0190$ yoa wvin€Td
seesssIBIBIIIIIEIESIIIISE srssrervssrvessrNNs
YIA 000V .._O%
anid JH0d ¥V NI HOLYINWNOOY S30V1d INILACHENS VYV.INd
sssressIINIEILIIEISIIISISS esvevesvsvrsrsrsrenel
SLy
Sy
YVOT ITAVIHVYA NI “ON ¥YO 3HOLS! UVI1 VIS t Yvind use
‘ON ¥YD AVIdSIQ! 000b$ VIS 440 NOVE SIHOLIMS! PMSH# ¥a1
SLTE LSOWLA3T OML AINO d3ax’ S1194# AONY JXAN ¥sP
JHOTY 3HL OL LI9 3NO JLVLOM! ¥ dod LX3N 4se
XOdTIVW ONV VIA OLNI HOLVINWADOY §30VId! YVlnd ¥se
JTAVIEYA ¥ OINI VIA avOol! €YVA YIS b HOLIMS! PMSH val
10085 va1 L3IHS TWYHdd dSC PHOLIMS
...C..'.'.."D..."..I....n
Y3ALSIO3Y L4IHS avay :LJIHS'! sy
servsssrsIIse IV IIEIIIII IS ! Yvind use
440 MOvd SIHOLIMS ! €MSH ¥al
sy IX3AN ¥SP
SUVYD AUOW Y¥Od ! LX3IN use
ONINJAHO 433N ‘HVATD HINOS Q3ISSVd L,NSYH NIVMl 41! aviy 3nNa XOG'1IVA ONY VIA OILNI YOLVIAWNDOY S§30VId! YVYind HsrC
NIVYLS va1 £ HOLIMS! tMSH ¥a1
THVYYHd ¥SLe €HOLIMS
d3aTIvO SI 3NILNOYANS SIHL FWIL HOVA Q3ILNA4dn SI ¥vOoT!
SAVIdSId 1IL YALNGWOD! : Sy
NO AVIdSIQ GNY ¥3ILSIO3Y LJIHS NI S11d9 Qvay! L4IHS dse avay f vvind dse
440 NOVE8 SAHOLIMS! ZMS# ¥a1
LIg Yvd1d ONIGOYLS dOLS! 1008$ V1S IX3N HsP
ddss vazl LXIN ¥SP
XOdTIVH ONV VIA OLNI HOLVINWADOVY S3dV1d! yvind ¥se
HILSIOAY LJIHS NO LI€ HV3TID JEOULS! 1008$ VIS T HOLIMS! IMSE vat
d45# 403 TAVYd YSOC THOLIMS
UYATION Va1l
S1d
00 Ol XOH7TIVW ¥VD 1SV IZITVILINIY yvo1 vis ! Yvind dsc
004 va1 440 Nove SIHOLIMS! IMSH ¥al
LX3IN Use
NIVYL ¥V 3AVH Ol MOWVYL HLNOS ¥Od LIVM! THLNOS use SAWVYd € SLIVM! IX3N ¥SC
XO8TIVAW ANV VIA OLNI HOLWINWNOOY S3ovid! vvind y¥sce
AOVHL AVTIEY HINOS HIMOd3Y! QUAOS VYIS 1 HOLIMS! IMS# Va1l
005¥ va1 THVH4 ¥SLC THOLIMS
LHOIY-Z-1 ¥OJd LIVM/ CdHLIO d¥sr Sy
YHOLIMS HSC
MO'IS dyvMyOd ¥Ood .04, AVIdSIQ¢ 000¥S VLS TVYLNd use
04$¥ vai XOHTIVW 000V IV VIA 40 1¥0d V HLIM ANV 0190$ OGNV
«JONW ! ddse Hod
NOVHL AVTEY 1N0S TTIN! QYAOS VIS ¢13de val LbMS
4480 val
Siy
YVAT1D 349 OL NOVHL HLINOS Y04 LIVM! OHLNOS dYse HOLIMS $3SInd! PHOLIMS uSC
WYON ¥SC 3a0ooyvd XOHTIVA GNV VIA OLNI YOLVINWNJOV SIOVId! Z¥vind use
ssrrvesssvovnsnavsesnnons’ SLIg AV'idY HLIM ¥O! 27344 WO
y3avdyd 3000 yva’! XO8TIVW 000V IV VIA 4O LyOd V avoT! 01905 va1 dvMS
CCC..C..'.IIC....'C.C.CCI“
sid
EHOLIMS dSP
Sy Z¥vilnd use
SAV1AY FHL HOJ! 0190$ VIS XOHTIVW 000V LV VIA 4O LHOd ¥ HLIM ONV! 01905 aN¥Y
@gdsn S43 °PNIHOX Od JLON $40Q INILNOYENS SIHL! T00VS YUS gvvlnd #LONy 4459 HO3
1344 Va1 LEMS
Sy
0190$ vis siy
100¥$ VLS HJOLIMS S3sIndt €HOLIMS ¥se

vl wise'gdoap

Robust Junction
MAE 412

ABSTRACT

This project automatically controls the actions of multiple trains
simultaneously by sensing their location and sequencing and
actuating their motion (via track kills and re-energizing) and direction
(via switch throwing). This is implemented through a train station
framework with switches and optical sensors. All components are
controlled and coordinated through use of a single board computer
(SBC). The project successfully addresses the important
transportation issues faced by railway engineers regarding train
organization and automatic collision avoidance.

Matt Morris

David Larson
May 23, 1997

364

MAE 412 Table of Contents Robust Junction

TABLE OF CONTENTS

INTRODUCTION ... iiiiitiiiiiiieeiiisctetisierisserstcesssrartarsssesansasansnnsessanses 3
DESCRIPTION OF TRACK LAYOUT ciiiieiiiiinincernrininceresnasncnsassannsasnas 4
SENSOR DESCRIPTION . .cciiiiciiiiiiiiriarrecicnsirterensatscsssesesersnsesans 5
ACTUATOR DESCRIPTION ..iciiiiiiiiiiiiiiiniesncitiiiimiiniiesesesessssasencsanens 7
TERMINAL INTERFACE uucuviveieerectiesessssessssssssssessssesnssssssessssessanes 9
COMPUTER INTERFACE....c.iciciiiiiininieinieresiiiainiriiisisacesesessennnenes 10
N T 1T I P 12
PROGRAM EXPLANATIONciciiiiircriciicaicsacetasntscisassssasaseransnsanes 13
Program Flow Charts......cciciiiiiiiiiiiiniceiencscescrssscsecoscscscecsssssaccsassssssasesnans 14
Program Listing....ccceiiviiiiiiireiesiersscissscersossosssecsssnceiessscecssssscssscesscscenoes 29
CIRCUIT DIAGRAMS....cciirciiririsciittisiscserasatesncecesssessasstssesasasansnses 39
Track 0 & 1 optical sensor and RS flip flopcoeeuinniii it ceemeee 40
Track O & 1 Relay Kill ... oeiieiiiie ettt et e eee e rnecenseneeeanesensannsnaraannsennsnnns 41
UAR/T Daughter BOArdc...eeeuuiiiiiiieeececiieiieneeteeenaeeeneanabensesnesseensssseasssenssseanssssnasasensas 42
SWItCh ACUALOT CITCUIL. . eeneitieiiiiiieraeienaeinereiaeeemeaeennaeenaenesaenaensaamassansannaasansmsssmassnnenmnsonsnne 43
NOIth Optical SENSOTttt ete e raee e se e s e e reneamenaeensenanesarensemnansnanencens 44

ey CNCU(e

CUART axallent
. execd M Ry, C”J
e Pvcyd‘ (& 0 &d

&

3:31 PM 2 May 23, 1997

369

MAE 412 Introduction Robust Junction

Introduction

This project uses a single board computer (SBC) with a 6502 microprocessor to
control the operations of as many as 15 trains on a track given power by a Homnby
master controller unit. The features that are unique to this project are four optical
sensors, four track switches, and a UAR/T receiver transmitter chip which allows the
computer to display information on a Perkin-Elmer 550 Termiral.

The premise behind Robust Junction is that trains proceed around the main track
(north and south tracks) until they are marked as trains which should switch off of the
north track onto the station track. Once a train is on the station track, there are three
possible scenarios:

1) The station (tracks 1 and 0) is empty. In this case, the train will roll into track 0.

2) Either track 1 or track 0 is occupied. The train will simply move into the empty slot.
3) Both tracks are occupied. In this event, the train will stop just after activating a
sensor before the station and will wait until the train that has been in the station longer
leaves. However, the newly arriving train will not begin to move until the departed train
is safely back on the north track, as indicated by another sensor on the north track. This
prevents, for example, a fast incoming train from running into a slow outgoing one.

The Perkin-Elmer terminal displays which trains are slated for arrival at the track,
the status of each of the station tracks (1 and 0), and the state of each of the four
switches (straight or switched).

4:00 PM 3 May 23, 1997

36

~

v

Robust Junction

Track Layout

MAE 412

Description of Track Layout

Jojejos|) Eoppae = @

Josues |eojdo = (i

ST Ll i g

53.&.:5@ :

| @ibuis

i . e —:.,_..___u ...n;_.__.nw\m..

WIRE uou

Rk Ll K

= PRI o e RET T VR B

i pmag ey b

a a4 v.!..:. i) .
TR By Bapteal
BT

I L 1

Ay |

R T

x_.,.._ [TFEIaLY Ja.-.. .

ZD_PUZD_J 1SMN80Y -

May 23, 1997

3:31PM

367

MAE 412 Sensors Robust Junction

Sensor Description

Inside the TIL139 the infrared light emitting diode is always on. When the reflective
tape of an engine passes infront of the sensor the infrared light is reflected back to the
sensor and turns on the transistor. Now theé amount of light reflected creates a
potential. This potential is fed into a LM 339 comparator which compares it to a
voltage obtained by a voltage divider. A Schmitt trigger was considered but not used
because only the knowledge of when the train first passsed in front of the sensor was
necessary (only the upward transition important). The value of the comparing voltage in
the voltage divider was determined by trial and error.

Basic Optical Sensor Ciruit Diagram

zl
! reflective tape on engine
TIL139 =
i nothing
"
- 0.91MO)|
2—" W\ |
3.9MQ +5V
A'A"A
+5V c
+5V o
e T 0
b —\ _
o LM339 =
B + Qutput
5 = H - Engina
; L - ne Engine
4:04 PM 5 May 23, 1997

368

MAE 412 Sensors Robust Junction

Basic RS Flip Flop Ciruit Diagram

O > [> = K
Q
Inputs Qutputs
0 - from optical sensor K - to track kill circuit
(H - engine present) T - to computer
(L - no engine) (H - track on)
C - from computer (L - track off)
(H - track on)
(L - optical sensor decides)

The flip-flop takes the inputs from the optical sensor and the computer and
produces an output. There are two states on each of the lines. From the optical sensor
(O) a high means an engine is passing (or is stopped) in front of the optical sensor (It
assumes a reflective piece of tape is placed in the proper loaction atop the bar code of the engine
in accordance with the labelling requirements stated in VOLUME 1 of the MAE 412 readings).
A low from the optical sensor means there are no engines in front of the sensor. A high
from the computer (C) should force the track on immediately and will stay on as long as
(C) is high. A low from the computer will allow the sensor to decide whether the track is
on or off.

