MAE/N-TRAK Computer Communications
by J. Gurian and D. Simon

41

ABSTRACT

Hardware and software for implementing a communications net-
work between track computers and the master controller of
the MAE/N-TRAK system are described. The basic requirements
for such a network are listed, as well as why such a network

is desirable. The considerations that went into the design

of the system are outlined.

i
‘o

CONTENTS

Abstract e e o o o o o o o o o o
1. INTRODUCTION e o e o o o o o o
2. SYSTEM ORGANIZATION . . ¢ o« «o «

Structure of Data
Controller Data . « o« « .« &
Return Data . . . « « .+ .
Track Waveform Structure . . .
CBl1 and CB2 Interrupts
Transmission Sequence

HARDWARE « ¢ « « &

System Overview
CIRCUIT DESCRIPTIONS . « o « &
Data Transmission Circuit .
Data Recovery Circuit . . .

Block Computer Receiver Circuit

SOF WARE L] Ll L] - L d L] L] L] L] L] L] .

Software System Overview . . .
Software Requirements . . .
Overall Program Logic . . .

label definitions
Versatile Interface Adapter

Constants
Interface Variables
Local Variables

software routine descriptions
INIT o ¢ o ¢ o o o o o o @
PARPOL . & ¢ ¢ ¢ o o o o &
PARITY ¢ o ¢ o « « o o « &
PANIC . & @ & o o ¢ o o o @
PANIC2 . . ¢ ¢ ¢ o o o o o
WTHF . . ¢ . ¢ ¢ ¢ o o o @
WTCBl, WTCB2, WT2
ISERV ¢ ¢ 4 ¢ 4 ¢ o o o o @
VCBYl & &t & 6 ¢ o o o o o @
VCB2 & & 4 ¢ ¢ o o o o o
RDWR o ¢ ¢ & 4 ¢ ¢ o o o &

*
. * . . *]

L 2
[V

L)
N b ww

43

Appendix

A. ISERV FLOWCHARTS . . ¢ ¢ ¢ ¢ ¢ o o o o o o &

B. ISERV ASSEMBLY LISTING . . &« 2 ¢ 2 o « o o @

LIST OF FIGURES

Figure

1. Structure and Synchronization of Return Data
2. Five Frame Structure of Track Waveform

3. CB1l and CB2 Interrupt Structure

4. Protocol For Transmission of Return Data

5. Data Transmission Circuit « ¢« « . .
6. Data Recovery Circuit . . . & ¢ ¢ ¢ ¢ o o o @
7. Block Computer Receiver Circuit « .

8. Positive and Negative Polarity Track Signals

O 9 o un

. 13

44

1. INTRODUCTION
In order for the track computers to achieve their fullest
potential in the MAE/N-TRAK system, they should be able to
both receive instructions from the master control unit and
send return information back to the master controller. The
following scenario illustrates the use of such a systen.

An automatic box car 1loading/unloading dock is
controlled by a track computer. Upon receipt of
the command 'unload the 4th car on locomotive num-
ber 5' from the master, the track computer would
begin its operation sequence. All trains would be
passed directly through the block until locomotive
number 5 entered. At this point, a message from
the track computer would be sent to the master re-
questing that locomotive number 5 be set to speed
level 2. At this slow speed, each car on the
train could be identified using optosensors, and
when car 4 was properly aligned, power would be
locally killed. The car would now be unloaded.
Upon completion of this task, power would be re-
sumed to the track, and the track computer would
request that locomotive number 5 be reset to its

former speed.

In order for the system described to be implemented, sev-
eral requirements are necessary. First, bidirectional commu-
nication must exist between the master and track computers.
Second, the response time of the master to a request by the
track computer must be sufficiently fast to allow proper op-
eration of the accessory

The communications system developed should be easily used
by the programmer of the track computer. In addition it
should appear transparent to the user, aside from several

interface buffers. The hardware needed should integrate eas-

ily into the system, and should not require any change in

45

operating protocol or operational parameters. (ie. change in

track voltage or modification of already existing FSK commu-

nications system)

Summary of System Reguirements

l.

The transmission of controller data to the locomo-
tives should not be affected by the return informa-
tion.

The service routine, required for operation of the
communications system, should run in 1K of ROM and
may use no more than 256 bytes (1 page) of RAM,

The system should only make use of VIA port B on the
track computers, as port A should remain available
for use by the user foreground routine.

It should communicate with the foreground routine
through the following RAM locations:

RDATA - data received from controller

WDATAH - high byte of return data

WDATAL low byte of return data

DFLAG - set to indicate data to send by track computer

It should work with an inverted track signal.
It should provide outputs to indicate when the data

and power frames are present.

Because of the system requirements, amplitude modulation

was chosen as a scheme to transmit data from the track com-

puters to the master. It was found that by modulating the

track waveform in a manner that was synchronized with the

46

incoming FSK data, it was possible to recover both the fre-

quency shift keyed signal, as well as the AM signal.

2. SYSTEM ORGANIZATION

2.1 STRUCTURE OF DATA

There are two types of data transmitted over the track.
‘Controller data' is the frequency shift keyed information
sent by the master to the track computers. '‘Return data' is
the amplitude modulated information which is sent from the

track computers to the master

2.1.1 Controller Data

Controller data is organized in eight four bit ‘nibbles.’

In a data frame directed to a track computer, these nibgles
contain the following information:

NIBBLE 0: Contains '0100', where '01' are the start

bits, and the next two bits are always zero in an

accessory frame they identify the message frame

number in a locomotive frame).

NIBBLE 1l: '0000' always zeroes in an accessory
frame.

NIBBLE 2: '0000° always zeroes 1in an accessory
frame.

NIBBLE 3: ‘nnnn' - Block number; ID of receiving track

computer.

NIBBLE 4: 'hhhh' - High order bits of task code.

4 r;

NIBBLE 5: '1111' - Low order bits of task code.
NIBBLE 6: 'pppp' - Parity bits.
NIBBLE 7: '0100' - Stop bits - always the same.
The least significant bit of each nibble is
sent first, starting with nibble 0, and ending
with nibble 7. (ie. the first four bits sent are

0010)

2.1.2
Return Data

The return information is sent by amplitude modulating
the track waveform during the data frame (see Figure 1). The
return information consists of 16 bits of data which are am-
plitude modulated in phase with the incoming FSK controller
data. In this scheme, a binary 1 is represented by the at-
tenuated signal level, while a binary 0 is represented by
the normal signal level. Note that each bit of return data
has the same period as two bits of controller data (see
hardware section for more information).

The return data is not as of yet organized in any special
configuration, however, once the system becomes more fully

developed, a protocol can be added to the return data.

43

- L UL L L 1T

]

. | TN *%
.cl || HHII - Y
— Tplemeded
Figure 1: Structure and Synchronization of Return

Data

a. Incoming controller data as it appears
in data frame

b. Return data in phase with the incoming
I signal . |

c. Resulting track waveform after return

data has been amplitude modulated on top of
incoming signal

TRACK WAVEFORM STRUCTURE

The track waveform, as explained in previous chapters,
consists of a repeating sequence of two power cycles, and
data cycle. Our routine divides this sequence into five
frames (see Figure 2). The current frame index is stored in

location franum for synchronization purposes.

