Bernacer Lecture 2008
On Central Banking and Financial Stability
Markus K. Brunnermeier
Overview

- Two world views
 1. No financial frictions ... sticky price
 2. Financial sector + bubbles
- Role of the financial sector
 - Leverage
 - Maturity mismatch – maturity rat race
 - Linkage
- Monetary transmission mechanism
- Implications for monetary economics
- Implications for financial regulation
Role of Financial Institutions

- **Project/asset selection/monitoring**
 - Informational advantage (Sharpe, Rajan)

- **Create info-insensitive securities** (Gorton-Pennachi, Duffie-DeMarzo)
 - Pool and tranch in order to reduces lemon’s problem

- **Maturity transformation**
 - Why short-term (debt) funding?
 - Liquidity shock insurance (Diamond-Dybvig)
 - maturity transformation is *good*, but bank run caveat
 - Incentivize management (Calomiris-Kahn)
 - For large corporate debt holders, but for demand depositors (?)
 - Maturity mismatch is *good*
 - **Maturity rat race** (with MartinOehmke)
 - Maturity mismatch is *bad*

- Why leverage? Why maturity mismatch?
Role of Financial Institutions

- **Project/asset selection/monitoring**
 - Informational advantage (Sharpe, Rajan)

- **Create info-insensitive securities** (Gorton-Pennachi, Duffie-DeMarzo)
 - Pool and tranch in order to reduce lemon’s problem

- **Maturity transformation**
 Why short-term (debt) funding?
 - Liquidity shock insurance (Diamond-Dybvig)
 - Maturity transformation is *good*, but bank run caveat
 - Incentivize management (Calomiris-Kahn)
 - For large corporate debt holders, but for demand depositors (?)
 - Maturity mismatch is *good*
 - **Maturity rat race** (with MartinOehmke)
 - Maturity mismatch is *bad*

- Why leverage? Why maturity mismatch?
Entrepreneurs

- Needs financing
- Start projects (trees with payoff AK_t)
- $dK = \kappa(I_t/K_t)K_t - \delta K_t + \sigma K_t dZ_t$

Financial Experts

- Monitoring
- Securitizes “trees” to expand investment

Households

- Provide financing

Optimal dynamic contract

direct lending
higher depreciation δ
Entrepreneurs

- Needs financing
- Start projects (trees with payoff AK_t)
- $dK = \kappa(I_t/K_t)K_t - \delta K_t + \sigma K_t dZ_t$

Financial Experts

- Monitoring (lower δ)
- Securitizes “trees” to expand investment

Households

- Provide financing

Optimal dynamic contract
Entrepreneurs
- Needs financing
- Start projects (trees with payoff AK_t)
 - $dK = \kappa(I_t/K_t)K_t - \delta K_t + \sigma K_t dZ_t$

Financial Experts
- Monitoring
- Securitizes “trees” to expand investment

Households
- Provide financing

Optimal dynamic contract

Direct lending
Higher depreciation δ

Entrepreneurs & Financial Experts & Households

Brunnermeier-Sannikov (new)
Procyclicality - Liquidity Spirals

- **Loss spiral**
 - same leverage
 - mark-to-market

- **Margin/haircut spiral**
 - Margins/haircuts increase in times of crisis
 - Margin/haircut max leverage
 - delever!
 - mark-to-model

Brunnermeier-Pedersen (2009)
Some Results

1. **Procyclical leverage** due to margin/haircut spiral
 - Margin/haircut increase forces delevering process
 - Low **FUNDING LIQUIDITY** *(rollover risk)*
 - (haircut/margin/collateral value)
 - Depresses price
 - Low **MARKET LIQUIDITY**
 - Note that funding constraint need not be binding – just the threat that it might be binding can lead to delevering.