The flip-flop is initialized to be on (track on). Also, the computer is set to a low and
it is assumed there are no engines on the track. Thus the optical sensor is a low. This is
the quiescient state and the track remains on, until the RESET line is brought high which
is the case when the optical sensor goes high due to an engine passing in front of the
sensor. The flip-flop then immediately goes low, turning the track off and stopping the
engine safely. As the engine slides by the sensor the optical sensor will again go back to
a low, but because of the flip-flop the track will stay off.

The track will stay off until the computer goes high and sets the flip flop back on,
turning on the track and allowing the engine to leave the station. Then the computer can
go back to low, allowing the sensor to kill the track the next time a train passes in front,
in

4:04 PM 6 May 23, 1997

369

MAE 412 Actuators Robust Junction

Actuator Description

There are two types of actuation that are used in this project: track kills (and
restarts) and track switching. Both involve relays. The diagram below shows the basic
method of track kill. :

Basic Track Kill Ciruit Diagram

+5V

750Q
2N3906 AN / Input (K)
By <

PNP \(H - track on)
1N4148 (L - track off)
lA— :
N
oo e L
2 15
3 E; 14
Homby)
Track —}-—4— @ 13
Power 5 E 12
Q.
—61.+,0 — i
7 10
8] 9

Switched Track Power
(to isolated track section)

The track kill relay is relatively simple. The signal from the RS flip flop circuit comes in
and is inverted in a 74LS04 hex inverter. This signal is used in a transistor: when the
inverted signal is high, the transistor gives no current to the relay, so the track is
switched off; when the inverted signal is low, the relay is energized, throws the switch,
and the track turns on. The diode across the relay coil is there to ensure that current
flows only one way. This is necessary due to the high inductive load.

The switch circuit (shown in the circuit diagrams section) uses a 4N40 optical SCR,
four transistors, and four relays. The computer sends four signals, S1-S4, to the board.
These signals are then buffered. S4 goes to the 4N40 and determines whether power is
sent to relay 1 to initiate switching. S1 goes to relay 1 and its state decides whether a
main or station switch is to be altered. 52 goes to relay 2 and decides whether left or
right switches are being switched. S3 goes to both relay 3 and relay 4 and decides which
way the switch is to throw. The diode (1IN4004) across the switch coil protects it from
transient currents.

4:04 PM 7 May 23, 1997

370

MAE 412 Actuators RobustJunchom

+5V Track Ground
220
Ohm 440
s _ Optical SCR
2= £ Sy e 10K
== - Ohms
5= 2
I [,:
S4
£t &
& = = Switching Signal
Track Power N
S 3 3
_i =1
= % - s3 52 S1
== &
)) \L \L
Relay 3
_ Realy 2
— Left
| =" |
1 SRS - . 4
___,_...—¢—J_.. g Eelay 1
@
= = ks
55 3 =S
= = Relay 4 o
ZE E Left
== - I 2
——— - E
- | Right
4:04 PM 8 May 23, 1997

371

MAE 412 Terminal Robust Junction

Terminal Interface

A unique aspect of the Robust Junction is its train board display. The project uses a
standard Universal Asynchronous Reciever/Transmitter (UAR/T) chip and RS5-232 DB-
25 connector to connect to a Perkin-Elmer 550 terminal. The UAR/T requires a bit rate
generator, crystal, and line driver, as well as a bulffer, inverter, and power-up reset
circuit.

The Robust Junction UAR/T is only set up to transmit data, which is all that is
required of a train board. This simplifies the circuit signifigantly. The UAR/T is set to 8
data bits, even parity, and 2 stop bits. These values were chosen somewhat arbitrarily.
They seem to work best with the Perkin-Elmer 550.

The bit rate generator uses the crystal to lay out a precise frequency clock signal. The
highest BAUD rate the Perkin-Elmer 550 can handle is 9600, so the bit rate generator is
set to 16 times this desired BAUD rate. The UAR/T requires a clock signal at sixteen
times the desired transmitting BAUD rate.

The line driver takes the serial TTL (+5V, ground) signal from the UAR/T and
converts it to an RS-232 signal of (-12V, +12V). Now the #12V sources are taken from
the Perkin-Elmer 550 terminal. This is a NON-STANDARD feature of this particular
brand of terminal. In order for the terminal to put out this supply voltage its DIP mode
switches number 6 and 7 must be in the ON position.

The reset circuit is identical to the one used on the single board computer, and merely
resets the UAR/T and bit rate generator whenever power is applied.

The Perkin Elmer 550 terminal must be Online, full duplex, printer off, 9600 BAUD
and have the following mode switch settings :

Switch# 1 2 3 4 5 6 7 8 9 line button
Setting off on off off off ON ON off ON depressed

The Perkin-Elmer takes a few seconds to warm up, and if the computer needs to be
reset, first hold down CONTROL and press CLEAR on the terminal and then reset the
computer. This clears the terminal screen of any extraneous characters.

4:04 PM 9 May 23, 1997

372

MAE 412 Programming Robust Junction

Computer Interface

This section shows all the connections from the computer to the other parts of the
train board. All connections except for those to the UAR/T board are through a 44-pin
edge connector. The UAR/T connections are through a ribbon that plugs directly into
the SBC. Shown below are the edge pin and UAR/T ribbon connections to the VIAs.
The respective circuit diagrams for each of the indicated boards give pin locations for
each of pins 12 through 22. Those pins are the ones unique to this project. All output
lines on the SBC go through a 7415244 buffer and then to the 44 edge pin connector.
The only tricky one is the force-the-north- track-clear line. This one goes to an open
collector logic hex inverter, and the output of this inverter goes through the 44 edge pin
connector to pin 7 on the DB-25 connector going to the test stand board.

The input lines unfortunately do not get buffered on their way into the VIAs, but on
the daughter boards they are buffered on their way out, which accounts for this
difference. The inputs jump directly from the 44 edge pin connector to the VIA.

Pin# Color Description VIA

port
1 black logic ground GND
2 red logic power +5V
3
4 black test stand 1,PA
5 white test stand
6 yellow test stand
7 blue test stand
8 test stand test stand
9 green test stand
10 brown test stand
11 red test stand
12 grey track 1 and 0 optical sensor circuit 1, PAO
13 purple track 1 and 0 optical sensor circuit 1, PA1
14 blue on-deck optical sensor circuit 1, PA2
15 orange north track optical sensor circuit 2, PB1
16 blue switch circuit 1, PA4
17 grey switch circuit 1, PAS
18 purple switch circuit 1, PA6
19 white switch circuit 1, PA7
20 white on-deck optical sensor circuit 2, PB5
21 brown track 1 and 0 optical sensor circuit 2, PB4
22 orange track 1 and 0 optical sensor circuit 2, PB3
A green track ground
B yellow track power
UAR Description VIA
/T # port
1 see UAR/T diagram 2, PBO
2 2, PAO
3 2, PB7
4 2, PA1
6 2, PA2
8 2, PA3
10 2, PA4
12 2, PAS
14 2, PA6
16 2, PA7
3:31 PM 10 May 23, 1997

373

MA]I Programmirg Robust

VIA #1 VIA #2

- p = S 1522 CY R U
-—Nﬁvmlwl\lcuoxo o ol ol u)l\cnm—’:]_‘_ I,__

+
ajim W wed ¢ ha v4 2
4 ﬂj..g_é = 4
1Y LN F (2] s AU
alve wf e 1 }VQ\P\Q [N
duae T Nady 4 'i(/\v\ ¥)
H L 2 K0 I AT % KT
Y b;‘ g% B L3 & LAY Bl
1kvz 7\ iz KX 7R vz ‘b\l' va
1 WVRESTE I [PYRA N IT)
e wd 2 ofvi P v w2
s —a
Pyt BN hRNTY BT oelag 22] vt

-V l IELEI. ahobn|swpols

UAR/T ribbon

| FFFREFTES FEETEREE

A

) B 1
~Bled<id ool eei Al
| edge pin connector |

31 PM May

MAE 412

Res

A15 e—

Al4

A15 =

Al G

W

Y

Programming

PAL 16L8

The address decode logic for the SBC was implemented using a PAL 16L8 chip.
Included here are a schematic of the PAL demgn, diagrams for all of the logic functions,
and a diagram of the actual PAL chip.

Res

'CE on EPROM

LS on TIL

A13 and
CS1on
VIA #1

3:31 PM

Y

12

Robust Junction

CDZ
A15 =) S
on RAM
A14 m—
| |- —
€32 on
VIA #1 + 2
A4 _O
+5V
2 20T
2] 19
;%3_ 18 O
17 =2
A154] 3 L Res
5 © 16
A146— 2 1?ZEEon EPROM
A13I :(l WJ_S_on TIL
8 o 13 &S
— — X713
2 12 s
G190 (11
May 23, 1997

375

TIBPAL16L8-15C
TIBPAL16L8-20M

HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

SAPE015 = 03340, FEERUARY 1384 = REVISED MARCH 1932

logic diagram {positive logic)

N

First

Increment
FAY

Fuse r
Humbers a

12 16
[N

20 .

)t
24 28 AN

12

15

124

132

) 24

-
- 256
288 =

3

353

384

a5

448

-)

A

J

. . -

B3z

- .

)

Fusa numbar = First fuse number + Increment

TEXAS "9
INSTRUMENTS

POST OFFICE BOY E55303 & DALLAS TExAS ToDes

MAE 412 Programming Robust Junction

Program Explanation

The best way to understand the program is to take a brief look at the flow charts
following this basic text. The first describes the initializing and the main loop. Then
there is another dealing with a different train on either the north (NEWNTRN) or south
(NEWSTRN) track, as well as a different console’ command (NEWRDAT). These are
the primary subroutines called by the main program.

There are a number of secondary subroutines that the primary subroutines use at
various times. The most significant one of these is (STOPIT) which is called when a new
train has entered the north track and it is scheduled to stop at the station. This
subroutine will move that train to the right track, clear that track if there’s a train on it,
and call the appropriate routines to switch the switches and update the terminal
display.

Ii‘klly of the procedures rely on some basic routines that switch the switches (SWTIT),
update various aspects of the terminal (UPRBJ - train board, DISPLST - train list,
SWTSTAT - switch status) and the most important is the routine that takes an ASCII
message in the EEPROM and transfers it to the terminal (DISPMSG). In addition, in
order to clear the North track so Lecky will allow another train on after a train has been
stopped at the station, a procedure was written and an open collector logic gate added
(FCLR).