49

Figure 2: Five Frame Structure of Track Waveform

2.3 CB1 AND CB2 INTERRUPTS

In order to drive the communications routine, the track
computer must be able to follow the transitions of the track
waveform. This is done by interrupting the processor every
time a transition occurs. It is also necessary to differen-
tiate between negative and positive going transitions.
our scheme, the CBl and CB2 control ports on the 6522 VIA,
provide a means to sync with the track transitions. The con-
trol ports are set to interrupt the processor on opposite
transiiions of the track waveform; i.e. if the CBl line
terrupts on the rising edge, the CB2 will interrupt on the
falling edge (see figure 3). The CBl and CB2 control regis-
ter (PCR) is set so that a CBl interrupt will always occur
at the beginning of the high frequency portion of data frame

regardless of the track polarity (see figure 3).

()

¢8z2 cel cez <8l

[——

Interrupt configuration when track polarity is positive

¢82 B CBL (3! CB2 ¢8I

T

CBz

iﬁg ﬁ?giﬂ |
Vil .__kl.!n.,ihé hi . |

Interrupt configuraiion when track polarity is negativel

Figure 3: CBl and CB2 Interrupt Structure

2.4 TRANSMISSION SEQUENCE

The system designed for sending return data consists of a

polling sequence. The controller polls each of the track

computers simultaneously to determine which, if any,

-

of the

computers have return data to transmit. It then grants one

data frame of the track waveform to a single track computer

for transmission of its sixteen bits of data.

the

For ease of understanding, data frames will be num-

bered in the following discussion, starting with Cycle 1.

The entire seguence

is illustrated in Figure 4. The con-

troller polls all track computers by sending a message with

computer ID set to '00' during Cycle 1. This is a reserved

51

computer ID; no computer is allowed to have an ID of zero.
When the ISERV routines in all of the track computers read
in this message with BLKID = 0, they interpret it as a '"poll
request'. If a track computer has return data to send, it
will indicate this to the controller during the next data
frame (Cycle 2) by sending a "one' in a bit position corrs-
esponding to its block ID. For example, if computer #6 has
return data to send, it will wait until it receives a mes-
sage with BLKID = 0 (Cycle 1). During the next data frame
(cycle 2), it will send a 'one' during bit 6 and a 'zero'
for a2ll other bits. Since each computer has its own bit po-
sition, wup to 16 computers may respond to the controller's
poll. The master reads the return data and makes a list of
all track computers that have requested to send data. The
master then individually permits each computer to send its
sixteen bits of information. It does this by sending a task
code of '00'. This is a reserved task code and may not be
used for any other purpose by the controller or the track
computers. The computer that has received the '00' task code
interprets this code as a "Send Return Data' command and re-
sponds by sending return data during the next data cycle.
This process is summarized as follows:
Cycle 1: Contreller sends "poll regquest' accessory data
frame with bleck ID of zereo.
Cycle 2: All track computers with return data pending
send a 'one' during the bit of the return data

that matches each computers® ID.

=B =

Fm———— - e e e L L T — i

Entire Cycle of Data Frames

o Fall Eqwﬁ _ Fall Lafure eRAwh- B
J__L_J __J_?th_-] L_Ji -uJ_l __J- :_J____J
cucle i T 2 — '3
_ n-fsp. ﬁngkje 5-u%¢ﬂ
[_Jf jﬂJ __J:qhqj__l__ .
Cucle & s e

Cycle 2 With Computers 1, 3, and B Respanding

Figure 4: Protocol Por Transmission of Return Data

=
= -
== [:
L__Ll

I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
|
|
I
|
I
|
|
+

Cycle 3: Controller sends 'Send Return Data' message to
computer A.

Cycle 4; Cymputer A sends return data to the control=-
ler.

Cycle 5: Controller sends 'Send Return Data' message to
computer B.

Cycle 6: Computer B sends return data to controller.

And so on until all track computers have sent their
data to the controller.

In order to initiate the transmission sequence, the user
program running in the track computers load up 1locations
WDATAL and WDATAH with the return data, and indicate to
ISERV that there is data to be sent by setting DFLAG to hex
'FF'. ISERV looks at DFLAG to determine if there is any data
to send, and resets DFLAG to '00' once the return data has

been sent.

3. HARDWARE

3.1 SYSTEM OVERVIEW

In order for the block computer to send data, and the
controller to receive it, ¢two circuits are necessary. The
first is a data transmission circuit to be used by the block
computer, and the second is a data recovery <circuit to be
used by the master controller. The data transmission cir-
cuit was designed so that it could be controlled by the PB4
output of the 6522 VIA, and the data recovery circuit was
designed so that it could easily be added to the master con-
troller. An additional circuit is necessary in order to
link the track waveform to the block computer. This is nec-
essary so that the block computer can receive data from the
master. The requirements for this circuit are that it elec-
trically isolate the computer from the track, and provide a

TTL input to the CBl and CB2 control inputs.

- 10 -

o4

3.2 CIRCUIT DESCRIPTIONS

3.2.1 Data Transmission Circuit

As explained previously, amplitude modulation is used to
transmit return data from track computers to the master con-
troller., The data transmission circuit is used by the track
computer to switch a resistor in and out across the track
(see Figure 5). This 1o0ad will cause a power supply current
surge which can be sensed at the master controller. The cir-
cuit consists of two back to back SCR's (the equivalent of 2

triac) which switch in a 10 ohm load when triggered.

Binary data can be sent by pulsing the SCR gates thus

causing the load to short out the track. When the load is

- 11 -

Sy B RS S +
l + I
Sv
: i :

To
: 105 1507 — P :
! —L v |
| — . o |
| e R |
1 :
1 S l | I
I — : ZN-S% ?km "2 x INYD |
| — | . |
I — I | !
| — S (g ' 5 [
e |
I 4 ; I
l — !
[I
I : |
| Figure 5: Data Transmission Circuit |
I I
S SR S + .

shorted across the track, the track waveform will be attenu-
ated. When the load is open circuited, the waveform will be
at its normal lewvel. (see section 2.1.2) We have adopted
the convention that a binary "1' is given by the shorted
condition, and a binary '0' is given by the open circuit

condition.

3,2.2 Data Recovery Circuit

The second circuit developed is used by the master con-
troller to recover the signal transmitted by the track com-
puters (see Figure 6). During the data cycle, the current
being drawn from the track is constant. Only computers are
drawing current, therefore the total current drawn will be a
function of the number of computers connected. The voltage
drop across resistor R will therefore also be constant.
However, when the track computer connects the 10 ohm resis-
tor arress the track, there will be a current surge and a
corresponding voltage increase across resistor R. With prop-
er selection of R, transistors Tl and T2 will turn on only
when the track is in the 'shorted' state. Tl will turn on
for positive portions of the waveform, and T2 for negative
portions. These transistors will trigger two 4N25 optocou-
plers, which will in turn, switch on and off T3. A 1K resis=-
tor is placed between the base of T3 and ground in order to
help dissapate the saturation base charge, and speed opera-
tion of the transistor. The TTL output is taken from the

collector of T3.

- 12 -

5b

+49v

——

'Q;Mfrc“l.(‘
| .2K |
= |
Track . |
(AUHE
] || E A \\[N |
+I12V - T F o |
12K

goKk

T R TL I/ 'L’
Out

T3
; \

4 SoKk K :g
4 S€C)

-V

Figure 6: Data Recovery Circuit

—— — — — — — — — — — —— — — — —— — — —— — O {——— o— —

The resistor R must be selected so that Tl and T2 do not
trigger unless the 10 ohm resistor is switched across the
track. Tl will turn on when the voltage across R is approxi-
mately 1.4 volts, and the trigger vpltage for T2 is approxi-
mately -1.4 volts. Since the steady state data frame cur-
rent will vary with the number of computers in use, we must
vary R when the number of computers is changed iﬁ order to
get the proper steady state voltage. across R. For one com-

puter it is found that a 1.3 ohm resistor can be utilized.