2. **Linkage between leverage and maturity mismatch**
 - Margin = f(volatility of collateral until debt expires)

3. **Fire-sale externality**
 - When levering up, institution i does not take into account that its fire-sales depress price of others
 - Inefficient pecuniary externality in incomplete market setting
Role of Financial Institutions

- **Project/asset selection/monitoring**
 - Informational advantage (Sharpe, Rajan)

- **Create info-insensitive securities** (Gorton-Pennachi, Duffie-DeMarzo)
 - Pool and tranch in order to reduces lemon’s problem

- **Maturity transformation**
 - Why short-term (debt) funding?
 - Liquidity shock insurance (Diamond-Dybvig)
 - Maturity transformation is *good*, but bank run caveat
 - Incentivize management (Calomiris-Kahn)
 - For large corporate debt holders, but for demand depositors (?)
 - Maturity mismatch is *good*

- **Maturity rat race** (with MartinOehmke)
 - Maturity mismatch is *bad*

- Why leverage? Why maturity mismatch?
The Maturity Rat Race (with Martin Oehmke)

- Leads to a unraveling to short-term debt
- Friction with multiple creditors with differing maturities

- Mechanism:
 - Creditors with shorter maturity can adjust face value (reduce interest rate) since they can pull out in bad states
 - Part of cost in low state is borne not by borrower but by remaining long-term creditors (long-term debt holders are diluted)
Overview

- Two world views
 1. No financial frictions ... sticky price
 2. Financial sector + bubbles

- Role of the financial sector
 - Leverage
 - Maturity mismatch – maturity rat race
 - Linkage

- Implications for monetary economics
 - Monetary transmission mechanism

- Implications for financial regulation
Monetary transmission mechanism

- Monetary Transmission
 - Target rate (short-term)
 - Effective rate (short-term)
 - Corporate lending rate
 - Long-term (term premium)
 - Credit risk

- Two roles
 - Term risk + liquidity risk
 - Credit risk

- Helps to define “liquidity policy”
Implications for monetary policy

- Tinbergen Principle

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price stability</td>
<td>Target rate (money supply)</td>
</tr>
<tr>
<td>Financial stability</td>
<td>Liquidity policy</td>
</tr>
</tbody>
</table>

- Liquidity policy

 - *Narrow*: Hold short-term rate close to target
 - Reduce term risk premium
 - *Broad*: financial stability
 - to ensure monetary transmission mechanism
 - Reduce term and credit risk premium
 - Lean against bubbles

Separation principle
Overturning “benign neglect bubble policy”

- Arguments brought forward
 1. Bubbles are **difficult to identify/measure**
 ... but so is inflation
 2. Bubbles are **unimpressed** by a interest rate increase
 but not for credit bubbles
 searching for yield based on short-term financing,
 increase i by .25% and many SIVs unprofitable
 3. Interest rate is **too blunt** an instrument to prick bubble
 ... but credit bubble affected whole economy
 (housing, corporate takeovers, etc.)
A new rational for monetary aggregates

- Traditional rationale: quantity theory
 \[M \times V(i) = P \times Y \]
 ... but
 - empirical: policy relevant horizon
 - theoretical: not in New Keynesian models without financial sector

- New rationale in models with financial frictions
 Money aggregate: measure lending activity
 (build-up of credit bubbles)
 ... but money aggregates need to be modified
 - drawn vs. extended new credit lines
 - incorporate shadow banking system

Refocusing the rationale of ECB’s second pillar
Overview

- **Two world views**
 1. No financial frictions ... sticky price
 2. Financial sector + bubbles

- **Role of the financial sector**
 - Leverage
 - Maturity mismatch – maturity rat race
 - Linkage

- **Implications for monetary economics**
- **Implications for financial regulation**
Implications for financial regulation

1. Risk of each bank in isolation, e.g. Value at Risk
 - Capital requirements
 - Haircuts/margins
 - Ratings

2. Procyclical of capital requirements, haircuts, ratings
 - countercyclical regulation (break leverage cycle)

3. Focus on asset side of the balance sheet
 - incorporate funding structure

4. Shadow banking system gets little attention
 - objective criterion for regulation
1. **Externality:**
 - Measure contribution of institution to systemic risk: CoVaR contributes (non-causal)!
 - Response to current regulation “hang on to others and take positions that drag others down when you are in trouble” (maximizes bailout probability Moral Hazard)
 - become big
 - hold similar position (be in trouble when others are)
 - become interconnected

2. **Procyclicality:**
 - Impose Capital requirements/Pigouvian tax/Private insurance scheme not directly on ΔCoVaR, but on frequently observed factors, like maturity mismatch, leverage, B/M, crowdedness of trades/credit, ...
 - Lean against “credit bubbles”
 - Bubble + maturity mismatch impair financial system (vs. NASDAQ bubble)

3. **Funding:** Asset-Liability Maturity Match
Who should be regulated?