A few of the procedures are run only during initialization. These include one to set
up all the nice looking blocks and labels on the terminal (BRDSET). Another one
(CLRLST) clears the train list and sets them so they all stop at the station upon reset.
And one sets all the switches to straight and updates the switch status board at the
same time (INITSWT).

As one can see by the program listing, the Robust Junction program is long, and looks
rather complicated. But it can be broken down into only a few basic sections. The
majority of the running time is spent in the main loop checking whether or not a different
train enters on the North or South track, and whether or not a different command is
entered from the Hornby Console to computer #5. If one of these events happens then
the program jumps to the appropriate subroutine. If not, the program stays in this loop
until something changes.

3:58 PM 13 May 23, 1997

37

L}

{

MAE 412 Programming Robust Junction

Program Flow Charts

The flow charts follow the standard of a round rectangle for an operation, and a
parallelogram for a decision. Frequently the word RUN is used. This refers to a jump
subroutine command in assembly langauge. Upon completion of the subroutine the
program will return to the line right after the RUN block.

List of Flow Charts

MAIN LOOP 15
NEWSTRN 16
NEWNTRN 17
STOPIT 18
BRDSET 20
DISPMSG 21
CLRLST 22
FCLR 22
DISPLST 23
NEWRDAT 24
SWTSTAT 25
SWTIT 26
INITSWT 27
UPRBJ 28
3:58 PM 14 May 23, 1997

378

MAE 412 Programming Robust Junction

MAIN Loop
Main Program

[Initialization | l
J/

l IL}.'] ain Loop (LOOPIT)]

set BLKID to
computer #5

‘ Run Lecky's INIT
J
l [[RunNEWNTRN |
l Initialize variables) [\ J
J/ ,.'/

4
Setup VIA's J

J

o

Check for different
Lrain on North Track

J/

different

Check for different
Train on South Track

v 4 different
RUN BRDSET
sets up terminal i [Bun NEWSTEN J

MY MY (M)

RUN CLRLST J
clears train list

Check for different
Hormnby Command

[RUN INITSWT }

sets all switchas (o straight different

[Run NEWRDAT]

. W

[RUN UPREJ]
gets up the track status board

3:32 PM 15 May 23, 1997

379

MAE 412 Programmung

NEWSTRN

([Set up ASCII)

message saying
"Train #_"
positioned
bottom right
of terminal
. J

v

 RUN DISPMSG
puts this message

N\

Check if south
track clear

[Setup ASCII)

message saying
"Clear"
positioned
bottom right
of terminal J

\

v

 RUN DISPMSG |
puts this message

on the terminal
_)

Robust Junction

L on the terminal)

Eietum from subroutine]

3:32 PM

May 23, 1997

380

MAE 412

NEWNTRN

Programming

[NEWNTRN_)

[Setup ASCII |
message saying
"Clear"
positioned
bottom left
of terminal
\ J

v

[RUN DISPMSG)
puts this message

Check 1if north
track clear

on the terminal
_ _J)

if this train should

don't stop

N

[Setup ASCII
message saying
"Train #_"
positioned
bottom left

of terminal J

Y

(RUN DISPMSG)
puts this message

\

L on the termmal)

Check

stop at the
station

stop

station

RUN STOPIT
stops train at

/

(Return from subroutinﬂ

3:32PM

17

Robust Junction

May 23, 1997

381

MAE 412 Programming Robust Junction

STOPIT

(STOPIT)
v

[Set SWTDAT to code equivalent to main lefi tumour]

[RUN SWTIT (switches SWTDAT code))

Check
which track to put train on
QNXTRED
Track 1 Track O

Set SWTDAT to code equal Set SWTDAT to code equal
to station left turn to station left straight

RUN SWTIT RUN SWTIT

Set SWTDAT to code equal Set SWTDAT to code equal
to station right turn to station right straight

RUN SWTTI RUN SWTIT

Change Board to show train on Track Change Board to show train on Track
1 is departing 0 is departing

(UPRBJ) (UPRBJ)

Check
whether Train has reached on-deck
no train SENsor

train

(Set SWTDAT to code equivalent to main left switch straight]

Check
NXTRK variable to see which track train is
moving onto

3:32 PM 18 May 23, 1997

382

MAE 412

Programming

Set SWTDAT to
main right turn

Update Board
to show train
as arriving

Tum on ondeck
track section

Turn on Track O
section

no train

v

Update Board
to show train
as stopped

~/

Y

Update Board to
show this train
arriving on 0

v

|_f Set the next
track to fill
as track 1

| (NXTRK)

RUN FCLR
(forces N clear)

Turn_the on deckN
track on

Check
Track O

Update Board
to show arrived

Set the next track
to be filled as
track 1

(NXTRK)

A 4

Set SWTDAT to
main richt tum

RUN SWTIT

Tum on Track 1

Update Board to
show this train
arriving on 1

f 2 L
ITI.'!T[the on deck
\ track on

Update Board

to show amrived
Set the next track
to be filled as

track O
(NXTRK)

Check
T1TRN variable to see
if there is a train

Robust Junction

Update Board
to show train
as arriving

Turn on ondeck
track section

Check
Track 1

SENsOr

! train

Update Board
to show train
as stopped

Set the next
track to fill
as track O
(NXTRK)

" o1 et)
RUN FCLR

(forces N clear)

Return from this subroutine

B

3:32 PM

19

May 23, 1997

383

MAE 412 Programming Robust Junction

BRDSET

(BRDSET J
v

&l the High Byte of the address of North/South block ASCII message into zero page locatioﬂ
MESGH

v

[Put the low byte of the address of North/South block ASCII message into the zero page location]

MESGL

Y

RUN DISPMSG

Y

Put the High Byte of the address of Train list block ASCIT message into zero page location j
MESGH

v

lPut the low byte of the address of Train list block ASCII message into the zero page location]
MESGL

y

[RUN DISPMSGJ

Y

[Put the High Byte of the address of switch status block ASCII message into zero page location]
MESGH

2

[Put the low byte of the address ofswitch status ASCII message into the zero page location]
MESGL

y

RUN DISPMSG

L4

Put the High Byte of the address of Train board block ASCII message into zero page location J
MESGH

Put the low byte of the address of Train board block ASCII message into the zero page location]
MESGL

v

[RUN DISPMSG]

v

[Retum from BRDSET Subroutine]

3:32 PM 20 May 23, 1997

384

MAE 412 Programming Robust Junction

DISPMSG

(DISPMSG]

Y

>[I_/oad in the next character from messagc]

1s this character
a <NUL> ($00)?

A Send this 8 bit character out on VIA to UAR/T] Return from DISPMSG
subroutine

Wait for the End of Character (EOC) line]
to go low

[Pulse the Data Strobe (DS) line low)
then return it to high

Wait for the End of Character (EOC) line]
to g0 high

3:32 PM 21 May 23, 1997

385

MAE 412 Programming Robust Junction

CLRLST
r CLRLST]
v
[Put binary number 1000000 into all 16 train status locations J
$0500 - $05FF
v
[Retum from BRDSET Subroutine]

FCLR

FCLR

Bring VIA port connected to open collector logic inverter and pin 7 on DB-25 to a high]
(forcing north track clear)

Y

(Wait 256 cycles]

v

[Reset the VIA to its former states, bringing force clear port back to a low]

Y

[Return from Subroutine]

3:32 PM 22 May 23, 1997

38

~

L

MAE 412 Programming Robust Junction

DISPLST

([DISELST)
y

(Put 4 x 4 grid of engine numbers and cursor addressing chartacters in ram ($0600) J

to see if this engine
should stop at station
{uses train list $0500-$050F)

Put an ASCII space over
its engine number in RAM ($0600)

Have all the
Engines been
checked?

~NO ' —_ YES
Move on to the next one Store the address of the message (30600)
to the MESGH, MESGL bytes

T

[RUN DISPMSG]

v

[Return from Subroutine]

3:32 PM 23 May 23, 1997

38

Lowl

P

MAE 412 Programming Robust Junction

NEWRDAT
(NEWRDATJ
Check —
ifitsa<-9 Clear the train
command from track 1 J
(Rewm from |
Subroutine
Clear the train)
from track O J
Retum from
Subroutine
Check
if left arrow was
pressed
[Add ten to number pressed] [Don't add ten to number pressed]

Y y

(nvert the most signifigant bit of the train list byte corresponding to that engine numbej

[RUN DISPLST]

y

EQetum from Subroutimﬂ

3:32 PM 24 May 23, 1997

388

MAE 412 Programming Robust Junction

SWTSTAT
Check
bit 7 of SWTBUF
[Sh{:w Left Main as Tumﬂul] [Shuw Left Main as Strai ghtJ
Check
bit 6 of SWIBUF
Low
[Shnw Right Main as Tum-::u:] [Shuw Right Main as S[raigﬂ
Check
bit 5 of SWTBUF
Low
[Sh{m Left Station as Turrsuut] [S how Left Station as Stra‘.-ghl]
Check
bit 5 of SWTBUF
Low
th}w Right Station as Tumau] Ehﬂw Right Station as Straighj
[Return from Subroutine J
3:32 PM 25 May 23,1997

389

MAE 412 Programming Robust Junction

SWTIT
SWTIT

Fe: the S1-S4 bits on the VIA to bits 7-4 on the SWTDAT codj

f Output these to the VIA
(s

cts the relays so switching signal soes to proper switch and direction)

v

{ Wait for Frame 1 to come across on Homnby signal]
(Lecky mailbox FRANUM == 1)

Bring the S4 line on the VIA to a low]
(energizing the switch coil)

Wait for Frame 2 to come across on the Hornby signal‘
(Lecky mailbox FRANUM == 2) J

[Bring the S4 line on the VIA back to a higlj

[Update the SWTBUF variable to reflect the proper switch changes]

RUN SWTSTAT
(to update switch status terminal block

[Return from Subroutine J

3:32PM 26 May 23, 1997

MAF| 412 Programrmu g Rohust

INT WT
INITSWT

[Load in code into SWTDAT 1o switch main right switch siraight]

¥

(_RUN TTIT_]

[Load in code into SWTDAT to switch main left switch straight J

v

[RUNSWTH’]

[Lﬂuf- in code inte SWTDAT to switch station right switch s1r.--.1gh:]

v

{ RUN SWTIT]

[Load in code into SWTDAT to switch station left switch slraighi]

v

RUN 5WTI

[REetum from Subroutine]

332/ PM 27

May 23

99

[

MAE 412 Programming

UPRBJ

(UPRB])
(updates train board on terminal)

Copy cursor addressing characters and track 1 and O message to RAM
(the train numbers and status will be filled in soon)

y

(Load in train number on track O
(TOTRN)

Fonvert to ASCII character (1 - Fj

v

(Slore this character in proper message location in RAM]

