Department of Electrical Engineering
Spring Independent Work

Complete Automation and Monitoring
for a Model Train Layout

by Arthur L. Coburn IV
Friday, May 15, 1987

Professor Michael Littman, advisor

pledge my honor that this work is my own in accordance
with University regulations

Aettiier 1 Cobuun 2

212

May 25, 1987

DEDICATION

Without the support and fove of my parents, this work would
not have been possible.

1 would also like to express my thanks to Mike Littman, who has
been very helpful.

213

May 25, 1987
CONTENTS
U 1
P 4
o T 5
Hardware.......“...w...............‘................7
The Arena Circuit PrODIEM. ccaeseeeansrcensnssnsasanaseasnensass 7
Changes Made 1o the ISERV ROULINE...cieeueermimememsmsareseess ™ 9
The Master Computer PrOGIAM.cunsrasseesssrarmscmssmassassssoseses -1
Program [0 1o 1g12- (<) IURNIRRERREEE s 11
The LOGIC Of the PrOGIaMcesewssesessssessecenseser s 13
FLtUre DEVEIOPMENL.cccirreusesmmsreasssemmssemssesm s 17
LimHations Of the SYSIeMuu . emseemsesemmeas oo 18
The Timing of Communications 10 and from
211 HOTADY .esveescassesaresesssnsassasssssssessmsssesestessmss s oot ees 18
The Data Set of the HOINDY . cveocsrmssresasnsnassasasasasasaenses 19
CONCIUSIO o ssreeesssnsrsesrssssssess s ssmsessnees s nt 20
Appendix A: A User's Guide to Interactive Control
and the Master Computer PrOGraAML..vessesssmssscssasamsessessssss 21
Setting Up the Interactive Control System...... 21
Manual Contro! of the Trains from the
PO e s 22
Automatic Interactive CONIOL.ccveeecernneanasnessnneee 23
OVEIVIEW. ..ccvrnrasensnenssess o eeveeaessesesssessassesasasent 23
Defining/Editing COmMMAaNdS...coeeeesensessannasss 24
More Examples of Command Strings....... 25
Block Computer Context....coewrmmeemesserserss 26
Using Variable Arguments with
Interactive Control CommandS.....ceeeeeses 27
Saving a Fileto a DISK.oeoverervreres oeemereest 29
Recalling a File froma DiSK..evreeremnannaresenee 29
VIEWING @ FilB..crrumsecmmemssesssmamsssssmssesssm s 30
2

214

May 25, 1987

Running the Layout Monitor and
Interactive Control Routine..........c........ 30

Quitting the Program........cceceemecerviinncnnnns
The INTERACTIVE CONTROL reference sheet.... 31

BIDHOGIADNY. e eeereerereereesesererescemersamsenens e 33

21

-

May 25, 1987

ABSTRACT

The purpose of this project was to complete the
automated interactive loop, so that a model train layout can run
completely unattended. A Master Computer Program was
written for an IBM-PC AT which not only carries out the
interactive control process automatically, but also monitors
the status of each block in the layout, reporting the identity of
the trains currently inside each block and the state of the
signal lights on either end of the block. This status reporting
is done with the aid of an updated version of the ISERV routine.
Finally, the Master Computer Program allows the user to enter
any commands that could previously be entered from the Hornby
keypad, but knowledge of the Hornby syntax is unnecessary. The
final program is easy to use and robust, and was designed with
the intent that it would be easy to update and improve in the
future. This report is also written so that it can be used as a
reference by students in the furute who wish to build upon this
work. :

21v

May 25, 1987

INTRODUCTION

The model train layout is divided into sections or blocks, each with
its own block computer which controls the project for that section (these
computers are sometimes called project computers). An interrupt driven
routine (called ISERV) is included in each block computer; it prevents train
collisions, reads the bar codes on the trains, sets the signal lights
correctly, and sends and receives data from the master computer (also
called the master controller). This routine is invisible to the project
designer, except through a small number of memory locations called
mailboxes. A block computer cannot change the speed, direction or
momentum of a train directly; it must ask the master controller to carry out
the task. The master controller used to be a person who would visually
monitor the layout. When a block computer requested attention, it would
display a request code on its LEDs; the controller would look up the code in a
table and execute the appropriate tasks. This process is called interactive
control. This is now carried out automatically; a block computer signals
the master computer that it needs attention and then sending a command
code (or reguest code) to the master computer. The master computer then
uses the code as an index to a table of commands; the commands tell the
master computer which tasks to perform.

One central element in the layout is the Hornby Zero-1 controller. It
supplies power to the train engines and switches, and also sends data along
the train tracks, telling the engines what speeds and directions they should
go. This is possible because the track waveform is an AC square wave,
alternating between power frames and data frames (see Littman, Wotiz, and
Blaha, The Hornby Railways System of_ Microprocessor Control of Model
Trains). The Hornby unit has a keypad for selecting engine numbers, a slider
control to set speeds, and two push buttons to select the engines'
directions. The Hornby unit can also send data to accessories, such as track
switches. This ability has been adapted to allow the Hornby to send data to
the various block computers around the layout. This is important for
interactive control. When done manually, interactive control takes this
form:

21

May 25, 1987

Manual Interactive Control

1) The block computer flashes a request code on its display.