- Based on functions – not name
- Micro-prudential: based on risk in isolation
- Macro-prudential: Classification on systemic risk contribution measure, e.g. CoVaR

<table>
<thead>
<tr>
<th>group</th>
<th>examples</th>
<th>macro-prudential</th>
<th>micro-prudential</th>
</tr>
</thead>
<tbody>
<tr>
<td>“individually systemic”</td>
<td>International banks (national champions)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>“systemic as part of a herd”</td>
<td>Leveraged hedge funds</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>non-systemic large</td>
<td>Pension funds</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>“tinies”</td>
<td>unlevered</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
CoVaR

- VaR \(q_i \) is implicitly defined as quantile
 \[
 \Pr(X^i \leq \text{VaR}^i_q) = q
 \]

- CoVaR \(q_{jl|i} \) is the VaR conditional on institute \(i \) (index) is in distress (at it’s VaR level)
 \[
 \Pr(X^j \leq \text{CoVaR}^j_{jl|i} \mid X^i = \text{VaR}^i_q) = q
 \]

- \(\Delta \text{CoVaR}^j_{jl|i} = \text{CoVaR}^j_{jl|i} - \text{VaR}^j_q \) q-prob. event

Various conditionings? (direction matters!)

Contribution \(\Delta \text{CoVaR} \)
- \(Q_1 \): Which institutions contribute (in a non-causal sense)
 - \(\text{VaR}^\text{system} \mid \text{institute } i \) in distress

Exposure \(\Delta \text{CoVaR} \)
- \(Q_2 \): Which institutions are most exposed if there is a systemic crisis?
 - \(\text{VaR}^i \mid \text{system in distress} \)

Network \(\Delta \text{CoVaR} \)
- VaR of institution \(j \) conditional on \(i \) in non-causal sense!
Network CoVaR

- conditional on origin of arrow
\(\Delta \text{CoVaR} \text{ vs. } \text{VaR}\)

- VaR and \(\Delta \text{ CoVaR}\) relationship is very weak
- Data up to 12/06
Implications for financial regulation

- **Externalities**
 - CoVaR – a measure of systemic risk contribution

- **Addressing Procyclicality**
 - **Step 1:** Time-varying CoVaRs
 - **Step 2:** Predict CoVaR using institution characteristics
 - Balance sheet variables (leverage, maturity mismatch, + interdependence, …)
 - Market variables (CDS, implied vol., …)
Step 1: Time-varying CoVaR

- Control for macro factors, M_t
 - VIX Level
 - 3 month yield
 - Repo – 3 month Treasury
 - Moody’s BAA – 10 year Treasury
 - 10Year – 3 month Treasury
 - Real estate index
 - Equity market risk

 interpretation
 - “Volatility”
 - “Flight to Liquidity”
 - “Credit indicator”
 - “Business Cycle”
 - “Housing”

Obtain Panel data of CoVaR
- Next step: Relate to institution specific (panel) data
Step 2a: Portfolios Sorted on Characteristics

- Institutional characteristics matter
- ... but individual financial institutions have changed the nature of their business over time
- Form decile portfolios, each quarter, according to previous quarter’s data:
 1. Leverage
 2. Maturity mismatch
 3. Size
 4. Book-to-Market
- Add 4 industry portfolios
 1. Banks
 2. Security broker-dealers
 3. Insurance companies
 4. Real estate companies
Table 3A: ΔCoVaR Forecasts by Characteristics Cross-section, Portfolios, 1%