(Read in status of train on track OJ
(TOSTAT)

Epy message corresponding to status code into proper message location in RAﬂ

(Load in train number on track IJ
(T1TRN)

Fonvert to ASCII character (1 - Fj

(Store this character in proper message location in RAM J

Read in status of train on track IJ
(TISTAT)

Eopy message corresponding to status code into proper message location in RA@

L A
RUN DISPMSG
uts message from RAM onto terminal

(Retum from SubroutineJ

3:32PM 28

Robust Junction

May 23, 1997

392

MAE 412

Program Listing

¥include LECKY3_1.ASM

EVIA setup and data locations
V2 for VIA 658000}

:SET for setup (0-input 1 output) DAT for data

V1ASET EQU $A003
V1BSET EQU $A002
V1ADAT EQU $A001
V1BDAT EQU $A000
V1AEBUF EQU $70 :zero page location that hcelds
the
;current values
for the VIA outputs
; (Allows program
to just change one
; output, and not
the others from
; anywhere in the
program)
V2ASET EQU $8003
V2BSET EQU $8C02
V2ADAT EQU $8001
V2BDAT EQU $8C00
TIL EQU $4000
;START of MY PROGRAM
ORG $E00O
MYINIT SEI
CLD
CcLC
LDX #3FF
TXS
LDA #3505 ;set up as computer #05
STA BLXID
JSR INIT ;run Lecky initialization

VIAINIT LDA #SFF ;set up UAR/T outputs (8
data bits)
STA V2ASET ;use VIA @$8000 port A
STA VIASET :Outputs for
iswitches,
track kills, force clear
;PAT -
Switchd (1 - no switch 0 -
switch it)
:PAE -
Switch3 (1 -~ Straight 0 -
Turn)
;PAS -
Switch2 (1 - Left o -
Right)
;PAL -
Switchl (1 - Station o -
Main)
;PA3 - Force
North track clear (H - force
clear}
;PA2 - On
Deck (H - on L - sensor
decides}
;PAl - Track
1 (H - on L - sensor decides)
;PAO - Track
0 (H - on L - sensor decides)
iuses VIA
@SA000 port A
STA V1ADAT ;initialize outputs
LDA #$F0 ;let sensors decide track
kills
STA V1ADAT ;and don't force track clear
STA V1ABUF ;set up buffer for this port

LDA #301000011

;PB7 End Of
Char €from UAR/T {input)

;PBO data
strobe line (output)

;Optical/kill
Sensors (0 - train, track off)

;PBS ondeck
sensor {input)
;PB4 track
{input)
;PB3 track
{input}

zZero sensor
one sensor

;optical

3:32 PM

(V1 for VIA @SA000,

;set up UAR/T control lines

29

Programming

STA

Robust Junction
;{1 - train
passing by, 0 - no train)
:PB2 NORTH

TRACK sensor (input)

V2BSET ;Use VIA @$8000 port B

; uses local variables :

ONTRN EQU ;train # on north track
last loop
OSTRN EQU $11 ;train # on south track
last 1loop
ORDATA EQU $12 ;command from console last
. loop
;initialize some variables
LDA #SFF ;initialize variables to
STA ONTRN ;this way first value from
Lecky
STA OSTRN ;will always be handled and
terminal
STA ORDATA ;instantly updated
;Set up the terminal, train list, and clock
JSR BRDSET ;setups up the blocks on the
terminal
JSR CLRLST ;sets up the train list in
memory and clears it
JSR INITCLO ;initialize the real time
clock, and show time
:;set up the switches to default positions
LDA #5000 ;initialize variables to
$00
STA SWTBUF ;start off with all the
switches switched straight
JSR INITSWT ;switch all switches to
straight
;set up the track status board
LDA #3500 ;initialize some variables
to $00
STA NXTRK ;first train to station
will stop on track 0
STA TOTRN
STA TOSTAT
STA T1TRN
STA TI1STAT
JSR UPRBJ ;update the track status

board on terminal

eesavsasvserrrsreeReeRT Y

-

sessevecsssncsenscenaneney

LOCPIT

SAMEN

SAMES

SAMER

;* MAIN PROGRAM LOOP .
=

NOP

;JSR DISPTRN

LDA

CMP
BEQ

STA
JSR

NOP
LDA

P
BEQ

STA
JSR

NoP

CMP
BEQ

JSR

NOP

Procedure
a new train has entered

;display north/south
trains on TIL

NTRAIN ;jcheck if a new/no train
on north track

ONTRN

SAMEN ;if its the same continue
in main loop

ONTRN

NEWNTRN ;if it is a change in
train handle it

STRAIN ;check if a new/no train
on south track

OSTRN

SAMES ;if its the same continue
main loop

OSTRN

NEWSTRN ;if it is a change in
train handle it

RDATA ;icheck to see if a new
conscle command

TIL ;output to TIL for user to
see

ORDATA

SAMER ;if its the same command
continue

NEWRDAT ;if its a new one handle
it

LOCPIT

NEWSTRN

south track

May 23, 1997

393

MAE 412

: or a train has left the south track
leaving it empty

H display as status message to terminal

iUses a few bytes of ram on page S$0A00 to assembly
a message

STXT EQU $0A00
STXT1 EQU 30a01

NEWSTRN TAX

BEQ NOSTRN ;if south track is now
clear deal with it
LDA NUM2TXT, X ;Load in ASCII character

equivalent to train number

STA STXT
LDA $#500
STA STXT1 :puts an end of message at
end

;display 1st half of message
LDA #HIGH STMSGA
STA MESGH
LDA #LOW STMSGA
STA MESGL
JSR DISPMSG

;display train number
LDA #HIGH STXT
STA MESGH
LDA $LOW STXT
STA MESGL
JSR. DISPMSG

;display 2nd half of message
LDA #HIGH STMSGB
STA MESGH
LDA #LOW STMSGB
STA MESGL
JSR DISPMSG
RTS

;Deal with $00 if the south track is clear
NOSTRN LDA #HIGH NSTMSG

STA MESGH

LDA #LOW NSTMSG

STA MESGL

JSR DISPMSG

RTS

MESSAGE : NSTMSG
message shown when south tracks are clear
(no train on the south tracks)

DB $1B, °‘X4°
DB $1B, 'Yc¢©
DB * CLEAR
DB $00

: Message : STMSGB
: message outputted after the train number,
when
H the train on south track changes
STMSGB DB * °
DB $00 ;end of message

: Message : STMSGA
H message outputted before train number when
a train is on
: the south track
STMSGA DB $1B, °X4°
DB $1B, ‘'Yc*
DE ‘Train #°
DB $00 ;end of message

; Procedure : NEWNTRN

i a new train has entered north track

; or a train has left the north track
leaving it empty

H display as status message to terminal

;Uses a few bytes of ram on page S0A00 to assembly
a message

NTXT EQU $O0A00
NTXT1 EQU S0AO1

NEWNTRN TAX

BEQ NONTRN ;if north track is now
clear deal with it
LDA NUM2TXT, X ;Load in ASCII character

equivalent to train number

STA NTXT
LDA $500
STA NTXT1 iputs an end of message at
end

;display 1st half ocf message
LOA #HIGH NTMSGA
STA MESGH

JSR DISPMSG

3:32 PM

Programming

Robust Junction

;display train number
LDA #HIGH NTXT
STA MESGH
LDA #LOW NTXT
STA MESGL
JSR DISPMSG

;display 2nd half of message
LDA #HIGH NTMSGB

STA MESGH

LDA #LOW NTMSGB

STA MESGL

JSR DISPMSG

:now check if this train is to stop at station
LDX ONTRN ;checking the train list
to see if this train
LDA LSTLOC, X ;istops at station or not
BPL DONENT ;if not then let it pass
through

JSR STOPIT ;if it is on the list then
stop it at station

DONENT RTS

;Deal with $00 if the north track is clear
NONTRN LDA #HIGH NNTMSG

STA MESGH
LDA #LOW NNTMSG
STA MESGL
JSR DISPMSG
RTS
; Message : NTMSGB
H message outputted after the train nuzsber,
when
H the train on north track changes
NTMSGE DB * °*

DB $0A :Line Feed
DB $0D ;carriage return
DB $00 ;end of message

; Message : NTMSGA
H message outputted before train number when
a train is on
H the north track
NTMSGA DB $1B, 'X4°
DB $1B, 'Y#'
DB ‘Train #°
DB $00 ;end of message

; Table : NUM2TXT
; lookup table that goes from train number
to an ASCII character

NUM2TXT DB °0°

DB ‘1’
DB *2°
DB '3
DB *4*
DB 'S5’
DB ‘6
DB '7°*
DB '8°
DB 9
DB ‘A’
DB ‘'B'
DB 'C*
DB ‘D’
DB ‘'E’
DB ‘P’
DB ‘G’

Procedure: STOPIT

Stop this train on the north track at the
station

t'«x'mx EQU SE0 ;value for which station track to
used next
i$00 for track 0, S$FF for track 1

;Train will be stopping at station
STOPIT LDA #%101G0C00 ;switch the main left
switch to turnout

STA SWTDAT

JSR SWTIT

1L.DX #502 ;status code equivalent to
departing

LDA NXTRK ;figure out which track
this train is going to

BEQ NTO ;if its $00 then its track
[}

;set switches to track 1
STX TI1STAT ;show that the train on

track 1 will be departing

LDA #%10110000 :switch the station left
to turnout

May 23, 1997

334

MAE 412

STA SWTDAT
JSR NTIT

LDA $%10010000 ;switch the station right
to turnout .