2) The person monitoring the layout sees the request code and
looks up in a table the appropriate commands to execute.

3) The person then sends a predefined acknowledgement code

back to the block computer to verify the completion of the
task.

Phil Dworsky and Mike Arena designed and built interfaces that
allowed PCs to send and receive data from the layout, via an RS232 link.
This was the first step toward total automation.

Dworsky, in 1982, designed a circuit that decoded the characters sent
1o it and simulated pushing corresponding keys on the Hornby keypad (see
Phil Dworsky, A 300 Baud RS-232 interface to the Hornbv Zero-1 Model
Train Controller, Fall, 1982). He discovered an important limitation of the
Homby unit—-it cannot respond to more than ten keypresses a second. THIS
IS SLOW! Thus he had to settle for a 300 baud communication link, and even
with this, two dummy characters must be sent between each real command
character in order to allow the Hornby to respond to each real character.
This is discussed in greater detail later in the limitations section.

Arena then designed and built a circuit that collects return
information from all the block computers and sends this via a 300 baud
RS232 cable back to a PC (see Michael Arena, Interactive
Control-Completing_the Loop for Total Automation, May, 1985). The return
information from a block consists of two 8-bit words of data. Since
Dworsky's circuit originally used 7-bit words, his circuit had to be altered
to accomodate the 8-bits to standardize the communication system. There
were problems with noise in the Arena circuit that | built--these are
discussed in the next section, on hardware. '

Arena also wrote a program which would carry out interactive control
automatically. However, there were limitations to his program: commands
couldn't be typed from the keyboard at the same time the automatic
interactive control routine was running; commands coudn't be edited after
they were typed in originally; the user had to know the Hornby instruction

218

May 25, 1987

syntax. More importantly, though, Mike Littman and | wanted to add the
capability of reading mailboxes in the block computers remotely and
without user knowledge. This would then allow the program running on the
PC to automatically generate status reports for each block in the layout.

The rest of this report desribes changes made to the hardware
(Dworsky's and Arena's), changes made to the ISERV routine, the Master
Computer Procram, and the limitations of the system.

HARDWARE

The Arena Circuit Problem : The first step of my independent work
was to build a copy of Mike Arena's circuit. There was one major difficulty
in doing this. In the RIB (return information bus) data receiving circuit, a
JK-flip-flop is used as a divide by two counter. This circuit is crucial in
the timing of the data reception. It is also highly prone to noise. Arena's
solution was to put a capacitor from the output of this flip-flop to ground,
to try to despike any noise emanating from that point. This did not produce
a completely reliable circuit. An occasional timing error would cause one
bit to be read in as two, or two as one. For automatic interactive control,
errors are intolerable. If a command code is transmitted incorrectly, then
an incorrect acknowledgement will be returned, and the block computer will
hang forever, waiting for an acknowledgement that will never come. Also,
if the second byte of data is interpreted as a train number, speed, direction,
etc. and an error occurs in transmission, the wrong thing will happen, and
the data may even be illegal (i.e. out of range), causing the master computer
program to suffer a major trauma.

The Solution : First, make sure that the circuit that converts the
track waveform to computer levels works well and has a fairly large
voltage swing (>3.5v). Then adjust the capacitor on the output of the
JK-flip-flop so that the number of errors is minimized. Then connect a
large (10uf or so) capacitor from the power pin of the flip-flop chip to the
ground pin of the same chip. This despiking of the power supply seemed to

219

May 25, 1987

be the real solution to the problem. A program was run to test the new
Arena circuit--in ten thousand sets of two bytes of return data, there was
not a single error. .

it was also discovered that the polarity of the track power and
common wires can make a difference in the reliability of the data
transmission. For some block computers that were tested, reversing the
track wires where they connect to the Hornby made the difference between
a very reliable and a very unreliable communication link.

QOther notes: The Dworsky circuit must be altered so it will accept
8-bit words; the other parameters are all correct (1 stop bit, no parity, 300
baud). A

Also, a 4N33 must be put in the proper slot in the signal sensor board:
there is one located near each block underneath the layout. The 4N33 has
been left out of many of these circuits (for reasons of cost, | imagine).

Also, there is no RIB cord connected to many of the signal sensor
boards. They should be connected with the blue wire coming off pin 17 of
the 44 pin edge connector and the white wire coming off pin 16. The RIB
cables from all the projects in the layout should be connected together--all
the blue wires should be connected together, and all the white wires
connected together. This bus works like an interrupt line with a pull up
resistor on the Arena circuit board.

220

May 25, 1987

CHANGES MADE TO ISERV

The next step was to alter the ISERV routine, which runs on every
block computer, so that it could send status information back to the

controlling computer.

This was not that difficult;
capability of sending two bytes of return data back to the controlier.