As the number of computers increases, the resistance must be

- 13 =

S

(

decreased indirectly with the steady state current draw.
Note that all of the current used in the system will flow
thru this resistance, and therefore it must be able to han-
dle the power. We found that a 75 watt resistor was suffi-

cient.

3.2.3 Block Computer Receiver Circuit

2

2
The final circuit uses a 4N2§'opto coupled transistor to
isolate the track from the computer (see figure 7). This
circuit provides the CB1 and CB2 control inputs with the

necessary TTL compatible signals.

————

8

|

X 3 ’j9“9& ﬁqul{lC('\ lﬁ’\ (C)\dckyd Tt‘ \MPT\/C ‘&i‘ mggm ,;\>
T3-19-% med St (4N33 used| becanse of l’wjl*i‘f
gam)
14

58

4. SOFTWARE

4.1 SOFTWARE SYSTEM OVERVIEW

4.1.1 Software Requirements

The first requirement is that the transmit/receive loop
(RDWR) must operate at speeds which allow the block computer
to decode the track waveform. The shortest interval between
track transitions occurs if a binary zero is being sent (75
microseconds). This means that the RDWR loop cycle time must
be less than this value. In order to make this possible, two
32 byte buffers were used. The first of these buffers, WBUF,
contains two bytes for each bit of return information sent.
(this is necessary because each bit of return data has the
same period as two bits of incoming data) The second buffer,
TABLE, is used to store the incoming data as it arrives.
Both of these buffers allow quick processing of the I1/0, by
simplifying the RDWR loop structure. Only one bit cof each
byte of TABLE is used for information storage, however the
speed gained by using the extra memory made it worth the
tradeoff. All of the other system requirements explained in

section 1 were also incorperated inte the software design.

= 15 =

(o |

4.1.2 Overall Program Logic

The processor is interrupted every time a CBl or CB2
transition occurs. Present postion in the track waveform is
determined, and if not in the data frame (frame #5), various
housekeeping tasks are performed. After this processing,
control is returned to the user routine. 1If position of the
waveform is at the beginning of the data frame, the buffers
mentioned in the above section, are prepared for the trans-
mit/receive loop (RDWR). During the loop, I/0 is performed;
all of the data in WBUF is sent out to the tracks, and the
incoming FSK bits are decoded and stored in TABLE. Directly
following this loop, data processing takes place. The data
is decoded and any valid commands are carried out. Control
is then returned to the user, and the subroutine waits for
the next interrupt.

(for a more specific description of software, see below)

4.2 LABEL DEFINITIONS

The following is a list of the variable names and labels
used in the assembly routine. The list is divided into three
types of variables; VIA address constants, interface vari-
ables which are used by the foreground program to communi-
cate with the subroutine, and local variables which are used

only by the subroutine and are invisible to the user.

- 16 -

60

3.2.1 Versatile Interface Adapter (VIA) Address Constants

VORB = A000 : Output Register B.

VDDRB = A002 : Data Direction Register B.

VT2L = A008 : Timer 2 Low Byte (Latch/Counter).
VT2H = AD09 : Timer 2 High Byte (Counter).
VACR = AQOB : Accessory Control Register.

VPCR = AOOC : Peripheral Control Register.
VIFR = AQOOD : Interrupt Flag Register.

VIER = AQOQOE : Interrupt Enable Register.

4.2.2 Interface Variables

FRANUM = 3FA : Current track waveform frame number. Varies
between 1 and 5, but since ISERV is the only routine
running during frame 5, the user program only sees
FRANUM cycles between 1 and 4. FRANUM can be used by
the user program as a simple two-bit timer.

BLKID = 3FC : Block identification number of the track com-
puter. The ID may be any number between 1 and 15.
RDATA = 3FB : Most recent controller data sent to this
track computer. The data is stored in RDATA by ISERV if
it determines that the data is valid for the computer

named in BLKID.

WDATAH = 3FE : High byte of return data (set by user pro-
gram)

WDATAL = 3FD : Low byte of return data (set by user program)

- 17 -

61

DFLAG = 3FF : Flag that signals to ISERV whether or not
there is valid data to be sent in WDATAH and WDATAL.
whgn DFLAG = FF, ISERV will attempt to send the data in
WDATAH and WDATAL, and will reset DFLAG to 00 once the
data has been successfully sent. Otherwise, it will
ignore the return data. It is expected that a user will
load WDATAH and WDATAL with return data, and then set

DFLAG to FF when the data is ready to be transmitted.

4.2.3 Local Variables

OKWR = 3F9 : Flag that signals whether or not the control-
ler is ready to accept return data from this track com-
puter. FF = OK to write data; 00 = controller not
ready.

INTMPU = 3F8 : Flag that signals whether or not the track
computer may transmit a 'Request to Send' signal. 1Ini-
tially set to 00, ISERV sets INTMPU to FF when it re-
ceives a 'poll request' signal from the processor.

POS = 3F7 : Contains the byte to be output to Output Reg-
ister B after a CBl interrupt has been received in the
power cycle. If positive polarity is present, bit 6
will be 'l1' and bit 5 will be '0°'. The situation is

reversed for negative polarity. In all cases bit 7 will
b '0' to indicate the power portion of the waveform is

present.

- 18 -

62

NEG = 3F6 : Contains the byte to be output to Output Reg-

ister B after a CB2 interrupt has been received during

a power cycle. If positive polarity is present, bit 6

will be "0’ and bit 5 will be 'l'. The situation is
versed for a negative polarity waveform. POS and
are set up so that PB6 will be 'l' during positive
cles of the waveform, and PB5 will be 'l1' during
negative cycles of the waveform.

PLRTY = 3F5 : Contains FF for positive track polarity,
00 for negative track polarity.

LCV = 3F4 : Loop variable,

MASK

re-=

NEG

cy-
the

and

3F3 : Contains "11101111"'; used to mask out a carry

after a four-bit addition. Used by the PARITY routine.

CNT 3F2 : Loop variable.

TIME

3F1l : Equal to a period of time that is midway be-

tween the period of a ‘'zero' controller bit (nominally

75 usecs.) and a 'one' controller bit (nominally 150

usecs.). This has a nominal value of 112, but is depen-

dent upon the accuracy of the track computer's clock.

Used by ISERV to time incoming controller bits.

WBUF = 3DO0 : Contains 32 bytes of data to be written to

the controller. Two bytes of WBUF are needed for each

bit of return data. A byte of WBUF contains the data to

be written directly to ORB. The contents of each byte

of WBUF is as follows:

- 19 -

63

FTAB

TABLE

Bit 7 : '1' - Indicates that a data frame is pres-

ent.
Bit 6 : '0' - Positive power frame not present.
Bit 5 : '0' - Negative power frame not present.

Bit 4 : Return data to be sent. Contains a '0' if
corresponding bit of return data is '0' and a
'1' if the return data is a 'l1'.
Bits 3-0 : Depend on LOCCON routine (Bar-code rou-
tine).
= 3AD : Eight-byte-long table containing the eight
nibbles of controller data. Used to process the incom-
ing controller data.
= 38B : Thirty-two byte long table which contains the
first 32 bits of the controller data. Each byte of
TABLE contains the contents of the IFR when the trail-
ing edge of the corresponding bit of controller data
was detected. Since timer 2 is set to the value of TIME
on the leading edge of each bit of controller data,
timer 2 will time out if a 'l' is sent, but not if a
'0' is sent. Bit 5 of a byte in TABLE will therefore
contain a '0' if a zero was sent or a 'l' if a one was

sent.