STA SWTDAT

JSR SWTIT

JMP STP1 ;go on with station stop
NTO STX TOSTAT ;show departing on train

board for track 0

iset the switches to track 0
LDA #%11110000 ;switch the station left
to straight
STA SWTDAT
JSR SWTIT

LDA #%11010000 ;switch the station right
to straight
STA SWIDAT
JSF. SWTIT
STP1

JSR UPRBJ ;update the train board

WAITON LDA V2BDAT ;now wait for train to get
to ondeck location
AND #%001000C0 :makes all other bits zero
except for ondeck sensor

;if train not there yet
keep waiting

BNE WAITON

LDA #%11100000 ;switch the main left
switch to straight

STA SWIDAT

JSR SWIIT

LCA NXTRK ;figure out which track is
the next one to open up

BEQ NYTRKOQ ;2f£ 1ts $S0C then go to
track (as next track

JMP NXTRK1 :1f nct then go to track 1
as next track

;track 0 is the destination for train currently at
the cn deck track

;must check and see 1f there 1s a train currently
a: the station on track ©

NXTRKO LDA TOTRN

BEQ NOTOTRN sat

about

no train skip the part
goving a train off

:the train on track C has
onto
;to continue on its merry

to be moved off and back
nerth track
way

LDA #%10000000 ;switch the main right
sSwatch to turnout

STA SWTDAT

JSR SWTIT

:energize the track 0 section
LDA V1ABUF
AND #%31111111C .brang PAO to a low
EOR #%00000001 :brang PAO to a high
leaving other bits unchanged
STA V1ADAT .output this to the VIA
;now track 0 section energizes., and train begins
to move away

LDA V1ABUF irestore the track 0 to be
killed when next train
STA V1ADAT :erosses 1in front of

Sensor

;Wait until the leaving train clears the north
track optical sensor
;check PB2 for a train
passing the north track
optical
AND #%00000100 ;makes other bits 0
leaves bit 2 unchanged
;if bit 2 is low keep
waiting

WAITNOS LDA V2BDAT

BEQ WAITNOS

;now train has moved off track 0 and the on deck
train can be moved on

LDA #%11000000 :switch main right switch
to straight

STA SWTDAT

JSR SWTIT

;change the train number on the north track to
this one

LDA TOTRN itrain number of train
leaving station
STA NTRAIN ; {use Lecky mailbox for

this {(could be rule vioclation)
;update the train board for the new train number
tc be moved on
;and show arriving as its status
LDA ONTRN ;set the new train number
on train board
STA TOTRN

3:32 PM

Programming

31

Robust Junction

LDA #3501 ;status code that refers
tc arriving

STA TOSTAT

JSR UPRBJ ;update the train board

;80 energize the on deck track section
LDA VI1ABUF ;load in current output
values
#311111012 :bring the 2 bit to a low
(leaves others unchanged)
#%00000100 ;bring bit 2 to a high
{turns on ondeck track}
;turn on on deck track

AND
EOR

STA VI1ADAT
;now wait for train to make it to track zero
WAITTGA LDA V2BDAT ;check the track 0 sensor
AND #%00010000 ;force all bits except for
bit 4 to a zero
;if bit 4 is high then no
train yet keep waiting

BNE WAITTOA

LDA V1ABUFP ;restore the ondeck track
section to kill when
STA VI1ADAT ;sensor detects a train

;update the train board to show that this new
train is stopped at the
station

LDA #503 ;status code equivalent to
stopped at station

STA TOSTAT

JSR UPRBJ ;update train boarad

;change the NXTRK variable to point to track
with the next train

LDA #S5FF
STA NXTRK
RTS ;everything done and ready £«
next train
;situatiecn: moving a train onto track 0 and no

train currently on track 0

;update the train board to show this train number
as arriving
NOTOTRN LDA ONTRN

STA TOTRN

LDA #501 ;status code that refers
to arriving

STA TOSTAT

JSR UPRBJ ;update train board

;energize the on deck section of track
LDA VI1ABUF ;load in current ocutput
values
AND #%11111011 ;bring the 2 bit to a low
(leaves others unchanged)
EOR #%00000100 :bring bit 2 to a high
(turns on ondeck track}
STA V1ADAT ;jturn on on deck track
;jnow wait for train to make it to track zero
WAITTOB LDA V2BDAT icheck the track 0 sensor
AND #%00010000 ;force all bits except for
bit 4 to a zero
;if bit 4 is high then no
train yet keep waiting

BNE WAITTOB

LDA V1ABUF irestore the ondeck track
section to kill when
STA VI1ADAT ;sensor detects a train

;update the train board to show that this new
train is stopped at the
station

LTA #3503 ;status code equivalent to
stopped at station

STA TOSTAT

JSR UPRBJ ;update train boarad

;set the NXTRK variable tc point to track one with
the next train

LDA #SFF
STA NXTRK
;force a clear on the north track
JSR FCLR
RIS ;all done and ready for

next train

;Do the same except on track 1 instead of track 0

;must check and see if there is a train currently
at the station on track 1

NXTRK1 LDA TITRN

BEQ NOT1TRN ;if no train skip the part

about moving a train off

May 23, 1997

3995

MAE 412

;the train on track 1 has to be moved off and back
onto north track
;to continue on its merry way

LDA #%10000000 ;switch the main right
switch to turnout

STA SWTDAT

JSR SWTIT

;energize the track 1 section
LDA V1ABUF
AND $%111131101 ;bring PAl to a low
EOCR #%00000010 :bring PAl to a high
leaving other bits unchanged
STA V1ADAT ;output this to the VIa
;now track 1 section energizes, and train begins
to move away

;Wait until the leaving train clears the north
track optical sensor
;check PB2 for a train
passing the north track
optical
AND #%00000100 ;makes other bits 0
leaves bit 2 unchanged
;if bit 2 is low keep
waiting

WARITNS LDA V2BDAT

BEQ WAITNS

;now train has moved off track 1 and the on deck
train can be moved on

LDA #%11000000 ;switch main right switch
to straight

STA SWTDAT

JSR SWTIT

;change the train number on the north track to
this one

;train number of train
leaving station

; (use Lecky mailbox for
this (could be rule violation)

LOCA T1TRN

STA NTRAIN

LDA V1ABUF ;restore the track 1 to be
killed when next train

;erosses in front of
sensor

STA VIADAT

;now train has moved off track 1 and the on deck
train can be moved on

;update the train board for the new train number
to be moved on
;and show arriving as its status
LDA ONTRN ;set the new train number
on train board

STA T1TRN

LDA #501 ;status code that refers
to arriving

STA TI1STAT

JSR UPRBJ ;update the train board

;50 energize the on deck track section

LDA V1ABUF ;load in current output

valiues

AND #%11111011 ;bring the 2 bit to a low
{leaves others unchanged)

EOR $#%00000100 ;bring bit 2 to a high
{turns on ondeck track)

STA V1ADAT ;turn on on deck track

:now wait for train to make it to track 1
WAITT1A LDA V2BDAT ;check the track 1 sensor
AND #%00001000 ;force all bits except for
bit 3 to a zero
;if bit 3 is high then no
train yet keep waiting

BNE WAITT1A

LDA V1ABUF ;restore the ondeck track
section to kill when
STA V1ADAT ;sensor detects a train

;update the train board to show that this new
train is stopped at the

station

LDA #3503 ;status code eguivalent to
stopped at station

STA TI1STAT

JSR UPRBJ ;update train board

;change the NXTRK variable to point to track @
with the next train

LDA #3500
STA RXTRK
RTS ;everything done and ready for the
next train
;situation: moving a train onto track 1 and no

train currently on track 1

:update the train board to show this train number
as arriving

3:32 PM

Programming

Robust Junction

NOT1TRN LDA ONTRN

STA TI1TRN

LDA #5011 ;status code that refers
to arriving

STA T1STAT

JSR UPRBJ ;update train board

;energize the on deck section of track
- LDA V1ABUF ;load in current output
values
AND #%11111011 ;bring the 2 bit to a low
{leaves others unchanged)
ECR #%00000100 ;bring bit 2 to a high
(turns on ondeck track}
STA V1ADAT ;turn on deck track
;now wait for train to make it to track 1
WAITT1E LDA V2BDAT ;check the track 1 sensor
AND #%00001000 ;force all bits except for
bit 3 to a zero
;if bit 3 is high then no
train yet keep waiting

BNE WAITT1B

LDA VI1ABUF ;restore the ondeck track

section to kill when

STA V1ADAT :sensor detects a train

;update the train board to show that this new
train is stopped at the

station

LDA #3503 ;status code eguivalent to
stopped at station

STA TLSTAT

JSR UPRBJ ;update train board

;set the NXTRK variable to point to track 0 with
the next train

LDA #500
STA NXTRK
:£orcé a clear on the north track
JSR FCLR
RTS ;all done and ready for

next train

MESSAGE : NNTMSG
message shown when north tracks
(nc train on the north tracks}

NNTMSG DB $1B, °X4°
DB $1B, 'Y#'

DB * CLEAR '
DB $00
Procedure : DISPTRN

takes the north and south train numbers
from Lecky

H and displays them on the TIL

H North on TIL high nibble, South TIL on

the low nibble

; uses BTRNS local variable located @
$00F0

BTFNS EQU S$FO

DISPTRN LDA NTRAIN

STA BTRNS
LDA STRAIN
ADC BTRNS
STA TIL

Procedure : BRDSET

Sets up the blocks on the train table on
terminal

;: Uses :

BRDSET LDA #HIGHE NSBLKS
STA MESGH
LDA #LOW NSBLKS
STA MESGL
JSR DISPMSG

LDA #HIGHE TRLBLK1
STA MESGH

STA MESGL
JSR DISPMSG

LDA #LOW TRLBLK2
STA MESGL

LDA #HIGH TRLBLK2
STA MESGH

JSR DISPMSG

May 23, 1997

396

MAE 412 Programming Robust Junction
LDA #LOW SWTELK DB ‘| [
STA MESGL $O0A, SOD
LDA #HIGH SWTBLK DB |e-e=-emmm-s TRAIN #----STATUS---]".
STA MESGH SCA, $OD
JSR DISPMSG oe ‘| | { (R
SOA, $0D
LDA #$LOW RBJBLK1 D8 ‘| TRACK O | |
ETA MESGL $OA, $OD
LDA $HIGH RBJBLK1 DB $00 ;end of message
STA HESGH .
JSR DISEMSG RBJBLK2 DB | | | fe.
$OA, $0D
LDA #LON RBJIBLK2 DB *|=--cm=ce=|er--= ----|-----------|-_
STA MESGL $OA, SOD
LDA #HIGH FEJBLK2 o8B -} | [} 1.
STA MESGH SOA, SOD
JSR DISPMSG DB '] TRACK 1 | 1 i
OA, SO0D
RTS oB | | | i,
SOA, $OD
: Message : NSBLKS DB '\ - r°.
H $O0A, $OD
. wsed to set borders around the rorth and south DB $00 ;end of message
train blocks
Procedure DISPMSG

NSBLXKS

DB Sl.B, ‘X0¢, $0D

p8 ‘| NORTH TRACK {°.