ISERV already had the
A new

protocol had to be set up which would allow the master computer to request
that the status information of a certain block be sent; then the ISERV

routine had to be changed so that only this block would return its status.

The OLD protocol was (as entered from the Hornby keypad):

0D x ->

0 >

meant

meant

all block computers, set your bit
if you require attention.
(x = any number)

block number #, send your two
bytes of return information.

The NEW protoco! is (as entered from the Hornby keypad):

0 x <-

0 ->

0 # >

The code
code.

means

means

means

0 0 >

all block computers, set your bit
if you require attention.
(x = any number)

block number #, send your two
bytes of return information.

block number #, send your two
bytes of status information.

is not used because the Hornby will not send this

221

May 25, 1987

The next matter was to decide which data in the block computers was
most important. Professor Littman and | decided that, for the moment, the
really important data is the state of the signal lights on each end of the
block, and the numbers of the trains on the north and south tracks. The
mailbox CONTRL in ISERV contains the state of each of the lights, and
BCRASM happens to hold both the north and south train numbers (the north
train number is the high four bits). These two mailboxes are therefore sent.
It would be easy in the future to modify the ISERV routine to send back
another set of mailboxes. The routine could be set up so that the first set
of mailboxes are returned during one data cycle and the other set on the next
data cycle, or so that a special global code (one that effects all the blocks
simultaneously) would tell all the blocks which set of data to retum when
they are next polled.

The last matter was to know when to send this data. When the block
computer teceives data from the outside, there is a short section of code
which checks to see if it is a reserved code (i.e. one of the above protocols).
When the computer receives the D # > code, it sets a flag (STFLG); this
signals the block computer to send the status data the next time the data
frame comes around. The routine simply replaces the user defined WDATAL
and WDATAH with CONTRL and BCRASM (respectively) and then sends these
two bytes as usual (WDATAL is always sent back to the master computer
first). Immediately afterwards, WDATAL and WDATAH are restored to their
original values. The user never even knows.

10

22a

May 25, 1887

THE MASTER COMPUTER PROGRAM

Arena had already written a basic automatic interactive program, but
a new one needed to be written. The reasons are these:

1) The old program was not capable of sending or
receiving status information.

2) The old program ran on a Macintosh; since then, PC
ATs have been placed all around the lab.

3) The old program could not execute interactive control
and allow the user to enter commands at the
keyboard simultaneously.

4) The old program was not especially user-friendly.

5) The old program did not have well developed editing
capabilities for the command files.

Thus it was decided that a new program would be written from
scratch. Keeping in mind that much of the independent work .done in the past
built upon previous independent work, this program has been written so it
is readable and expandable. Hopefully future students will be able to use it
as a point of departure for future developments.

Turbo Pascal was the language of choice because it was available and
seemed to be able to do everything necessary. It was important that Turbo
had commands to do bit manipulations, and that it could deal well with
serial communications.

Program Organization

The program is divided into two main parts; the first actually carries
out the monitoring of the layout, the interactive control, and the manual
control; the second is an editor, with accompanying DOS functions, to
manipulate files of commands. These are the commands which are looked up
and executed in the interactive control routine. The state of the program is
stored in a variable called PROGRAM_STATE. It only has three possible
values: run, edit, and quit.

11

223

May 25, 1987

The execution routine (run_program) foliows this general format:
a) lInitializes variables before execution begins.

1) Check keyboard for input; if there is some, see if a
complete command has been entered. If so,
execute it--if not, save the characters for next
time. The routine that does this is manualexec.

2) Get the status of the next active block and display.
The active blocks are stored in policomps.

3) Check keyboard for input again. (manualexec)-

4) See if there are any block computers that need
attention (check requestattncomps). If there are,
then

i) Poll the first computer in the set
(poliblock), get its return information
(WDATAH and WDATAL) and execute the
corresponding tasks (executecommand).
executecommand will send an
acknowledgement.
If there are no computers on record as seeking
attention, then
if) Send out a global poll request
(global_poll). Each computer will set
the bit corresponding to itself if it needs
attention. ’

5) Jump back to part 1) unless PROGRAM_STATE no

longer equals run.

The editing section executes the following functions from a menu
format:

1) Save a command file to a disk.

12

224

May 25, 1987

2) Retrieve a command file from a disk.

3) Edit a command file that has been retrieved.

4) Display the entire contents of a command file.

S) Execute the train layout monitoring and interactive
contro!l routines (jump to run_program).

B) Quit the entire program-—return to the operating
system.

The Loagic of the Program

The program was developed a section at a time. The manual control
section was the first to be developed. In order to allow the program to
constantly monitor the fayout, a routine was needed that would read in as
many characters as had been entered from the keyboard and then return to
the caller. This routine (manualexec and its assosciated routines)
executes any complete commands; if a command is only partially entered,
then the left-over characters are stored in KEYBOARD BUFFER until more
characters are typed in. When new characters are entered, they are added to
the KEYBOARD_BUFFER,; if this completes a command, then it is executed and
the characters are removed from the KEYBOARD_BUFFER; if a command is
still not complete, the characters are left there.