- 20 -

64

4.3 SOFTWARE ROUTINE DESCRIPTIONS

The following descriptions explain each of the communica-
tions subroutine sections. The descriptions can be read in
conjunction with the subroutine flowcharts (appendix A) and

the assembly code (appendix B).

4,3.1 INIT
INIT, the initialization routine £for ISERV, must be
called by the user program to initialize the service rou-
tine, INIT performs the following functions:
1. 1Its sets all pins of port B for output except for
PB2; this is used by the bar-code routine LOCCON.
2. It sets the IER to interrupt the track computer ONLY

during CB1 and CB2 interrupts.

3. It calls PWRPIL to determine the polarity of the
track waveform and set zppropriate variables.

4. It calls PANIC to synchreonize itself with the track
waveform.

5. It sets the wvariable TIME to a wvalue which is halfway
between the period of a controller '0' and '1' bit.

INIT then returns to the user program. INIT should be

called on powerup as soon as the user program has initial-

ized the system stack.

- 21 -

4.3.2 FPWRPOL

PWRPOL determines the polarity of the track waveform by
looking for a 10 millisecond interval between CB2 interrupts
that is present in an inverted signal, but not in a normal
signal (see PFigure 8). PWRPOL first assumes that positive
polarity is present. Therefore, the PCR is set so a rising
wavaform edge will trigger a CB2 interrupt, and a falling
edge will trigger a CBl interrupt. PO5 and NEG are also set
to reflect positive polarity. One hundred successive inter-
vals between CB2 interrupts are tested; if no 10 msec. in-
terval is found after 100 interrupts, positive polarity is
assumed for the remainder of ISERV's operation. To allow for
some inaccuracy in track computer clocks, PWRPOL actually
tests for any interval in the range 7.9 msecs < interval <
12.2 msecs.

If the 10 msec. interval is found, PWRPOL adjusts POS and
NEG to reflect this. It also sets the PCR so a CBl interrupt
will be triggered on a rising edge, while a CB2 interrupt

will be triggered on a falling edge.

L

B2 cel cB cBl CB2CO) Bl (82
= ISP o A LA K e |
I T

e

Figure 8: Positive and Negative Polarity Track
Signals

a. Normal positive track waveform

b. Negative track waveform before PWRPOL
has corrected the CBl and CB2 interrupts

Note the 10 msec period that occurs only
when the polarity is negative

4.3.3 PARITY

PARITY performs modulo four additions on the eight nib-
bles of the controller data. If the data is valid, the nib-
bles should add to '1111'. The result is left in the A-reg-
ister. The calling routine should expect a 'OF' to be

returned if the data is valid.

- 23 -

6

e

(

As PARITY adds each successive nibble to the A-register,
it checks bit 4 to determine if a four-bit carry has oc-
cured. If it has, the carry bit is set; otherwise, the carry

bit is cleared. Bit 4 is cleared in any case.

4.3.4 PANIC

PANIC synchronizes ISERV with the track waveform. It does
this by waiting for the first CBl interrupt after the high-
frequency data portion of the track waveform. This occurs at
the start of frame 2; FRANUM is set accordingly.

Initially, WTHF is called to locate the high-freguency
portion of the waveform. Next, a loop is entered which sets
T2 to 256 microseconds, and times the interval between suc-
cessive CBl interrupts. The routine will loop until T2 has
timed out in the interval between CBl interrupts. When this

happens, the routine has located frame #2.

4.3.5 PANIC2

The routine PANIC (above) 1is arranged as a subroutine.
Some routines are not set up to call PANIC as a subroutine;
rather, they branch to PANIC and require PANIC to branch to
the RETURN routine of ISERV (not the same as executing an
RTS). Thus, PANIC2 was written. PANIC2 merely calls PANIC,

and branches to RETURN afterwards.

- 24 -

68

4.3.6 WTHF

WTHF is used to leocate the high-frequency data pertion of
the track waveform. It does so by waiting for the first in-
terval between CBl interrupts that iIs less than 256 microse-

conds.

4.3.7 WTCBl, WTCB2, WT2

WTC21 and WICB2 wait for either a CB1 or CB2 transition
o oecur. WT2 waits for timer 2 to time out. All three work

by looping until the proper bit in the IFR is set.

4.3.8 ISERV

Although ISERV as a rule refers to the entire interrupt
service routine, the small routine actually labeled ISERV in
the assembly listings performs the following functions:

1. It disables further interrupts from causing a hard-
ware interrupt at the 6502 MPU,.

2, It saves the A, X, and Y registers on the system
stack.

3. It determines the present location in the waveform by
refering to franum, and branches to the proper inter-
nal routine.

The secticn beginning with the 1label RETURN restores the

registers and executes an RTI.

- 25 =

4.3.9 VCBl

VCB1 first increments FRANUM and checks to see whether
the frame number is valid; if neot, PANIC2 is called. It
checks to make sure that T2 has timed out, which must always
be the case (except in the data frame). As before, PANICZ
is called if anything is amiss. If things seem to be in or-
der, T2 is reset to 12.288 milliseconds, and ORB iz loaded
with NEG to reflect a positive or negative power cycle (de-
pending on the track polarity, of course). Finally, 1if
FRANUM = 2, LOCCON is called to service the bar-code read-

ers.

4.3.10 VCB2
VCB2 performs necessary processing prior to the actual
reading and writing of data. It initially performs frame-
number checking (similar to that done by VCBl) to determine
if the system is still in phase with the track waveform. If
the data frame is not present, control will be returned to
the user preogram. If the data frame is present (FRANUM =
5), WBUF is prepared for data transmission by performing the
following tests:
1. If DFLAG is cleared, the buffer is zeroced and no more
processing takes place.
2. 1I1f DFLAG is set, INTMPU is next checked to see if a
'Request to Send' signal may be transmitted. If so,

the bit in WBUF that corresponds to BLKID is set on;

=

all others are turned off. Example: computer 4 would
have bits 8 and 9 set to 'l'.

3. If INTMPU is not set, OKWR is checked. 1If this flag
is set, the return data is copied from WDATAL and
WDATAH and is formatted into WBUF. On the other
hand, if the OKWR flag is clear, WBUF is zeroed.

After WBUF has been set up, control is passed to the rou-

tine RDWR.

4.3.11 RDWR

RDWR performs all of the actual transmission and recep-
tion of data. It sets T2 to TIME at the start of each bit of
controller data, then waits for the CBl interrupt marking
the end of that bit (and the start of the next bit). When
the CBl flag 1is present in the IFR, the IFR is stored in
TABLE and the proper byte from WBUF is output to ORB. The T2
flag in the IFR indicates whether a '0' or '1' was received.
Since all WBUF data formatting is done beforehand, and all
controller data decoding is done afterwards, the inner
read/write loop is very efficient, and makes possible the
decoding of high-frequency signals. |

After all of the 32 bits have been received, the IFR data
stored in TABLE is reconstructed into eight, four bit nib-
bles. The data is discarded if any parity errors are detect-
ed (using the PARITY routine), if an accessory frame was not
received, or if the message frame BLKID does not match the

computer's BLKID.