TRACK
DB *|e-------
DB ‘}
DB ‘|
B |
DB ‘\=—wem—=
DB $CO
Message TF.LBLK

; used to set the borders around block that
displays which trains
; will stop at the station

TRLBLKl1 DE $1B, ‘'R’ ;homes the curso

CB $1B, ‘'Y ‘', ° *, SOA
DB $1B, 'Y'', ‘'|Trains to STOP|', $O0A
DB $1B, °Y'°, ‘|at the STATION|", $OA
DB S1B, 'Y'®, ‘|e=em—e-c-meco- ‘. SOA
DB $1B, ‘'Y, ° I, $O0A
DB $1B, ‘'Y ', ° >, SO0A
DB $1B, ‘'Y'", ' *. $0A
DB $00 :end of message

TRLELK2 DB $1B. ‘Y ', ‘| ‘., SOA
DB 51B, ‘Y *, ° ‘. SO0A
DB $1B, 'Y °, * *, SOA
DB $1B, ‘Y *, ¢ ', $OA
DB $1B, 'Y ', ° ', S0A
D8 $1B., ‘Y °. ', SOA
DB $1B, ‘Y'', ‘\---e-m--m-e- -=/*, $0A
D8 $00 ;end of message

Message SWTBLK

sets up the block on the terminal to
display the status
H of the various switches

SWTBLK

DB $1B, °'XO° ;move to line 17
D8 $1B, "¥:°, /- \°,

SOA ;col. 28, linefeed

DB $1B, 'Y;°, ° SWITCH STATUS [
$OA

o8B $1B, °¥;', ‘| Main | station |°',

SOA
DE $1B. 'Y;'., ‘'|Left |Right|Left |Right]‘,
oA

pe $1B, ‘'¥:', ‘| I 1",
oA
DB §1B. ‘Y:', ‘|] I I I+
S0A
DB S1B, ‘Y;'., '\ /-
DPB $00 ;end of
message

; Message : RBJBLK
: Sets up block to display which train on
which station track,

3 and its status
s {in future maybe add time of
arrival; departure)
RBJBLK1 DB $18, ‘X °, $1B, 'Y °' ;move to
line 1, columm 1
DB " /fe---mr-- - AN
$OA, $OD ;LF. CR
DB | .
SOA, S$OD
DB | Robust Junction 1°.
OA, S0D

3:32 PM

33

Displays the string of characters lecated at
ADL at $50 on zero page
ADH at $51 on zero page

MESGH EQU $51 :High byte of location of
text message
MESGL EQU $50 ;Low byte of location of

text message
uses NUL ($00) as end of message

DISPMSG LDY #SFF ;reset character counter

NEXTCHP INY ;step up counter to next

character in memory

LDA (MESGL), Y ;read in that character

BEQ LONEMSG ;if its a <NUL> ($00) then
stop {(done with message)

STA V2ADAT ;put this characters 8
pits to the VIA #2 port A
;alse connected to the
transmit data lines on UAR/T
WAITH LDA V2BDAT ;Check the EOC line from
the UAR/T (PB7 on VIA#2)
BPL WAITH ;i€ its high, keep
checking until it goes low
; (this waits for the last
character to be sent to
terminall}
LDA SO0 ;Pulse the Data Strobe
line of che UAR/T low
STA V2BDAT :Tells UAR/T next
character‘'s data is stable
LDA #$01 ;and ready to be read into
the UAR/T buffer
STA V2BDAT ;complete the pulse by
putting the DS back to High
WAITL LDA V2BDAT
BMI WAITL

JMP NEXTCHR

DONEMSG RTS

Procedure : CLRLST

H Sets up the trail list in memory on page
50500-$050F

H one byte for each train

; the Most Significant Bit sighifies whether
to

stop that train at the star.iq:x or not
- stop this train, 04443484 -
let this train pass)

(PE2 22224

Reserves $0500 - $050F for its use
Uses :
EQU $0500

;default is all trains
stop at the station

LDA #580

LDX #S$OF

STA LSTLOC, X
DEX

BPL NXTLOC

RTS

Procedure DISPLST

Displays in the trains to stop at station
block
which trains will visit the station

depends on the most significant bit of
table value

May 23, 1997

39

MAE 412 Programming Robust Junction
H Assembles its message to send to the ;or take away from trains
terminal on the S$C0600 page to stop at
KSGASM EQU 50600 - ;station list
DISPLST LDX #$00 ;copy the 4 x 4 grid of CONTOR LDA ORDATA ;reload which command was
loco numbers pressed to reset N flag
NXTDS LDA BLANKL, X ;and text location BPL LOWTRN ;if left arrow not pressed
characters go to lowtrns
STA MSGASM., X ;to message assexbly page AND #SOF ;turn off the high bit
BEQ DONEDS [¢¥s
INX ADC #50A ;add ten to get the high
JMP NXTDS train numbers

DONEDS NOP

LDX #S500
STARTR LDA LSTLOC, X

BMI NEXTTR ;if flag set go on tc next

one

LDY LSTTAB, X ;if no flag set then

LDA $° ;store a space in the
assembled

STA MSGASM, Y ;message location over the

loco number to not sStop

INX
CPX #510
BNE STARTR

LDA #HIGH MSGASM ;Finally output
assembled message to terminal

STA MESGH

LDA $LOW MSGASM

STA MESGL

JSR DISPMSG

RTS

Table : LSTTAB

The address refers to locomotive number,
and the value
: refers to number of bytes from $0600 that
that locomotive
H number is in the assembled message

LSTTAB DB 506, $09, $0C, SOF ;for leoco #'s O,
1, 2, 3
DB $16, $19, $S1C, S1F ;for loco's 4, S,
6, 7
DB $26, $29, $2C, S2F ;loco's 8, 9, A, B
DB $36, $39, $3C, S$3F ;I think you can

see the pattern
Message : BLANKL
clears the trains to stop at station block

BLANKL DB $1B, ‘Xt

DB S1B, ‘Ye¢'., ° 1 2 3*, $OD. SOA, $0A
DB S1B, 'Yc', ‘4 S5 6 7', $0D, S$SOA, SGA
DB $1B, ‘¥Yc', ‘8 9 A B', $OD, $OA, SOA
DB $1B, ‘'¥Ye¢', 'C D E F°

DB $00

Procedure : NEWRDAT

a new console command has been issued so
must be handled

commands -> then numbers 1 - 9 correspond
to taking train #'s 1-9

on and off the train list, while

commands <- then numbers 0-5 correspond to
taking train #'s A-F

on and off the train list

other commands to be assigned later

NEWRDAT LDA RDATA

STA ORDATA ;store this new value in
variable

CMP #589 ;if its a <- 9 command
then

BEQ LEFT9 ;deal with the a left nine

CMP #$88 ;if its a <- 8 command
deal with that

BNE CHL7

JMP LEFTS

P $#$87 ;if its a <- 7 coamand
deal with that

BNE CHL6

JMP LEFT?

CHL6 CMP #3586 ;if its a <- 6 command

deal with that

ENE CONTOR

JMP LEPT6

;if its another command
then corresponds

;to a train number to
either add

3:32 PM

LOWTEN TAX
LDA LSTLOC, X ;load in train list byte
EOR #580 ;if it was on list take
off, and vice versa
STA LSTLOC, X

JSR DISPLST ;update the train list on

terminal
RTS
LEFTY NOP ;clear the train off of
track 1
;update the train board to show track 1 train is
departing
LDA #$02 ;status code equivalent to
departing
STA T1STAT
JSR UPRBJ

WAITNC LDA NTRAIN ;wait until the train on
north track clears

BNE WAITNC

LDA $#SFF
STA NCVRD ;override the north track

to occupied (I think)

LDA #%10010000 ;switch the station right
to turnout

STA SWIDAT

JSR SWTIT

LDA #%10000000 ;:switch the main right to
turnout

STA SWTDAT

JSR SWTIT

;energize the track 1 section
LDA V1ABUF
AND #%11111101 ;bring PAl to a low
EOR #%000600010 ;bring PAl tc a high
leaving other bits unchanged
STA V1ADAT ;output this to the VIA
;inow track 1 section energizes, and train begins
to move away

;Wait until the leaving train clears the north
track optical sensor
;check PB2 for a train
passing the north track
optical
AND #%00000100 ;makes other bits 0
leaves bit 2 unchanged
;if bit 2 is low keep
waiting

WAITNSC LDA V2EDAT

BEQ WAITNSC

;now train has moved off track 1

LDA #%11000000 ;switch main right switch
to straight

STA SWTDAT
JSR SWTIT
;update the train board to reflect current
conditions
LDA #3500 ;status code referring to
empty

JSR UPRBJ
;wait for train to clear the train board
LDA #3508
STA S$OF ;use a zero page location
for another counter register
LDY #S00
LDY ¢500

DELAY1A DEX
BNE DELAY1A
DEY
BNE DELAY1lA
DEC SOF
BNE DELAYIA
;turn the north track override off
LDA #500
STA NOVED

;all done
RTS

May 23, 1997

398

MAE 412

LEFT8 NOP :clear the train off of
track 0
;update the train board toc show track 0 train is
depariing
LDA $#502 ;status code equivalent to
departing
STA TOSTAT
JSR UPRBJ

WAITND LDA NTRAIN ;wait until the train on
north track clears

BNE WAITND

LDA #SFF
STA NOVRD ;override the north track

to occupied (I think}

LDA #$%11010000 ;switch the station right
to straight

STA SWTDAT

JSR SWTIT

LDA $%10000000 ;switch the main right to
turnout

STA SWTDAT

JSR SWTIT

.energize the track 0 section
LDA VI1ABUF
AND #%11111110 ;bring PAO to a low
EOR #%00000001 ;bring PAO to a high
leaving other bits unchanged
STA V1ADAT ;output this to the VIA
:now track 1 section energizes, and train begins
to move away

:Wait until the leaving train clears the rorth
track optical sensor

;check PB2 for a train
passing the north track
optical
AND #3%00000100 ;makes other bits 0
leaves bit 2 unchanged

;if bit 2 is low keep
waiting

WAITNSE LDA V2BDAT

BEQ WAITNSE

;now train has moved off track 0

LDA #%11000000 ;switch main right switch
to straight

STA SWTDAT

JSR SWTIT

:update the train board to reflect current
conditions

;status code referring to
empty

LDA $$00

STA TOSTAT
STA TOTRN

JSR UPRBJ

;wait for train to clear the train board
LDA #508
STA $OF iuse a zero page location

for ancother counter register

LDX #S00

LDY #500

DEX

ENE DELAY1B

DEY

BNE DELAY1B

DEC $OF

BNE DELAY1B

DELAY1B

;turn the north track override off

LDA #500
STA NOVRD
;all done
R
LEFT7 NOP ;for use in future
expansion
RTS
LEFTé6 NOP ;for use in future
expansion
RTS
; Procedure : SWTSTAT
; Reads in from a zero page variable the
direction of each switch
H and displays it on the terminal in the
switch block
H USES
SWTBUF EQU SAO :zero page location of