This allows the program to constantly monitor the layout, because the
user input routine does not wait for a command to be completed before it
returns. If this were not true, then the program would just halt until the
user finished typing in a command; all events on the layout would be ignored.
This is a re-entrant input routine; it can be exited and re-entered and will
be in the same state in which it was left.

If an error occurs when the user is entering a command at the
keyboard, then the ERROR flag is set, an error message is displayed, and the
KEYBOARD_BUFFER is cleared to prevent further errors. The next character
entered clears the error message and resets the ERROR flag. This character
is then ignored (this could be easily changed, depending on the user's
preference).

A routine was developed next which would poll the block computers

13

May 25, 1987

and get their status information (called get status_of_block). A nice
display was developed so that the lights and train numbers for all the blocks
could be seen simultaneously. This was developed independently of the
manual control routine, and then the two were combined. It is necessary to
clear the RS232 input buffer before reading in data; this is accomplished by
reading junk from the port immediately after writing to it. Otherwise the
datathere routine will report data arriving in the input buffer when there
really is none. One other important aspect of get_status_of_block and
the other routines which poll the block computers is that they will not wait
forever for return information; they will time out instead. This prevents
the program from hanging.

Once the manual input routine was developed, it was connected to
simple I/O routines so that it could be used to contro! the trains on the
layout. These routines were further developed later, so that they update the
current status of each train in the arrays currentspeed, currentdir, and
currentmomentum. They also update the display for this information. 1t is
also necessary to keep track of the current context for each block computer,
i.e. the last set of trains controlled by the block, the last speed set by the
block, and the last direction set by the block. The Hornby unit keeps track of
each train's momentum individually so that the master computer does not
have to keep track of the last momentum set by each computer. This context
data is stored in the arrays currenttrainset, computerspeed, and
computerdir.

Each block computer should not have to worry about the others around
the layout. This is why the context of each block must be remembered. This
allows each block computer to act as if it had sole control over the Hornby
unit. If block two set engine 5 to speed 3 at one point, then if the next
command is to set the current engine in reverse, then this engine will be
engine number 5, even if another block sent a message to another engine in
between. The program would slow down too much if, each time a block
wanted to execute a command, the entire context for that block were
transmitted to the Hornby. Therefore, the variable CURR_CONTEXT is used to
keep track of which block last issued a command (the manual control routine
is treated as block 0 for this purpose). If one block executes two commands
in a row, with no other intervening commands, then the context for that

14

May 25, 1987

block does not need to be restored, so it isn't. If, however, a second block
has the Hornby execute a command and then the first computer wants to
send a command, then the context for the first block must be restored.

Scenario :
m r# Command executed haracters sen Horn
2 Engine 3, speed4 <3>G
2 Reverse
2 Engine 3, speed 4 <3>G
5 Engine 6, speed 12 <6 >K
2 Reverse <35> G ;

I, in the second series of commands, the context were not restored,
then engine 6, not engine 3, would be set in reverse.

The automatic interactive contro! routines were then written. These
commands are stored as a string of characters. The strings consist of
command character/argument pairs. The command characters are the first
letters in the words they correspond to; thus, in-a command string, E7
refers to engine 7; S12 means speed 12; DF means direction forward; M3
means a momentum of three; C2D9 means send the data 9 to block computer
2. Each block computer has an array of commands which it can define; it
refers to each command by its index in the array. When block 8 sends back
WDATAH equal to $4C, this is used to look up a corresponding command
string, which is then executed. WDATAL is used to transmit data which can
be inserted into the command strings in place of fixed arguments. Since
none of the arguments for any of the command characters can exceed 16,
WDATAL can be treated as two nibbles, each of which can specify an
argument value. Also, since the direction of a train has only two values and
the momentum only four, the low nibble can be treated as two 2-bit words,
if necessary. This allows the user to have up to three variable arguments in
a single command string. Since, with only four bits, a 16 cannot be sent,
train 16 is specified by sending a 0 (zero); a momentum of 4 can be
specified wusing a two bit field by sending a zero also. The
insert_data_into_comstring routine has been altered so that, for both

15

22

e

May 25, 1987

of these data types, the zero value is mapped into the previously
unachievable value.

The editing procedure (editcomstrings) is designed to prompt the
user with all the proper syntaxes and helpful reminders. The command
strings are stored on disk and during the program's execution as they are
typed in by the editor; this is so that the user can come back later and edit
them. This means they are parsed once when they are first typed in (to
insure correct syntax) and a second time when they are executed. The
parsing routine does not take long, so this does not hurt the execution speed.
Originally they were parsed into another string that could be transmitted
directly to the Hornby; however, it was not easy to keep track of the data as
it was sent in this form, so another routine, update_and_send, reparses
the already parsed string and calls the standard 1/O routines. This is
slightly round-about; this could be corrected in the future by making the
updata_and_send routine parse the original, unparsed command *string. If
this is done, then the insert_data_into_comstring routine must be
changed so that it inserts data into a string of the completely unparsed
form.

