, T_JMAX = 125°C, and the typical junction-to-ambient thermal resistance of the J18 package when board mounted is 85°C/W. For the N18 package, R_JA is 120°C/W, for the N16 this number is 125°C/W, and for the V20 this number is 95°C/W.

Typical Performance Characteristics

![Digital Input Threshold vs Ambient Temperature](http://www.national.com)

Figure 1. Digital Input Threshold vs Ambient Temperature

![Gain Error Variation vs V⁺](http://www.national.com)

Figure 2. Gain Error Variation vs V⁺
Typical Applications

The following applications are also valid for 12-bit systems using the DAC1220 and 2 additional digital inputs.

Operational Amplifier Bias Current (Figure 3)
The op amp bias current, I_b, flows through the 15k internal feedback resistor. Bi-FET op amps have low I_b and, therefore, the $15k \times I_b$ error they introduce is negligible; they are strongly recommended for the DAC1020 applications.

VOS Considerations

The output impedance, R_{OUT}, of the DAC is modulated by the digital input code which causes a modulation of the operational amplifier output offset. It is therefore recommended to adjust the op amp VOS. R_{OUT} is $\sim 15k$ if more than 4 digital inputs are high; R_{OUT} is $\sim 45k$ if a single digital input is high, and R_{OUT} approaches infinity if all inputs are low.

Operational Amplifier VOS Adjust (Figure 3)

Connect all digital inputs, A1–A10, to ground and adjust the potentiometer to bring the op amp V_{OUT} pin to within ± 1 mV from ground potential. If V_{REF} is less than 10V, a finer VOS adjustment is required. It is helpful to increase the resolution of the VOS adjust procedure by connecting a 1 kΩ resistor between the inverting input of the op amp to ground. After VOS has been adjusted, remove the 1 kΩ.

Full-Scale Adjust (Figure 4)

Switch high all the digital inputs, A1–A10, and measure the op amp output voltage. Use a 500Ω potentiometer, as shown, to bring V_{OUT} to the voltage equal to $V_{REF} \times \frac{1023}{1024}$.

SELECTING AND COMPENSATING THE OPERATIONAL AMPLIFIER

<table>
<thead>
<tr>
<th>Op Amp Family</th>
<th>C_F</th>
<th>R_i</th>
<th>P</th>
<th>V_W</th>
<th>Circuit Settling Time, t_s</th>
<th>Circuit Small Signal BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF357</td>
<td>10 pF</td>
<td>2.4k</td>
<td>25k</td>
<td>V^+</td>
<td>1.5 μs</td>
<td>1M</td>
</tr>
<tr>
<td>LF356</td>
<td>22 pF</td>
<td>∞</td>
<td>25k</td>
<td>V^+</td>
<td>3 μs</td>
<td>0.5M</td>
</tr>
<tr>
<td>LF351</td>
<td>24 pF</td>
<td>∞</td>
<td>10k</td>
<td>V^-</td>
<td>4 μs</td>
<td>0.5M</td>
</tr>
<tr>
<td>LM741</td>
<td>0</td>
<td>∞</td>
<td>10k</td>
<td>V^-</td>
<td>40 μs</td>
<td>200 kHz</td>
</tr>
</tbody>
</table>

FIGURE 3. Basic Connection: Unipolar or 2-Quadrant Multiplying Configuration (Digital Attenuator)
Typical Applications (Continued)

FIGURE 4. Full-Scale Adjust

FIGURE 5. Alternate Full-Scale Adjust: (Allows Increasing or Decreasing the Gain)

FIGURE 6. Precision Analog-to-Digital Multiplier

\[
V_{OUT1} = -V_{REF} \left(\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \cdots + \frac{A10}{1024} \right)
\]

\[
V_{OUT2} = V_{REF} \left(\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \cdots + \frac{A10}{1024} \right) \times \left(\frac{B1}{2} + \frac{B2}{4} + \frac{B3}{8} + \cdots + \frac{B10}{1024} \right)
\]

where \(V_{REF}\) can be an AC signal

http://www.national.com
Typical Applications (Continued)

\[V_{OUT} = -V_{REF} \left(\frac{A1 + A2 + \ldots + A10}{1024} \right) \]

where: \(AN = 1 \) if \(A_N \) input is high
\(AN = -1 \) if \(A_N \) input is low

Complementary Offset Binary (Bipolar) Operation

<table>
<thead>
<tr>
<th>DIGITAL INPUT</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>+VREF</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 1</td>
<td>VREF x 1022/1024</td>
</tr>
<tr>
<td>0 1 1 1 1 1 1 1 1</td>
<td>VREF x 2/1024</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0 0 1</td>
<td>-VREF x 2/1024</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1</td>
<td>-VREF (1022/1024)</td>
</tr>
</tbody>
</table>

Note that:
- \(I_{OUT} 1 + I_{OUT} 2 = \frac{V_{REF}}{R_{LADDER}} \times \frac{1023}{1024} \)
- By doubling the output range we get half the resolution
- The 10M resistor adds a 1 LSB "thump", to allow full offset binary operation where the output reaches zero for the half-scale code. If symmetrical output excursions are required, omit the 10M resistor.

FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration

Operational Amplifiers V}_{OS} Adjust (Figure 7)

a) Switch all the digital inputs high; adjust the \(V_{OS} \) potentiometer of op amp B to bring its output to a value equal to \(-\left(\frac{V_{REF}}{1024}\right)\) (V).

b) Switch the MSB high and the remaining digital inputs low. Adjust the \(V_{OS} \) potentiometer of op amp A, to bring its output value to within ±1 mV from ground potential.