switch status byte

; high is turnout, low is
straight

;bit 7 is for Left Main
switch

3:32 PM 35

Programming

Robust Junction

;bit 6 is for Right Main
switch

;bit 5 is for LEFT STATION
switch

;bit 4 is for RIGHT
STATION switch

;remaining bits will be
kept as zeros

SWTSTAT NOP

LDA SWTBUF
AND #%10000000 ;bring all bits
except bit 7 to a low

BNE LMT ;if bit 7 is high,
then left main turnout
s LDA #HIGH LMSMSG ;if its low then
left main straight
STA MESGH ;display that
message .
LDA $LOW LMSMSG
STA MESGL
JSR DISPMSG
JMP RMDEC ;done with that
switch go to next
MT LDA $#HIGH LMTMSG ;if its high then
left main switch is turnout
STA MESGH
LDA #LOW LMTMSG
STA MESGL
JSR DISPMSG
RMDEC LDA SWTBUF ;jnow make decision
about right main switch
AND #%01000000 ;bring all other
bits to zeros
BNE RMT ;if its high then
turnout branch to that
RMS LDA #HIGH RMSMSG ;if its low then
straight write that message
STA MESGH
LDA #LOW RMSMSG
STA MESGL
JSR DISPMSG
JMP LSDEC ;done with that go
to decision for left station
RMT LDA #HIGH RMTMSG ;if its a high,
then switch is turnout
STA MESGH :Show the TURN
message in proper location
LDA #LOW RMTMSG
STA MESGL
JSR DISPMSG
LSDEC LDA SWTBUF ;Decide about the
left station switch
AND #%00100000 ;bring all bits
except bit 5 to a low
BNE LST ;if bit 5 is high
then left station is turnout
LSS LDA $HIGH LSSMSG :if its low then
switch is straight
STA MESGH ;idisplay that
message
LDA #LOW LSSMSG
STA MESGL
JSR DISPMSG
JMP RSDEC ;done here go to
decision for right station
LST LDA #HIGH LSTMSG ;if its high show
TURN message in right spot
STA MESGH
LDA $LOW LSTMSG
STA MESGL
JSR DISPMSG
RSDEC LDA SWTBUF :Make decision
about the right station switch
AND $#%00010000 ;bring all bits
except for bit 4 to a low
BENE RST ;if bit 4 is high
then switch is turnout
RSS LDA #HIGH RSSMSG ;if not then its
straight
STA MESGH ;display the STR8
message
LDA $LOW RSSMSG
STA MESGL
JSR DISPMSG
RTS ;return from
subroutine, done displaying
PST LDA #HIGH RSTMSG ;switch is turnout
show that message
STA MESGH
LDA #LOW RSTMSG
STA MESGL
JSR DISPMSG
RTS ;done return from
subroutine
MESAGES RM, LM, RS, LS, - S or T - MSG

May 23, 1997

399

MAE 412 Programming Robust Junction
first two letters correspoad to which WAITF2 DA FRANUM ;wait for frame 2 to come
switch {L lefr, R Right across
M - main line, S - station line) then the CMP #502
next letter corresponds BNE WAITF2
to the switches state (S5 - straight, T
for turnout} LDA V1ABUF ;Stop energizing the
switch coil
: STA V1ADAT
RMSMSG DB $1B, °‘'X5*', $1B, 'YB' :line 22, column
35 TYA ;test to see if done
DB 'STRE® switching
DB $00 BNE NUMF1S ;if Y register is not yet
zero switch another frame
RMTMSG DB $1B, °X5°, $1B, °'YB' :line 22, column
35 ;Now time to update switch status board on
DB 'TURN" terminal
DB SOC LDA SWTDAT ;transfer the switch data
to X
LMSMSG DB $1B, ‘'X5', $1B, ‘Y<' ;line 22, column LSR A :move the S1-S4 bits to
23 the least significant bits
DB °‘STRB' LSR A
DB $00 LSR A
LSR A
LMTMSG DB $1B, 'X5°', $1B, 'Y<' ;line 22, column TAX
29 LDA SWTITAB, X ;from the table, figure
DB °TURN' cut which bit changes
DB $00 ;of the SWTBUF to update
display
RSSMSG DB $1B, °'X5°, S1B., ‘YN' :line 22, column STA ANDVAL ;put this in a temporary
47 variable
DB °'STR8* EOR #SFF ;invert this and store in
DB 5GO a temporary variable
STA INVVAL
RSTMSG DB $1B, 'X5°', $1B, 'YN' ;line 22, column
47 LDA SWTBUF ;load in state of switches
DB °*TURN* before this switch
DB $00 AND ANDVAL :bring the bit
corresponding to switch
LSSMSG DB S$1B, ‘XS5'. $1B, ‘'YH' ;line 22, column switched to low
41 STA SWTBUF ;store back in switch
DB °'STR8® buffer
DB $00
BIT SWTDAT ;loads in S3 (switched
LSTMSG DB $1B, ‘X5, S1B, °'YH' :line 22, column direction to V status
41 register)
DB ‘TURN® BVS DOIT ;if overflow is set
DB $00 {switch is straight update
terminal)
; Procedure SWTIT
H LDA SWTBUF ;if overflow was clear
H Uses the information passed to it in (switch is turnout)
SWTCAT. to switch the EOR INVVAL ;change the bit on the
H desired switch the desired direction SWTBUF variable
H also updates the SWTBUF. and calls SWTSTAT STA SWTBUF ;update it
to update display on terminal
: DOIT JSR SWTSTAT jupdate the terminal's
; USES : switch status display
SWTDAT EQU $Al ;zero page location for data
indicating which switch RTS
;and which direction to switch
;bit 7 should always be high ; Table : SWTTAB
;bits 0-3 should always be low H
H The address corresponds to the 4 most
;bits 6, S, 4 correspond to which significant bits of the SWTDAT
switch and which direction H value, and the data corresponds to a 0 in
;according to following table the desired bit location
;000 Right Main Turnout : and ones everywhere else
;001 Right Station Turnout SWTTAB DB %11111111 ;0000 ;addresses with
;010 Left Main Turnout bit 3 low not used ($FF)
;011 Left Station Turnout DB %11111111 ;0001
;100 Right Main Straight DB %11111111 ;0010
;101 Right Station Straight DB %11111111 ;0011
;110 Left Main Straight DB $11111111 ;0100
;111 Left Station Straight DB $11111111 ;0101
ANDVAL EQU S$A2 ;two temporary variables DB %11111111 ;0110
used in updating terminal DB %11111111 ;0111
INVVAL EQU S$A3 DB %10111111 ;1000 Right main turnout
DE $11101111 ;1001 Right Station
SWTIT NOP Turnout
DB %01111111 ;1010 Left Main Turnout
SWTNEXT LDA VI1ABUF ;load in current outputs DB %11011111 ;1011 Left Station
on VIA Turnout
AND #%00001111 ;erase the S1-S{ bits to DB $10111111 ;1100 Right Main
zeros Straight
EOR SWTDAT :now set the S1-S&4 bits to DB %11101111 ;1101 Right Station
proper settings Straight
STA V1ABUF ;store these in buffer DB %01111111 ;1110 Left Main Straight
STA V1ADAT ;output them to VIA (note DB %11011111 ;111 Left Station
S4 is high so no switching Straight
yet)
H Procedure INITSWT
;set up Y register as number of frame 1l's to H
switch through H Sets all switches to straight (no
LDY #$02 :activate the switch coil turnouts)
for 2 consecutive frame 1l's H and switches them
NUMF1S DEY INITSWT LDA #%11000000 ;switch main right switch
straight
WAITF1 LDA FRANUM ;jwait for frame number 1 STA SWTDAT
to come across on HORNBY JSR SWTIT
CMP #$01
BNE WAITF1 LDA #3%11010000 :switch station right
switch straight
LDA V1ABUF STA SWTDAT
EOR #%10000000 ;bring the sS4 line to a JSR SWTIT

STA VIADAT

3:32 PM

low {start switching switch)
;output to the VIA (switch

coil is energized)

36

LDA #%11100000

;switch main left switch
straight

May 23, 1997

400

MAE 412 Programming

STAH SWTDAT
JSRE SWTIT
LDA #%11110000 ;switch station left
switch straight NOT1
STA SWTDAT
JSR SWTIT
RTS ;all switches straight

Procedure : FCLR

Forces the North Track to a clear state
will be used when train captured and
safely stopped at station

H then the north track will be reopened for
oncoming traffic NOT2
;force a north track clear
FCLR LDA V1ABUF ;load in current VIA
states
AND #SF7 ;brings bit 3 to 0, (the
force track clear bit)
STA V1ABUF
EOR #508 ;ibrings bit 3 to 1,
leaving other bits the same
STA V1ADAT ;output these values to
the VIA (forces track clear) NOT3
LDX #$00 ;send this force clear as
a pulse
PAUSE DEX :256 cycles long
BNE PAUSE
;now do
LDA V1ABUF ;load back in same bits,
now with force clear low DT
STA V1ADAT ;output these normal
values to VIA NEXTT1
RTS
Procedure : UPRBJ
Reads in 4 bytes of the zero page & S$BO -
$B3 DONET1
H updates the track board on the terminal
according to their values
: USES :
TOTRN EQU $B0 ;train number on track 0
{$00 for no train)
TOSTAT EQU $Bl ;jstatus of train on track
zero
T1TRN EQU $B2 ;train number on track 1
($00 for no train)
T1STAT EQU $B3 ;status of train on track
one
;STATUS BYTES
:$00 - EMPTY
{track 1is clear)
:$01 - ARRIVING
(train is arriving)
;802 - DEPARTING
(train's leaving track}
B - STOPPED
{train is safely stopped)
RTXT EQU $08BOO ;jtemporary locations to
hold
RTXTNUM EQU $0BO6 ;the train number message
including character addressing
RTXTST EQU S$SOBOA ;status string starting
location
UPRBJ LDX #500 ;reset counter and copy
train number message to RTXT NT1
NEXTTO LDA TOMSG.X
STA RTXT.X
BEQ DONETOQ ;if reach end of message
then stop copying
INX
JMP NEXTTO
DONETO0 LDX TOTRN ;load in the train number

of train on track

LDA NUM2TXT, X ;get the ASCII character
corresponding to that train

STA RTXTNUM ;store that character in NT2
proper location

LDA $HIGH RTXT ;display the train number
on terminal

STA MESGH ;and position for the
status string

LDA #LOW RTXT

STA MESGL

JSR DISPMSG

LDA TOSTAT ;load in the status of the NT3
train number

CMP #3500 ;check if its EMPTY

BNE NOT1 ;if not then try ancther
one

LDA #HIGH MTMSG ;output to terminal the

EMPTY string message DTl
STA MESGH
LDA #LOW MTMSG
STA MESGL

3:32 PM 37

Robust Junction

JSF. DISPMSG
J¥P DTO

cMP #501 ;check if its ARRIVING
BNE NOT2 ;if not try another one

LDA #HIGH ARRMSG soutput to
terminal the ARRIVING message

STA MESGH

LDA #LOW ARRMSG

STA MESGL

JSR DISPMSG

JMP DTO

CcMP £502 ;check if its DEPARTING
BNE NOT3 ;if not try another cne

LDA #HIGH DEPMSG
STA MESGH

LDA #LOW DEPMSG
STA MESGL

JSR DISPMSG

JMP DTO

LDA #HIGH STPMSG ;Must be STOPPED
STA MESGH

LDA #LOW STPMSG

STA MESGL

JSP. DISPMSG

the same stuff but for the track no 1 line
LDX #S$00 ;reset counter and copy

train number message to RTXT
LDA TIMSG.X

STA RTXT.X

BEQ DONET1l ;if reach end of message
then stop copying

INX

JMP NEXTT1

LDX TITRN ;load in the train number

of train on track 1
LDA NUM2TXT. X ;get the ASCII character
corresponding to that train
STA RTXTNUM ;store that character in
proper location