Executecommand is the routine which is called when WDATAH and
WDATAL are received after an interactive control request. {f an error
occurs here and is unrecoverable (mainly out-of-range errors) the the
program prints a nice error message and quits. This is annoying, but there
is no way to recover from such errors.

DOS routines were written to save a file of commands for any one of
the blocks to disk and retrieve it later; however, there is no provision to
allow the user to change directory from within the program; this could be
added later.

See the Future Development section to see a complete list of
suggested future improvements.

16

228

May 25, 1987

Future Development

I have tried to write this program so that it can be easily modified in
the future. To do so, | have divided it up into separate logical blocks as
much as possible. The Hornby communication protocol can be easily
changed by modifying four short procedures (sendtrainset, etc.). The
routines that update the displays are grouped together and simple to modify.
Here are a few suggested modifications:

1) Develop a nice display which would indicate the
current context for each block computer. This
could go on display page #2 (#0 is the lowest),
which is currently not really used.

2) Add a directory printing routine to editing menu.

3) Add a function to the editing menu that allows the
user to change the current directory.

4) Develop a system such that each block computer could
send specialized data back to the master computer.
This would then tell the master computer to print
some message on the terminal, or update some
sort of display which would specific for that
block, i.e. for each block, this specialized data
would have a different meaning.

5) Professor Littman suggested that we could have a
totally realistic layout if we could enable the
master computer to change the status of the
lights on the ends of the blocks automatically.
This would require more modifications to the
ISERV routine. In the real world, if a train enters
one block, then that block's light turns red, and the
previous block's light turns amber. Also, there is a
speed restriction on trains in the previous block.

6) Add a feature so that the block computers can toggle
the direction of a train.

17

223

May 25, 1987

7) Add a feature that allows the block computers to get
the current speed, direction, and momentum of
each train from the master computer.

LIMITATIONS OF THE SYSTEM

The Timing of Communications to and from the Homby

Because the Hornby cannot respond to more than ien characters per
second, there is a significant limit to the speed at which the master
computer can monitor the layout and send commands. Here is a worst case
analysis of the speed achievable using 300 baud.

Call the act of a train passing the bar code reader the event. When
this event occurs, the signal sensor board automatically reads the bar code
of the train. We are interested in how long it will take the data from this
event to reach the master computer. This will depend on how many blocks
are active in the layout, and how often commands have to be sent to the
Hornby. Assume there is only one block computer active, that it is not
requesting attention, and that the user is not entering data from the
keyboard. In the worst case, the block computer's status will be polled
immediately before the train passes the bar code reader. The master
computer will therefore not detect the occurence of the event yet. The
master computer will then execute a global_poll , which sends three
characters (3/10 sec). The Hornby receives this data, has to wait for the
next data cycle (< .040 sec), and sends this data to the block computer. The
block computer then waits for the next data cycle (~ .040 sec) and then
sends the data back to Arena's circuit. These two bytes of data are then
assembled and sent back via RS232 to the master computer (2/10 sec).
Total time : 5/10 + ~ .08 sec = .58 sec. Then the procedure is followed
almost exactly again when then master computer polls that block for its
status. Thus, it takesupto 2 x ~ .58 sec = 1.16 sec for the master
computer to determine that the event occured. In this amount of time, the

18

230

May 25, 1987

train can have moved two or more feet down the track.

This is very significant for N-scale trains, and the delay will be
multiplied by the number of active blocks in the layout. However, there is
no way to overcome this limitation unless the Hornby is replaced by a
circuit that can respond faster to incoming data.

The Data Set of the Hornby

There is one other important limitation to the system. The Hornby
uses BCD to send data over the tracks to accessories, in our case the block
computers. There are three nibbles that are available as data for the block
computers; nibbles 3, 4, and 5 (if you start counting at zero).

Data sent over the tracks from the Hornby to the blocks takes this

form:
nibble number
#0 #1 #2 #3 #4 #5 #6 #7
0100 000D D000 byb bbb, L L1 000h; pppp 0100 00
stat $00 means block id ------data--- parity stop
accessory
frame

Since BCD is used, the block id can only take on the values 0-9, even
though four bits normally allows allow 16 possibilities, $0-$F. This limits
the number of blocks that can be independently addressed by the Hornby and
thus by the master computer. Also, the data can only take on the values
$01-$09 and $80-$89 (note that the Hornby won't send a $00). If all 8
bits could be used fully, then 256 different values would be possible.
Although this may be an excessive number of possible data messages, | do
think it would be advantageous to be able to address more than 9 block
computer individually. '

19

May 25, 1987

CONCLUSION

The project works very well given then limitations imposed on it by
the Homby unit. It responds as quickly as possible to the changing status of
the blocks. The entire system could be made absolutely remarkable if a
circuit were designed which would take the place of the Hornby, mimicing
the track wave form which it sends out, but built around a more powerful
microprocessor. |If this circuit were designed so that it could communicate
with the master computer as fast as the Hornby talks to the blocks, then the
speed of the overall system would be quite satisfactory, and probably rather
impressive. This would only require a rate of 30 or so characters per
second (300 baud with no spacers), and if 1200 baud could be used (again,
with no spacers) then the limiting factor would become either the speed at
which the Hornby can send data to the blocks or the speed and efficiency of
the Master Computer Program.