For \(V_{REF} < 10V \), a finer adjust is necessary, as already mentioned in the previous application.

TRUE OFFSET BINARY OPERATION

<table>
<thead>
<tr>
<th>DIGITAL INPUT</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>(V_{REF} \times 1022/1024)</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>-VREF</td>
</tr>
</tbody>
</table>

\(t_c = 1.8 \mu s \)

use LM336 for a voltage reference

FIGURE 8. Bipolar Configuration with a Single Op Amp

Gain Adjust (Full-Scale Adjust)

Assuming that the external 10k resistors are matched to better than 0.1%, the gain adjust of the circuit is the same with the one previously discussed.

FIGURE 9. Bipolar Configuration with Increased Output Swing

\[R_4 = (2A_{v}^{-} - 1)R_1, \frac{R_2}{R_1} = \frac{A_{v}}{A_{v}^{-} - 1} \]

\(R_3 + R_1 \left| R_2 = R_1 \right. \rightarrow A_{v}^{-} = \frac{V_{OUT(PEAK)}}{V_{REF}}, R_1 = 20k \)

Example: \(V_{REF} = 2V, V_{OUT(swing)} = \pm 10V, A_{v}^{-} = 5V \)

Then \(R_4 = 9R_1, R_1 = 0.8R_2 . \) If \(R_1 = 0.2R_2 \) then \(R_2 = 0.25R_1, R_3 = 0.64R_1 \)
Typical Applications (Continued)

\[V_{OUT} = -V_{REF} \left(\frac{A_1}{2} + \frac{A_2}{4} + \ldots + \frac{A_{10}}{1024} \right) \]

where: \(V_{REF} \) can be an AC signal

- By connecting the DAC in the feedback loop of an operational amplifier a linear digitally control gain block can be realized
- Note that with all digital inputs low, the gain of the amplifier is infinity, that is, the op amp will saturate. In other words, we cannot divide the \(V_{REF} \) by zero!

FIGURE 10. Analog-to-Digital Divider (or Digitally Gain Controlled Amplifier)

\[V_{OUT} = V_{REF} \left(\frac{X_{10}}{1024} + \frac{X_9}{1024} + \ldots + \frac{X_1}{1024} \right) \]

or

\[V_{OUT} = V_{REF} \left(\frac{1023 - N}{N} \right) \]

where: 0 \(\leq N \leq 1023 \)

- \(N = 0 \) for \(A_0 = \) all zeros
- \(N = 1 \) for \(A_{10} = 1, A_1 - A_9 = 0 \)
- \(\ldots \)
- \(N = 1023 \) for \(A_0 = \) all 1's

FIGURE 11. Digitally controlled Amplifier-Attenuator
Typical Applications

(Continued)

- Output frequency \(\frac{f_{CLK}}{512} \leq f_{MAX} \leq 2 \text{ kHz} \)
- Output voltage range \(-0V - 10V \text{ peak}\)
- THD < 0.2%
- Excellent amplitude and frequency stability with temperature
- Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz, filter corner should be reduced)
- Any periodic function can be implemented by modifying the contents of the look up table ROM
- No start up problems

FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM
Typical Applications (Continued)

- Binary up/down counter digitally "ramps" the DAC output
- Can stop counting at any desired 10-bit input code
- Senses up or down count overflow and automatically reverses direction of count

FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits
Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the D/A output. It is directly related to the number of switches or bits within the D/A. For example, the DAC1020 has 2^{10} or 1024 steps while the DAC1220 has 2^{12} or 4096 steps. Therefore, the DAC1020 has 10-bit resolution, while the DAC1220 has 12-bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the D/A transfer characteristic. It is measured after calibrating for zero (see VOS adjust in typical applications) and full-scale. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.

Settling Time: Full-scale settling time requires a zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the D/A output reaches within $\pm \frac{1}{2}$ LSB of final output value.

Full-Scale Error: Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally, for the DAC1020 full-scale is $V_{REF} - 1$ LSB. For $V_{REF} = 10V$ and unipolar operation, $V_{FULL-Scale} = 10.0000V - 9.9902V$. Full-scale error is adjustable to zero as shown in Figure 5.

Connection Diagrams

 DAC102X
 Dual-In-Line Package

 DAC1020
 PLCC Package

 DAC122X
 Dual-In-Line Package

Note: (a), (b1) and (b2) above illustrate the difference between “end point” National’s linearity test (a) and “best straight line” test. Note that both devices in (a) and (b2) meet the $\pm \frac{1}{2}$ LSB linearity error specification but the end point test is a more “real life” way of characterizing the DAC.
Physical Dimensions inches (millimeters) unless otherwise noted

Cavity Dual-In-Line Package (J)
Order Number DAC1220LCJ or DAC1222LCJ
NS Package Number J18A

Molded Dual-In-Line Package (N)
Order Number DAC1020LCN, DAC1021LCN or DAC1022LCN
NS Package Number N16A

http://www.national.com
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N)
Order Number DAC1220LCN, DAC1221LCN or DAC1222LCN
NS Package Number N18A
DAC1020/DAC1021/DAC1022 10-Bit Binary Multiplying D/A Converter

DAC1220/DAC1222 12-Bit Binary Multiplying D/A Converter

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Plastic Leaded Chip Carrier (V)
Order Number DAC1020LCV or DAC1020LIV
NS Package Number V20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.