LDA #HIGH RTXT ;display the train number
on terminal

STA MESGH ;and position for the
status string

LDA #LOW RTXT

STA MESGL

JSR DISPMSG

LDA T1STAT ;load in the status of the
train on track 1

CMP #500 ;check if its EMPTY

BKE NT1 ;if not then try another
one

LDA $HIGH MTMSG :output to terminal the
EMPTY string message

STA MESGH

LDA #LOW MTMSG

STA MESGL

JSR DISPMSG

JMP DT1

CMP $#501 ;check if its ARRIVING
BNE NT2 ;if not try another cone

LDA #HIGH ARRMSG joutput to
terminal the ARRIVING message

STA MESGH

LDA #LOW ARRMSG

STA MESGL

JSP. DISPMSG

JMP DTL

oMp #3502 jcheck if its DEPARTING
BNE NT3 ;if not try another one

LDA #HIGH DEPMSG
STA MESGH

LDA $LOW DEPMSG
STA MESGL

JSR DISPMSG

JMP DT1

LDA #HIGH STPMSG ;Must be STOFPPED
STA MESGH

LDA #LOW STPMSG

STA MESGL

JSR DISPMSG

RTS ;but for now we'll just
end it here

May 23, 1997

401

MAE 412 Programming

age: TOMSG

used to position cursor in the right spot
for the train number,
and then the status {(whichever it may be)

TOMSG CB $1B, °X&', S$1B, 'Y/° ;position
at line 7, col. 16
DB ‘A’ ;train
number goes here
DB $1B, 'Y6® ;position
at col. 23 now
DB 500 ;status

string goes here

Message: TIMSG

used to position curser in the right spot
for the train number,
and then the status {(whichever it may be)

DE $1B, ‘X*', $1B, ‘'Y/' ;position
at line 11, col. 16

DB A’ ;jtrain
number goes here

DB $1B, °Y6* ;position
at col. 23 now

DB $00 ;status

string goes here

;i Message: MTMSG
H status string corresponding to track empty
MTMSG D3 ' EMPTY .

DB $00

H Message: ARRMSG
H status string corresponding to train
arriving
ARRMSG DB ‘'ARRIVING
DB $00

: Message: DEPMSG
H status string corresponding to train
departing
DEPMSG DB ‘DEPARTING'
DB $00

H Message: STPMSG
H status string corresponding to train
stopped at track
STPMSG DB ‘STOPPED "
DB $00

Procedure : INITCLO

gets the Tl timer on VIA #2 going counting
down from SFFFF
sets up the clock display on the terminal
sets up certain variables in memory
corresponding to the time
H and initializes current station time to
00:00:00
H zexro hours, zero minutes, zero seconds
past the origin
INITCLO NOP ;will be added if there is time
RTS

Procedure : UPCLOC

Checks the Tl counter on VIA 42, and
updates the clock

H accordingly. Should be called every S$FFFF
microseconds
UPCLOC NOP ;will be added in if there is time
RTS
END

3:32 PM 38

Robust Junction

May 23, 1997

402

MAE 412 Circuit Diagrams Robust Junction

Circuit Diagrams

The‘following ciruit diagrams were done in Aldus SuperPaint for the Macintosh. No
disrespect was intended for GEDIT, but the author’s leamning curve in GEDIT was not
progressing as fastly as he would have liked, so since the opportunity cost of using
SuperPaint was much lower, thats what was used.

List of Circuits :

TRACK 0 & 1 OPTICAL SENSOR AND RS FLIP FLOP 40
TRACK 0 & 1 RELAY KILL 41
UAR/T DAUGHTER BOARD 42
SWITCH ACTUATOR CIRCUIT 43
NORTH OPTICAL SENSOR 4
3:32 PM 39 May 23, 1997

403

Robust Junction

Circuit Diagrams

Track 0 & 1 optical sensor and RS flip flop

MAE 412

Joloauung abpo
wd ooy U g8 ud - fEo D43

#
g
_.mL“

o Jue i3
Ny (i 1 B |
i [
| © lwefs
[} b [OfF
e |
ijur | F kn T
v T B8 F D Wows
e,
AED e
i __.:wf [§ 15 =
.n..aua_:n_:_”_u L}
El [T

ﬂf}(i
(511 w.c.._
_nig g Anjay .m._m_.mff;rv
AT TR 2nz]
f,,.,.f_....n_.

FI ﬂ_.__.-

A

[

1 1.:(_rrvu_|T3-.1

b
:
.-mﬁ-vu;.n[ml.'h-r.-

uj r-vm;ur-inm]el_‘
L l
™y
T
=

&mf .} & . ¥
» |ardises o b M m_.¢|m#m MF-N
= = .5_____ 6 o=ll= X
' It Hﬂf/ﬁ& ””.w mw_ F.., I__._._..“ M z_ q.u-_.._ 5_ w] - 2
i
FIE i
Hm npf\.h.rn\.u.ﬂ.l_.;ffa.wl;m e hi N— y _|
e 3
__nm._l.,mﬂ i v __.G_.”,,....IH S s L Y 9 = EWM«
i i |
m - YOOI
- & B w.lc...?.a __
= o= L
. e : Josuag | Woel) GELL
S AN NS
=] [m =
a4 B =
—~ & EN- v
L L]

soundwea we W ynong dojg dild SH pue Josues [eando | g 0 yoeiL

404

May 23, 1997

40

3:32 PM

Robust Junction

Circuit Diagrams

MAE 412

Track 0 & 1 Relay Kill

| oei] o]

10MOd PayOIMms

o

ToMog PoUDIMS |_
10M0d4 /S
= . e P —— et oeiL N
L 7. I T — —
- ‘ =Rl s e gt v
|3 = § =
T 3 Ie =T Y
i S I L T & T
=T z iy 7
T "HreT R00RRO0 4 T
l]

+_ €)
voes’ °| %,
L — |
T
8 AV [« Y31 I3
(3113 hﬁwd.l.
[} “% M veELS
T WPQ v NNOHD JOSUBS WOJ) s
o S K olym (0 woeiL) 91607 I N
> ' . % N2IID JOSUSg woy
Tor N VT oniq (F %oeiL) oBoT I N

Wnouo iy Aejey | g 0 oedy

41 May 23, 1997

3:32 PM

405

Robust Junction

Circuit Diagrams
UAR/T Daughter Board

MAE 412

ysoayy W no ¢

wsig) Bz

A ano |
o

+,
b woa [N WK

Cailll

Apeay Jeuiusd] vieq 07 e
Asng W] 6]

HO PIE) 8 e = .
Aproy WS Bieq 9 e T eI Y — § —
Qg HWSUEIL T e o AA~ [—
CANO sissey) | —/ Iﬂ A0Y§
aND 8o L FELIT Ad e ANO 4 “"
ATL- 01 —mr— 2 AT 7
ALt 6 e § AL+ ¢
weg 1234 € (TN T meqees 7
(Jeurusid) uo) (pieog ._oszmﬁ— JAavn uo)

J0109uu0)) §Z7 4d 19%00s juduodwiod uid 91

6 7ou z a0y
01 10U a gulg
1HAMO~ tauly

(L)

g MO AND L |—

1 zauig V"0 ¢

£1 1QuI% vurg
P1IA 99| e/

L L
2a34q dupy pond

welbeig i pleog tspybneq L/HvN

—fcrcd _ anoti f—dnn
—Anzd L onnt -
~ist o O SO
i g g |~
— M:: o
81§14 6L |
—forod oldg
HW 2EvE’L (UALD S = FE I ol
1818440 1z 1mx U
Tz usd uva $dg o
L...ﬂ:.lni] wt
seuy weios eles T'C 700 o~ M ' Fmreeer
AS+ = anvd 0096 X 94
+,
pJK h+dK
ud Jeneloqs pesnu .._-
p L LRPerre ey d 1
Wﬂﬂ“WﬂﬂﬂUHNGiLQShMZM =
a9 2
nmmmmyymmmmmmmmmmmn g
3
’ L4V dSIOI-€-AV ﬁ Z
[=X=-N-N-X-N-N-X-] Z -
%538 8BREER 8B 5d 80T o
NNEERRERREUBS YRR YRGS]
=) I~
m/ AGH
L seujj 104U
n igjjjusuel) .__ ND 53110
. €—=1a 9!
€190 ¥i
-) S
v
/A :
ﬂ
124 = €—=a 1
18)0B18UD) §O PUT 'eqoAS BjeQ W_ As+ §1
(iamdwioa wof)
2jqeo uoqqu uid 9

406

42 May 23, 1997

32 PM

3

MAE 412 Circuit Diagrams Robust Junction

Switch Actuator Circuit

53 L “Main FMight (Green) %
5

T
]

LN
[4

Main Ragnt (red) .

|
ha 1A

l|1_.I

™ Main Left (red] %
Main Left { i
T _Man Lent igres 5

_Lz\va_NT T S3 ™, _Sta. Right [green)
\%.1_-}-‘-- (-_r -\—Ll‘_-.a

A
e o N 7 N
7 |av2 yalis ILF TS, Raght (red) #
S4—E W 13

,“‘ 10|ao Arf11

n
‘L P‘ I ___Sta Loft fredt %
A 4
¥ Sta. Left |green)#
52
N
<5V Track e
i Ground
':__."' - -
a1 3
o~ =
iy N
) 6 £
b =
2 5 [V%
) —10kg C 5
- Y 2
81 857 =
Track . 1N4004 3 4
Fower =
3 6%
E
Track
Powar
[yellow)
Switching Signal
3:32 PM 43 May 23, 1997

407

MAE 412 Circuit Diagrams Robust Junction

North Optical Sensor

+5V
g
0
1 }1a S oy 1-:+:|'Eﬂ'f
I: +8Y 2 1?? . BA[13
¥ =, L LI [slen x Yer|2
z :Iibﬁwg‘:; alzv ¥ 8 sals
- — =14d= -
o Avele R slay.. ¥
M338 (] 8 sv? <a
,_-l,u—'_lg 7 |@n &y
g E,:? zIE g @ H ‘[
[=.] =l
FTRFFFE
N 39MQ
Morth Track Sensor
K 0.9IMO
— To #15 on edge
TiL139 pin ¢::n:¢tnr
£ iska A O
—WWA—2
3:32 PM 44 May 23, 1997

408

‘Cops and Robbers’

Bradley Mendelson and Lina Jin
MAE 412
Professor M. Littman
May, 1996

“This paper was written in accordance with University Regulations.’

delza‘ﬂwkn
|

409~