There are still a few quirks in the system. One is that the modified
Hornby unit does not always reset itself correctly when turned on. .See the
User's Guide section for instructions on how to - insure that the Hornby
resets itself correctly.

Another more important quirk is that the polarity of the track power
makes a difference in the reliability of the data transmission from the
block computers back to the IBM PC. With some block computers that were
tested with the system, only one polarity would give reliable data
transmission. Further, others did not have a bad polarity orientation. The
best way to find which polarity is better for any given computer is by
experimentation. There does not seem to be a preferred wiring scheme.

Finally, the button on the side of the modified Hornby must be left in
while the Master Computer Program is running. If it is set to the extended
position while the program is running, the program should be restarted; it
may continue to run fine, but there is a chance that it will become
permanently unsynchronized with the data transmission and fail.

20

232

1)

2)

3)

4)

5)
6)

May 25, 1987

Appendix A: A User's Guide to Interactive Control
and the Master Computer Program

Setting Up the Interactive Control System

First connect the modified Hornby unit to the train layout by
connecting the power terminals of the Hornby to the track.
Note that for some block computers there is a PREFERRED
orientation of the track wires; the way to find out if this is
true for a given block computer is by experimentation. First
hook up the whole system; if one orientation results in many
incorrect data transmissions, the other orientation should be
used.

Connect the (blue and white twisted wire) RIB cable to the jack in
the back of the modified Hornby unit. There should be a
mini-plug on the end of this RIB cable. This cable should
emanate from the signal sensor board. - Not every test stand has
a RIB cable connected, and some test stands with this cable
have bad signal sensor boards with burnt out or missing chips

Connect an RS232 cable from the back of the modified Hornby to
the COM1 RS232 port on the IBM-PC AT.

Push in the switch on the side of the modified Hornby to the
remote position. The red light on the front of the Hornby should
come on when the unit is then plugged in.

Plug in the Hornby.

Occasionally the modified Hornby will initialize itself incorrectly,
so that it shifts all RIB data one bit to the left. To test for
this, type

0 [the number of an active block computer] >

If the block is clear, $6C should appear on the right display of
the Arena circuit. If something else shows up, especially $DS8,

21

233

May 25, 1987

then unplug the Hornby, wait one minute, and replug it in. This
will almost always solve the problem. If you have to do this
more than twice, something else is wrong. Also,if the MPU
program has been started, exit and re-start it now.

7) Call up the MPU.COM program on the PC. Type MPU <ret> to execute
the program.

Manual Control of the Trains from the Keyboard

<- and ->
To enter data from the keyboard, first use tho horizontal arrow
keys to move under the appropriate heading.

irains
To add a train to the set of currently controlled trains, type
the number (1-16) of the train to be added (in decimal) and then
hit return (or enter). When you add a train, it is set to the
current speed and direction. To remove a train from the set,
type a minus (-) sign, followed by the train number and then
return. To clear all the trains from control, hold down the
shift key and type @. Then, when you add the next train, its
old speed , direction and momentum will be automatically
recalled.

speed
To increase the speed of the train(s) currently under control,
type a plus (+) sign. You do not have to hit return. To
decrease the speed of the train(s), type a minus (-) sign.
Again, no return is necessary. You can also set the speed of
the train(s) equal to an absolute number by typing in the number
(0-14) and then hitting return.

direction
To set the direction of the train(s) to forward, type tor F. To
set the direction to reverse, type ror R. To toggle the
direction of the train(s), type tor T. If the train(s) are

22

234

May 25, 1987

currently going forward, then the will stop and then go the
other direction.

momentum
The momentum of a train determines (artificially) how fast an
engine can accelerate/decelerate. To increase the momentum
of the train(s), type a plus (+) sign. To decrease the
momentum of the train(s), type a minus {-) sign. To set the

momentum of the train(s), type in the momentum (1-4) and hit
return.

sending data to a block computer
To send data to a block computer, type B. This will change the
manual contro! display temporarily. You will then be prompted
1o enter the number of the block that you want to receive the
data. Hit return when you have entered the number. Then you
will be prompted to enter the data to be sent. This should be in
the ranges 1-9 or 80-89. Again, hit return when you have

finished.

backspace
You can use backspace to delete an incorrect numeric entry.
However, you must hit return to finish entering a number once
you have started. You cannot use backspace to escape from
entering a number.