- 27 -

Two special cases are possible:

1. If the message frame BLKID = '00', this is not a mes-
sage frame, but a 'poll request' from the controller.
In this case INTMPU is set to 'FF'

2. If the task code (nibbles 4 and 5) 1is equal to zero,
this is a 'Send Data' command from the controller.
OKWR is set to 'FF', and data will be sent out during
the next data frame.

If no special cases are ©present, and the received BLKID
agrees with the computer BLKID, the task code is stored at
RBUF. RDWR then waits for the power cycle to arrive, and
sets FRANUM = 1 upon its arrival. Control is then returned

to the user program through the RETURN routine.

- 28 =-

2

Appendix A

ISERV FLOWCHARTS

- 29 -

73

INIT

DISABLE
INTERRUPTS

~-

Inimauze DDRB
Bir L = OQUTPUT

RiL oTHERS = INPUT

l
~>

Iumauze TER

ONLY INTERRUPT MPV
oN(CB1 (B2 mrerrerrs

~r
[ZALL PWRPOL
T FIND
PoLARITY

~=
cal PANIC

TOo SYNC.
WITH WAVEFORW

=

WAhIT FGR DATA FRAME,
Sev T YO TIMmE

TENGETH oF NEXT 21T

[}
-y

TME LENGTH

CF NEXT BIT

Y
o L

T=TIMNE | |T

~>
t=1h

ADD T TO TIN\E 6NES
TNTERMEDIHTE LENGTH

oF “0"anD “I"

+

SUBTRALT CORRECTTION
FACTOR — TIME SPENT
EXECUTING- INSTRUCTIONS
70 _SToP TIMER

>

ENRBLE
INTERRUPTS

>

RETURN

PWRPOL

PoS = HEX ‘10‘ EQUIVALENT
To PBG “oN"wHEN RS
s evtvT 0 ORRB

Inir PCR vo TRIGGER
(B) ON FmLING EDGE
l(,B 2 ON RISING EDGE
~
NEG = HEX 2O
PBS = von*
PB(= "OFF
1

Py~
SET CounTER

(X REGISTER)
T (00

~—

WAIT FOR
(B2 INtERRUPT

-~

DECREMENT
CouNTER

BN CB

YMSLTMRL(2.0m

POS = kex 2o PBS ‘on
NEG < hex 40, PBE "ON
PCR <ET roR:CBI RE(-

CB 2 FruwiwG

ETU RN

PARIITY

-
CNT =0
REG R, ¥X=O
CLEAR CARRY

ADD FTAB(X)

CARRY CARRY

TNCREMENT

INDEX
X REGSTE

" |CLEAR CARRY FRom
4 BIT ADDITION

A ReG- = ArecA 1101

-~

DECREMENT

CNT

PANIC

WAHT™ FOR I FReqUENCY
PORTION OF -

WAVE FORM

-

WAIT PAST BICH-
FREQUENCY PoRTION

-~

WAIT FoR NEXT
CB | INTERRVPT

-

SET

FRANUM =2

-

RETURNJ

PAJI\I'IC 2
ChALL

PAN 1 C
RETURN

WTHF

-+

WAIT FOR
CB |

<

SET

T1=256MS

W AIT FOR
CB |

<&

N

CLEAR CB|]

INTERRUPT
FLAG

-

RETURN

RETURN

WTCB|

78

ISERV

-

DisaBLE

INTERRVPTS

SAVE

REASTERS

JUMP TO

| VCB |

Jump TO

VCB2

.
RESTORE
Re¢STERS

T

RETURN: enry

POINT FROM SEVERAL

-

ROUTINES

EYECVUTE

RTI

73

VCB

L

JNCREMENT

FRANUM

Y

N

SeT T2
To 1223308

SET Po2T B 10
RerpCr NEG-
DAWER OYLE

JUMP TO

PANICL

JUMP TO

A PANIC 2

| LOCCON

CRLL

“JUNMP TO

RETURN

80

IT OKTO
SEND DATA?

(OKWR=FF)

Jump TO ~>
PAN162 CoPY USER RETURN CLEAR DATA
INFORMATION INTO OUTPUT BUFFER

OUTPUT BUFFER WRUH WRUE

OUTPUT POSITVY
POWER BITS

ro ORB CLEAR SEND
~ REQUEST FLAGY
NTRIT Darh JUMP TO DFi_AG
FRAME INDicATeR]
r OR RETURN .
: CLEAR "R T
WRITE" FLAG
CLEAR DATA OUTPUT OKWR
(DFLAG =FF?) BuFFer WRUF
= {
JUMP TO
RDWR
<< 1T
Ai';{\&\[\]
TO SEND?
SYCRE BLoCK
D IN DATA
oOUTAUT BUFFE;J
CLEAR
INTMPU | 1
JUMP TO
RDWR

§1

JUMP.TO

| PANIC

urPuT 1*7 DATR BIT

1 WBUF 1 ORB

|

WaIT FoR
A CB1
urEEZUPT

OUTIVIT T N ‘
Fﬂ'ﬁ BIT
BUF ro OR

DECODE &ND STORE
NCOMING- DATA

W TA BLE

WAIT PST
EXTRAVEOVS

BiTS

-

BEGIN PROCESSING
DATA: CLEAR
IFR

PseMBLE NEXT 4
BiTS OF TRBLE iwT0
A NIBBLE. STORE N

‘nHRDMBBLE
(BLKI D): (00) (

1
BLKID
(CRRECT FoR

COMPUTER .

(BLKID=BLKNUN

~Y

AssEMBLE MIBBLES
#4 A0 25 0

RDATA

RDWR (CONTlNUED)

FRANUM = 1

OUTRUT POSIMVE
rwer, BITS ToORB

L

Jume to RETURN

(cenNTRL BACK TT
USER)

83

* % % %

INIT

LABEL DECLARATIONS

Appendix B

ISERV ASSEMBLY LISTING

FRANUM = S$3FA
BLKID = $3FC
RDATA = $3FB
WDATAH = $3FE
WDATAL = $3FD
DFLAG = $3FF
OKWR = $3F9
INTMPU = $3F8
POS = $3F7
NEG = $3F6
PLRTY = $3F5
LCV = $3F4
MASK = $3F3
CNT = $3F2
TIME = $3F1
WBUF = $3DO
FTAB = $3AD
TABLE = $38B

VERSATILE INTERFACE

VDDR
VORB
VT2L
VT 2H
VACR
VPCR
VIFR
VIER

PROC
FUNC

SEI
LDA
STA
LDA
STA
STA

B SA002
$A000
SA008
SA009
SA00B
SA00C
$A0OC

SAOOE

e nnn 0

EDURE: INIT

CURRENT WAVEFORM FRAME NUMBER

TRACK COMPUTER BLOCK ID NUMBER

CONTROLLER DATA SENT TO THIS COMPUTER
HIGH BYTE OF RETURN DATA

LOW BYTE OF RETURN DATA

00=NO RETURN DATA TO SEND

FF=RETURN DATA READY TO SEND
00=CONTROLLER NOT READY TO ACCEPT RETURN I
FF=CONTROLLER READY TO ACCEPT RETURN DATA
FF=MPU HAS ISSUED POLL REQUEST

OUTPUT DURING POSITIVE POWER CYCLE

OUTPUT DURING NEGATIVE POWER CYCLE
00=NEGATIVE POLARITY, FF=POSITIVE POLARIT!
LOCAL VARIABLE

LOCAL CONSTANT

LOCAL VARIABLE .