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>2 Years</th>
<th>1 Year</th>
<th>1 Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔCoVaR (lagged)</td>
<td>0.71***</td>
<td>0.80***</td>
<td>0.94***</td>
</tr>
<tr>
<td>VaR (lagged)</td>
<td>-1.99***</td>
<td>-2.27***</td>
<td>-0.47***</td>
</tr>
<tr>
<td>Leverage (lagged)</td>
<td>-9.43***</td>
<td>-10.73**</td>
<td>-2.53**</td>
</tr>
<tr>
<td>Maturity mismatch (lagged)</td>
<td>-0.89***</td>
<td>-0.30</td>
<td>-0.14</td>
</tr>
<tr>
<td>Relative Size (lagged)</td>
<td>-170.84***</td>
<td>-161.99***</td>
<td>-38.58***</td>
</tr>
<tr>
<td>Book-to-Market (lagged)</td>
<td>85.24***</td>
<td>87.65***</td>
<td>31.03**</td>
</tr>
<tr>
<td>Constant</td>
<td>-40.92**</td>
<td>-50.04**</td>
<td>-19.93*</td>
</tr>
<tr>
<td>Observations</td>
<td>3627</td>
<td>3805</td>
<td>3939</td>
</tr>
<tr>
<td>R²</td>
<td>0.62</td>
<td>0.69</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Step 2b: Forecasting with Market Variables

- CDS spread and equity implied volatility for 10 largest US commercial and investment banks (from Bloomberg)

- Betas:
 - Extract principal component from CDS spread changes/implied vol changes within each quarter from daily data
 - Regress each CDS spread change/implied vol change on first principal component
Table 6: ΔCoVaR Forecasts by Market Variables
Cross Section, Portfolios, 1%

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>2 Years</th>
<th>1 Year</th>
<th>1 Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔCoVaR (lagged)</td>
<td>0.60***</td>
<td>0.79***</td>
<td>0.94***</td>
</tr>
<tr>
<td>VaR (lagged)</td>
<td>-1.84</td>
<td>0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>CDS beta (lagged)</td>
<td>-1.727**</td>
<td>787.92</td>
<td>95.37</td>
</tr>
<tr>
<td>CDS (lagged)</td>
<td>1.320</td>
<td>-2.211</td>
<td>-40.26</td>
</tr>
<tr>
<td>Implied Vol beta (lagged)</td>
<td>-8.30</td>
<td>-590.28**</td>
<td>-85.78</td>
</tr>
<tr>
<td>Implied Vol (lagged)</td>
<td>-144.60</td>
<td>111.02</td>
<td>234.56***</td>
</tr>
<tr>
<td>Constant</td>
<td>-335.30</td>
<td>-147.72</td>
<td>-114.07*</td>
</tr>
<tr>
<td>Observations</td>
<td>114</td>
<td>154</td>
<td>184</td>
</tr>
<tr>
<td>R²</td>
<td>0.36</td>
<td>0.57</td>
<td>0.77</td>
</tr>
</tbody>
</table>

short data-span (2004-2008)!
What type of charge?

Capital charge
- Strictly binding
- Might stifle competition

Pigouvian tax + government insurance
- Generates revenue
- In times of crisis it is cheap to issue government debt
- Very salient

Private insurance scheme
- (Kashap, Rajan & Stein, 2008 + NYU report)
- Requires lots of regulation
Overview

- Two world views
 - No financial frictions, but sticky price
 - Financial sector + Bubbles

- Role of the financial sector
 - Leverage
 - Maturity mismatch – maturity rat race
 - Linkage

- Monetary transmission mechanism
- Implications for monetary economics
- Implications for financial regulation
Conclusion

- Institutional Macro/Finance
 - Financial institutions are not a veil
 - Moving away from representative agent models

- Monetary/Liquidity Policy
 - Role of financial institutions – why short-term funding?
 - Avoid “credit bubbles” since they impair financial system
 - Modified rationale for ECB’s second pillar

- Financial Regulation
 - Macro-prudential has to focus on measuring contribution to systemic risk
 - Countercyclical (to overcome margin/haircut spiral)