Automatic Interactive Control
Overview

For interactive control, the basic procedure is that the block
sends a code (the command code) and a byte of data back to the
master computer, which is then used to look up a series of
commands from a list in the memory of the master computer.
These commands are then executed. Each block has its own set
of commands. Each command can carry out single or multiple
tasks. The block computers always send two bytes back to the

23

235

May 25, 1987

master computer; these are WDATAH and WDATAL. WDATAH is
always interpreted as the command code . WDATAL is available
to be used as variable data which can be inserted into the
commands before they are executed. Thus, instead of having 14
commands to set a train's speed to the 14 different speeds, one
command can be used to set the speed to whatever value is
returned in WDATAL. WDATAL can even be used to send two
data values simultaneously, for instance the speed and
direction of a train. One possible way to do this is to have the
high four bits of WDATAL be the speed to set the train to and
the low bit indicate the direction in which to send the train.

Defining/Editing Commands

Start the MPU program. To get to the editing menu from the
layout monitoring routine, hit PF4. When the program staris
up, you are automatically taken to the editing menu. To start a
new file of commands for a block, select item 3. Then type in
the block number of your computer when prompted. Note that
block must be in the range 1-9; you must select a number in
this range for your project computer.

You will then be shown a new display, the command
editing screen. You will first be prompted for the command
code which you wish to define. Enter this, followed by return.
You must enter both digits. Backspace and delete both work, as
do the left and right arrow keys.

You will then be asked to enter (or define) the command
string. The basic syntax of a command string is:

command char/argument, command char/argument, . . . acknowledgement

The display will help remind you of the sytax. Spaces are not
allowed between the command character and the argument, but

24

236

May 25, 1987

any number of spaces can be entered after an argument and
before the next command character. If you want your command
code to change the speed of engine 3 to speed 12, enter

'E' is the command char for Engine
S1i2... ('T' can be substituted for 'E’)
‘S' is the command char for Speed

However, you are not done yet! You must be sure that each
command sends the proper acknowledgement back to your block
computer so that it knows when the command has been
executed. To send this acknowledgement, add this command
onto the end of every command string you define:

‘C’ for block Computer
S12 C3D82 ('B' can be substituted for ‘C’)
'D’' for Data

This says,'set engine 3 to speed 12, and then send the
acknowiedgement 82 back to block #3." Acknowledgements
must be in the range of 01-09 or 80-89.

To save your command string, type Y or return when asked, 'is
this ok?'" You can enter as many command strings as you like;
when you are done, type N to the question, 'another?’

More Examples of Command Strings

To set the direction of a train using interactive control, enter a
command such as

E7 DF... (Acknow.) 'F' for Forward
or ‘D' for Direction
E7 F... (Acknow.) (use 'R' for Reverse)
25

237

vy

May 25, 1987

Both of these commands will set engine 7 to go forward. Note
that the 'D" is optional here; it is necessary, however, when you
use variable arguments (see the next section on variable
arguemants).

- To set the momentum of a train wusing interactive
control, enter a command such as

M3 ‘M’ for Momentum

This command would give engine 4 a momentum of 3.
To send a message from one block computer 1o another,
you would type something like

c2D84 Again, 'C’' for block Computer
and 'D' for Data

The allowable values for the block computer number are 1-9,
and the data can take on the values 01-09 and 80-89.

Note that very complex commands are possible, although
perhaps not too useful. Here is an example-

R S6 E3 E4E5 F S13 M4

Interpretation: Engine 2 go backwards at speed 6; engines 3, 4,
and 5 go forward at speed 13 with a momentum of 4.

Block_Computer Context

The master computer keeps track of the train(s) currently being
controlled by each block, and the speed and direction last set by
each block. Once a block computer has taken control of an
engine, it is not necessary for the engine to be specified in
later commands. For example, if a block first wants send
engine 2 in reverse, and then later wants to send the same
engine forward, these two commands could be used-

26

238

May 25, 1987

15! command - E2 R (Acknowledgement)

2" command - F (Acknowledgement)

A somewhat fancier scenario might go like this-

15! commana - E5 S3 R {Acknow.)
2™ command - F (Acknow.)
3" command - R S8 (Acknow.)

The first command would set engine 5 to speed 3 in reverse.
The next command would send engine 5 forward, still at speed
3. The third command would send the engine backwards at
speed B. It will make the program run slightly faster if the
engine is not re-specified every time.

Using Variable arguments with Interactive Control Commands
There is the option of using variable arguments with
interactive control commands. This allows one command to be
more general; for example, one command can be used to set a
train to any speed. When the block computer sends its command
code back to the master computer via the mailbox WDATAH, it
also puts the desired argument value in WDATAL. The master
computer then interprets this data correctly (as a train
number, speed, etc.) and executes the command properly. A
variable argument can be inserted anywhere a fixed argument
goes; even the direction of an engine can be specified by a
variable argument (with a little bit of necessary translation).
WDATAL is actually divided up into bit fields. This
allows up to three parameters to be specified by WDATAL. An
example is given just below. Here is a description of the bit
fields in WDATAL and their names-

27

233

May 25, 1987

WDATAL
b; bg bs by by by by by

Example: If WDATAL = $46 (010D 01105), then
X = $04 (01005) Y = $06 (0110,)
H =801 (015) L = $02 (10,)

These letters are entered in the same places that numeric
arguments would be. For example, this command could be used
to set train 4 to any speed:

E4 SY...(acknowledgement)
If this command were executed, and the block computer had

loaded WDATAL with $09, then train 4 would be set to speed 9.