MEDIAN PERIOD OF A '0O' AND 'l1' BIT OF
CONTROLLER DATA

OUTPUT TABLE - DATA TO BE WRITTEN TO PORT
RECONSTRUCTED 'NIBBLES' OF CONTROLLER DAT?
INPUT TABLE - IFR CONTENTS FOR EACH INPUT

ADAPTER (VIA) ADDRESSES

DATA DIRECTION REGISTER B
OUTPUT REGISTER B

TIMER 2 LOW BYTE

TIMER 2 HIGH BYTE

AUXILARY CONTROL REGISTER
PERIPHERAL CONTROL REGISTER
INTERRUPT FLAG REGISTER
INTERRUPT ENABLE REGISTER

TION : INITIALIZE VARIABLES, SYNCHRONIZE WITH TRACK WAVEF(

$SFB
VDDRB
#0
VACR
INTMPU

DISABLE ALL MPU INTERRUPTS
SET DDRB FOR ALL OUTPUTS EXCEPT PB2
STORE AWAY

INITIALIZE ACR
INITIALIZE INTMPU

39 -

84

~— SHORT

ISERV

STA
LDA
STA
LDA
STA
JSR
JSR

OKWR
$7F
VIER
398
VIER
PWRPO
PANIC

FIND THE

LDA
JSR
LDA
STA
JSR
LDA
STA
LDA
JSR
LDA
STA
SEC
LDA
SBC
SBC
CMP
BMI
LSR
STA
CLC
LSR
CLC
ADC

SBC
STA

CLI
RTS

VORB
WTHF
$255
V2TL
WTCB1
#0

VT 2H
VORB
WTCB1
VT 2L
TIME

$#255
TIME
#2
#110
SHORT
A
TIME

A

TIME
$38

TIME

ROUTINE :
FUNCTION

SEI

LIKEWISE
CLEAR ALL INTERRUPTS

ENABLE CB1l, CB2 INTERRUPTS
L DETERMINE POLARITY OF INPUT SIGNAL
SYNCHRONIZE WITH TRACK WAVEFORM

PERIOD OF A '0' OR 'l', AND COMPUTE AN INTERMEDIATE VALUE

CLEAR INTERRUPT FLAG IN IFR
WAIT FOR HIGH-FREQUENCY PORTION OF WAVEFORM

SET TIMER FOR 255 USECS.
ALIGN TO A CBl1 INTERRUPT

START TIMER 2
CLEAR CB1 INTERRUPT IN IFR

AND WAIT FOR THE NEXT CB1l INTERRUPT

LOAD COUNTER TO FIND TIME BETWEEN CBl INTERRUPTS
AND SAVE

SET CARRY IN PREPARATION FOR ARITHMETIC

LOAD ORIGINAL 255 USECS.

SUBTRACT REMAINDER OF T2 COUNTER

ADJUST FOR TIMING ERRORS TO GIVE TIME OF BIT
COMPARE TO MEDIAN VALUE: IS THIS A '0' OR A '1'?
IF <110, WE HAVE A '0'

OTHERWISE, WE HAVE A 'l', DIVIDE BY 2 TO NORMALIZE
SAVE PERIOD OF A '0°

CLEAR CARRY
DIVIDE BY 2
CLEAR CARRY
MEDIAN VALUE

1.5 X PERIOD OF '0'
= .75 X PERIOD OF 'l°
SUBTRACT CONSTANT DUE TO TIMING ERRORS FROM
EXECUTION OF INSTRUCTIONS
STORE AWAY
ENABLE INTERRUPTS
RETURN TO USER ROUTINE

ISERV
: INTERRUPTS SERVICE ROUTINE, CALLS LOWER-LEVEL ROUTINES

DISABLE INTERRUPTS

PUSH REGISTERS ON SYSTEM STACK

PHA
TXA
PHA
TYA
PHA
LDA
BIT
BNE
LDA

$#S10
VIFR
vCB1l
$508

TEST FOR CB1 INTERRUPT
BRANCH IF FOUND

- 40 -

0o
ot

*
RETURN

* % % *

VCB1

LESS

8]

* % ok B % % % o #

PARPOL

BIT VIFR CHECK FOR CB2 INTERRUPT
BEQ RETURN SKIP IF NOT FOUND

JMP VCB2 OTHERWISE BRANCH
RETURN - RESTORE STACK AND LEAVE

PLA

TAY

PLA

TAX

PLA

RTI

ROUTINE : VCB1
FUNCTION : HANDLE CB1l INTERRUPTS

INC FRANUM INCREMENT FRAME NUMBER

LDA FRANUM

CMP #6 IS FRAME NUMBER > 57?

BMI LESS LESS THAN 6, SO OK

JMP PANIC2 OTHERWISE, OUT OF SYNC - PANIC!
LDA #3520

BIT VIFR HAS T2 TIMED OUT YET?

BNE L1 YES, WE'RE OK

JMP PANIC2 NO, WE'RE OUT OF SYNC

LDA %0

STA VT2L

LDA #$30

STA VTZ2H SET T2 = 12288 USECS.

LDA NEG

ORA #1 MAKE SURE PBO IS SET

STA VORB OUTPUT POWER CYCLE, POS OR NEG DEPENDING ON POLARIT}
LDA FRANUM

CMP %2 FRANUM = 27?2

BNE L2 IF NOT, CONTINUE

JSR LOCCON TAKE CARE OF BAR CODE READER(S)
JSR RETURN LEAVE

ROUTINE : PWRPOL
FUNCTION : DETERMINE POLARITY OF TRACK SIGNAL

INITIALLY, ASSUME POSITIVE POLARITY. SET POS TO OUTPUT

A '1' ON PB6 AND '0' ON PB5 DURING POSITIVE POWER CYCLE, AND
VICE-VERSA FOR NEG. OBJECT IS TO LOOK FOR A 10 MSEC PERIOD BETWEEN
CB2 INTERRUPTS. IF THIS IS FOUND, WE HAVE NEGATIVE POLARITY

LDA #3540

STA POS

STA VPCR

LDA #SFF

STA PLRTY SET PLRTY = POSITIVE

LDA $#520

STA NEG

LDA 20

STA VT2L SET LOW T2 BYTE TO ZERO

41

was DEY W Lecky VI
%&@d@ AN MAE ~-NATRAK viz 286 1363

LOOP THROUGH 100 TIMES - IF 10 MSEC PERIOD IS NOT FOUND BY THEN,
WE HAVE POSITIVE POLARITY

LDX #100 SET COUNTER TO 100
LDA VORB CLEAR IFR
JSR WTCB2 WAIT FOR CB2 INTERRUPT
TSTLP DEX DECREMENT LOOP COUNTER
BEQ TSTEND BRANCH TO TSTEND IF FINISHED
LDA $$30
STA VT2H SET T2 TO 12288 USECS.
LDA VORB CLEAR IFR
~n TNISR WTCB2 ' " WAIT FOR NEXT CB2
S __LDA VT2H STORE TIME BETWEEN CB2 INTERRUPTS
LDA VIFR
BIT T2TEST SEE IF T2 HAS TIMED OUT (T > 12288 USEC?)
BNE TSTLP > 12288 MSEC, BACK TO LOOP
LDA TIME
CMP #S511 TIME < 80002
BPL TSTLP YES, GO BACK INTO LOOP
%*
_* HERE, WE HAVE NEGATIVE POLARITY : 8000<TIME<12288 USEC
*
LDA %0
STA PLRTY PLRTY = NEGATIVE
LDA #$20
STA POS RESET POSITIVE
LDA #S510
*
T SET CB1 TO TRIGGER ON RISING EDGE
* SET CB2 TO TRIGGER ON TRAILING EDGE
*
STA VPCR
LDA #$40
STA NEG RESET NEGATIVE
TSTEND RTS
T
* PROCEDURE : PANIC
* FUNCTION : SYNCHRONIZE ISERV WITH TRACK WAVEFORM
%
PANIC JSR WTHF WAIT FOR DATA PORTION OF WAVEFORM
LDA %0 —) :
(STA V2TL ZERO LOW BYTE OF T2 d"!d?‘d&,”?mv—m § Ve
—PLOOP LDA #5071 O(u&v\‘ﬂﬁ?
STA VT2H SET T2 TO 256 USECS.
JSR WTCB1 WAIT FOR NEXT CB1l
LDA VORB CLEAR IFR OF CB2 INTERRUPT
LDA VIFR
BIT T2TEST HAS T2 TIMED OUT?
BEQ PLOOP IF NOT, GO BACK

T2 HAS TIMED OUT - WE HAVE FOUND AN INTERVAL GREATER THAN
256 USECS. THIS MUST BE START OF POWER CYCLE.

LDA #2

42

8'

* % * %

L I

PARITY

ALOOP

CBA

STA FRANUM FRAME NUMBER = 2, FIRST CB2 INTERRUPT AFTER
DATA CYCLE
RTS WE'RE DONE

ROUTINE : PANIC2
FUNCTICN : CALLS SUBROUTINE PANIC, BRANCHES TO 'RETURN'

JSR PANIC PANIC!
JMP RETURN AND SCRAM

PROCEDURE : PARITY
FUNCTION : PERFORMS FOUR-BIT ADDITION OF CONTROLLER NIBBLES
RETURNS : 'OF' IN A-REGISTER IF NO PARITY ERRORS ARE PRESENT

LDA #8

STA CNT INIT LOOP COUNTER

CLC

LDA 20

TAX INIT A,X REGISTERS

ADC FTAB,X ADD UP NIBBLES

BIT AMASK WAS THERE A CARRY INTO BIT 4?
BEQ Al IF SO, SKIP

SEC OTHERWISE, SET CARRY

JMP A2 AND SKIP

CLC NO CARRY INTO BIT 4, SO CLEAR CARRY
INX INCREMENT FTAB POINTER

AND #SEF CLEAR BIT 4

DEC CNT DECREMENT LOOP COUNTER

BNE ALOOP CONTINUE UNTIL FINISHED

RTS THAT'S ALL, FOLKS!

.BYT $10 MASK FOR CHECKING BIT 4

PROCEDURE : WTCB1
FUNCTION : SUSPEND PROCESSING UNTIL NEXT CB1l INTERRUPT OCCURS

LDA #510 LOAD A WITH IFR FLAG FOR CBl

BIT VIFR SEE IF INTERRUPT HAS OCCURED YET
BEQ ABC BRANCH BACK IF IT HASN'T

RTS ELSE LEAVE

PROCEDURE : WTCB2
FUNCTION : WAIT FOR A CB2 INTERRUPT

LDA #508 LOAD A WITH IFR BIT FOR CB2

BIT VIFR CHECK FOR INTERRUPT

BEQ XYZ LOOP UNTIL WE'VE FOUND IT

RTS YOU'VE MADE IT THIS FAR - NOT BAD!

PROCEDURE : WT2
FUNCTION : WAIT FOR TIMER 2 TIMEOUT

LDA #520 LOAD A WITH T2 IFR BIT

BIT VIFR CHECK FOR TIMEOUT

BEQ CBA RUN BACK FOR MORE UNTIL WE TIMEOUT
43 -

g8

RTS NOPE, NOTHING TRICKY HERE - WAIT TILL LATER

=
* PROCEDURE : WTHF
—* FUNCTION : WAIT FOR THE HIGH-FREQUENCY PORTION OF THE WAVEFORM
*
4THF LDA VORB CLEAR CB INTERRUPTS IN IFR
JSR WTCB1 WAIT FOR CBl
LDA #0
STA VT2L ZERO T2 LOW BYTE
3¥LOOP LDA #501
— STA VT2H SET T2 TO 256 USECS.
LDA VORB CLEAR CB1 INTERRUPT
JSR WTCB1 WAIT FOR NEXT CB1l INTERRUPT
LDA #$20
BIT VIFR CHECK FOR T2 TIMEOUT
BNE HFLOOP IF TIMEOUT, INTERVAL IS TOO LONG, GO FOR MORE
*
—* OTHERWISE, INTERVAL IS LESS THAN 256 USECS, AND WE HAVE
* FOUND THE HIGH FREQUENCY PORTION
*
LDA VORB CLEAR CB INTERRUPTS
RTS AND CRUISE
*
* ROUTINE : VCB2
—* FUNCTION : HANDLES CB2 INTERRUPTS
32 INC FRANUM INCREMENT FRANUM
LDA #5
CMP FRANUM FRAME NUMBER = 5?
BMI PANIC2 PANIC IF FRAME > 5
BEQ CONT1 PREPARE TO ENTER DATA FRAME IF FRAME = 5
LDA POS OTHERWISE, OUTPUT POWER CYCLE
ORA #1 SET BIT O ON
STA VORB AND OUTPUT
JMP RETURN AND GO ON YDOUR MERRY WAY
TCDNT1 LDA #$81
STA VORB SET PB7,PB1 ON - SIGNAL DATA FRAME TO OUTSIDE WORLD
LDA DFLAG GET DFLAG
BNE CONT2 BRANCH IF THERE IS RETURN DATA TO WRITE
JSR ZERO ZERO OUT WBUF
JMP RDWR GO READ/WRITE
CDONT2 LDA INTMPU CHECK TO SEE IF WE CAN 'INTERRUPT' CONTROLLER
b CMP #SFF
BNE CONT3 BRANCH IF CONTROLLER HAS SENT POLL REQUEST
JSR ZERO OTHERWISE, ZERO WBUF
LDA BLKID GET BLOCK # OF THIS COMPUTER
ASL A MULTIPLY BY 2
TAX TRANSFER TO INDEX REGISTER
LDA #$90 LOAD A WITH PB7, PB4 TURNED ON
STA WBUF,X SET WBUF TO REFLECT BLKID
STA WBUF+1,X SET SECOND BYTE OF RETURN DATA BUFFER
LDA #0
STA INTMPU ZERO OUT INTMPU
JMP RDWR AND GO TO RDWR

44

89

ZONT3

CONT4
JHGO

JHG1
JHG2

N % » « *

ERO

Lp2

* % % * %

RDWR

NEXTONE

LDA OKWR
CMP #SFF
BEQ CONT4
JSR ZERO
JMP RDWR
LDX 330
ROR WDATAH
ROR WDATAL
BCC JHG1
LDA #$90
JMP JHG2
LDA #$80
STA WBUF,X
STA WBUF+1,X
DEX

DEX

BPL JHGO
LDX #32
LDA $#$80
STA WBUF,X
LDA %0

STA DFLAG
STA OKAWR
JMP RDWR

PROCEDURE : ZERO
FUNCTION : ZERO OUT

LDA #580
LDX #0

STA WBUF,X
INX

CPX #33
BNE LP2
RTS

ROUTINE : RDWR

SEE IF IT'S OK TO SEND RETURN DATA

BRANCH IF WE CAN SEND DATA
OTHERWISE, ZERO OUT WBUF
AND BEGIN READIN' AND WRITIN'