If the following command were executed with WDATAL equal to
SAOQ,

E8 SX...(acknowledgement)

then engine 8 would be set to speed 10 (A hex = 10 decimal).
The speed of any train can be set using this command:

EX SY...(acknowledgement)
The high nibble (the high four bits) of WDATAL would specify

the train number, and the low nibble would specify the speed.
If WDATAL equalled $7C, then train 7 would be set to speed 12.

28

240

May 25, 1987

if WDATAL equalled $26, then train 2 would be set to speed 6.
The momentum of a train can be set similarly. Setting the
direction of a train can be done using variable arguments; if the
bit field specified equals 0 then the train will be sent forward;
if it equals 1 then the train will go in reverse. Example:

E2 S7 DH...{acknowledgement)
WDATAL equals $04

In this case, engine two would be set to speed 7 in reverse.
Note that, in this situation, the letter D (for Direction) must be
used, in order to tell the master computer how to interpret the
data.

vin {

Once you have entered some command strings, you will want to
save them permanently. To do so, get back to the main editing
menu. Then select item 1. You will have to enter a filename
and the block whose data you want to store. If there is already
a file by the same name, you will be asked if you want to
overwrite the file, enter a new filename, or quit from the file
saving routine. There is one small problem-the program as it
stands now only allows you to store or recall files from the
current directory, and there is no way to change the directory
from within the program. This will be amended soon.

Recalling a file from a_disk
You can then retrieve your file from the disk using menu option
2. You have to supply the filename and the block for which to
store the data. |If the file is not in the current directory or
does not exist, the program will yell at you and you won't be
able to retrieve it.

29

241

(l

May 25, 1987

Viewing a file

You can view all the commands in a command file at once by
selecting menu item 4. The command file must be loaded (using
the file retrieving routine) prior to this.

Running the L Monitor _and Interactiv ntro! Routin

To exit from the editing menu and actually execute the

interactive control command that you have typed in, select
menu item 5.

ittin h rogram

Select menu item 6 if you want to quit the program. 1t will ask

you a second time if you are sure you want to quit; you must
answer yes in order to quit.

30

242

May 25, 1987

INTERACTIVE CONTROL reference sheet

from the block computer perspective

If a block computer wants the master controller/computer 1o carry
out an operation, it must:

0) Clear the DFLAG mailbox {$3FF) at the very beginning of the
program

1) Flash a request code (also called a command code) on the TIL
311 display

2) Wait for the DFLAG mailbox to clear to $00

3) Set the WDATAH mailbox equal to the request code

4) Set the WDATAL mailbox equal to the data for the
requested command (not always necessary; see section
on variable arguments)

5) Set the DFLAG mailbox equal to SFF

6) Wait until the proper acknowledgement appears in the
RDATA

NOTE! You cannot count on a quick response from the master
computer.

NOTE! You can NOT send $00 in both WDATAH and WDATAL. This will
never reach the master computer-it gets stoppped by Arena's circuit.

FOR AUTOMATIC INTERACTIVE CONTROL

The project designer (or user) must run the MPU program and enter
in the commands and the codes that these commands correspond to.
The commands teli the MPU program what tasks to execute and what
acknowledgement to send back to the block computer when the tasks
have been completed.

31

243

May 25, 1987

AN EXAMPLE of Automatic Interactive Control:
Block computer #3 wants to have train 7 put in reverse

After stopping the train using a track Kkill circuit, the block computer
does the following:

1) Displays the code $BD

2) Waits for the DFLAG mailbox to clear (i.e. = $00)

3) Loads the WDATAH mailbox with $BC

4) Loads the WDATAL mailbox with $00

5) Sets the DFLAG mailbox equal to $FF

6) Waits for the DFLAG mailbox to clear (this means WDATAL

and WDATAH have been sent)
7) Waits for the code $89 to appear in the RDATA mailbox
8) (not always necessary) Clears the RDATA mailbox

After all of these operation, the track is re-powered. The train is
now going in reverse.

The master computer program must be set up so that the command
string for computer #3 corresponding to the request code $BD is

E7 R C3D89
E7 R tells train 7 to go in reverse. C3D89 tells the master
computer to send the code 89 to computer #3. This is the
acknowledgement that computer #3 is waiting for. See the
Defining/Editing Commands section for complete syntax descriptions.
A more complex example:

E3E4 S2F M3 C6D89

Engines 3 and 4, go forward at speed 2 with a momentum of 3. Then
send the acknowledgement $89 to computer #6.

32

244

May 25, 1987

BIBLIOGRAPHY

All the sources listed in this report can be found in the famous

blue book which Professor Littman compiles each year for the MAE
412 class.

33