ROTATE 2 BYTES OF DATA
AND ROTATE LOW BIT INTO CARRY LATCH
BRANCH IF LOW BIT IS 'l1°

LOAD A WITH 'DATA FRAME PRESENT, OUTPUT 1t

LOAD A WITH 'DATA FRAME PRESENT, OUTPUT
STORE PORT B CONTENTS IN OUTPUT BUFFER
REMEMBER, TWO BYTES PER BIT

DECREMENT X BY TWO

ol

CONTINUE FOR 16 BITS (32 BYTES IN BUFFER)
RESET INDEX TO 32

SET BIT 17 TO ZERO (BIT NOT A DATA BIT)

RESET DFLAG AFTER DATA IS SENT
RESET THIS WHILE WE'RE AT IT
GO TO READ/WRITE ROUTINE

THE OUTPUT BUFFER 'WBUF'

STORE 'DATA FRAME PRESENT' IN PORT B BUFFER
INCREMENT BUFFER INDEX

COMPARE TO 33

SCOOT BACK IF WE'RE NOT DONE

AND LEAVE WHEN WE ARE

FUNCTION : READ CONTROLLER DATA IN WHILE SIMULTANEOUSLY WRITING
RETURN DATA OUT ON PB4

LDA VORB
LDX %0

JSR WTCB1
LDA #520
BIT VIFR
BEQ NEXTONE
JMP PANIC2
LDA TIME
STA VT2L
LDA %0

STA V2TH
LDA WBUF
DRA #1

STA VORB

CLEAR IFR OF ANY CB1 OR CB2 INTERRUPTS
WAIT FOR FIRST CB1l (I.E. START OF FIRST BIT)

CHECK FOR T2 TIMEOUT

CONTINUE IF NO T2 STILL RUNNING

IF T2 IS NOT RUNNING AT START OF DATA FRAME....
GET PERIOD INTERMEDIATE BETWEEN A ‘0' AND '1'
SET T2 TO MEDIAN VALUE

ZERO HIGH BYTE OF T2 AND START CLOCK
GET FIRST BYTE OF OUTPUT BUFFER

TURN ON PBO

AND OUTPUT

45

90

o
*
*

RDLOOP

* * * *

OUTLOP

INLOOP

GZERD

START OF LOOP THAT ACTUALLY READS AND WRITES DATA

JSR
LDA
ORA
STA
LDA
STA
INX
LDA
STA
CPX
BNE
LDA
STA
LDAa
STA
JSR

BEGIN PROCESSING OF
EXAMINING IFR TABLE

LDA
LDX
LDY
STY
LDA
STA
LDA
STA
LDA
BIT
BEQ
LDA
ORA
STA
INX
ASL
DEC
BNE
INY
LDA
STA
cpy
BNE
JSR
CMP
BNE

WTCB1
WBUF+1, X
31

VORB
VIFR
TABLE, X

#0

VT 2H
#32
RDLOOP
#64
VT2L
#1

VT 2H
WT2

VORB
#0

#0
FTAB
%4

LCv

$1
MASK
TABLE, X
T2TEST
GZERO
FTAB, Y
MASK
FTAB, Y

MASK
LCV
INLOOP

30
FTAB,Y
#8
OUTLOP
PARITY
#SOF
CHCB2

WAIT FOR START OF NEXT BIT
GET NEXT BYTE IN BUFFER
NOT FORGETTING TO ZAP PBO
OUTPUT RETURN DATA

LOAD IFR, STORE IN TABLE

INCREMENT TABLE/BUFFER INDEX

RESTART TIMER 2
SEE IF WE'VE READ IN 32 BITS
AND GO BACK IF WE HAVEN'T

SET TIMER 2 TO WAIT PAST ANY EXTRA BITS

START T2 FOR ABOUT 200 MICROSECONDS
WAIT FOR THE TIMER TO FINISH

DATA. DETERMINE IF A ZERO OR ONE WAS SENT BY
THAT CONTAINS TIMING INFO ON EACH BIT

CLEAR PORT B INTERRUPTS

CLEAR X,Y REGS
ZERO OUT FIRST NIBBLE OF CONTROLLER DATA TABLE

SET COUNTER TO FOUR BITS IN A NIBBLE

SET MASK TO LEAST SIGNIFICANT BIT

GET INTERRUPT FLAG PERTAINING TO BIT X
SEE IF T2 HAD TIMED OUT

IF IT HADN'T, WE HAVE A ZERO FOR THIS BIT
OTHERWISE, GET RECONSTRUCTED NIBBLE

AND INSERT THIS BIT

AND RESET MEMORY

INCREMENT ‘TABLE' INDEX

SET MASK TO TURN ON NEXT BIT

DECREMENT COUNTER

GO TO INNER LOOP IF NOT DONE WITH THIS NIBBLE
INCREMENT FTAB INDEX

INIT CONTENTS OF THIS NIBBLE TO '0000°

SEE IF WE'VE PROCESSED ALL EIGHT NIBBLES

IF NOT, FINISH UP

CHECK PARITY OF RECONSTRUCTED CONTROLLER DATA
DOES IT ADD TO '1111'?

EXIT IF IT IS BAD DATA

CHECK TO SEE IF THIS DATA IS ACCESSORY FRAME DATA MEANT FOR THIS
COMPUTER, OR IF ANY CONTROL DATA WAS SENT

LDA

FTAB+1

- 46 -

91

ORA FTAB+2 OR TOGETHER NIBBLE 1 AND NIBBLE 2

BNE CHCB2 SHOULD BE ZERO FOR ACCESSORY FRAME, SCRAM OTHERWI
LDA FTAB+3 LOAD UP BLKID
BNE SKIP IF '0000', THIS IS A POLL REQUEST
LDA #SFF
STA INTMPU SO, SIGNAL ISERV FOR THE NEXT TIME AROUND
JMP CHCB2 AND EXIT
SKIP CMP BLKID CHECK FOR PROPER BLOCK ID
BNE CHCB2 AND LEAVE IF THIS ISN'T OUR MESSAGE
LDA FTAB+5 GET FOUR BITS WORTH OF TASK CODE
ASL A SHIFT INTO UPPER FOUR BITS OF BYTE
ASL A
ASL A
ASL A
ORA FTAB+4 AND ADD THE REMAINING FOUR BITS
BNE SKIP2 IF CODE IS NOT ‘SEND' COMMAND, EXIT
LDA #SFF CODE IS SEND COMMAND, SO SIGNAL
STA OKWR ISERV TO SEND DATA NEXT TIME AROUND
JMP CHCB2 AND RETURN
SKIP2 STA RDATA STORE TASK CODE IN RDATA
CHCB2 LDA #$08
BIT VIFR CHECK TO SEE IF WE HAVE GOT A CB2 INTERRUPT
BEQ CHCB2 AND LOOP UNTIL WE HAVE (MEANS START OF POWER CYCL
LDA #1
STA FRANUM RESET FRAME NUMBER TO THE START
LDA POS SIGNAL WHICH POWER CYCLE WE'RE 1IN
ORA #1 TURN ON PBO
STA VORB OUTPUT TO PORT B
JMP RETURN AND RETURN FROM INTERRUPT ROUTINE
T2TEST .BYT $20 T2 INTERRUPT FLAG IN IFR
47

g2

