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Abstract

We propose a measure for systemic risk: CoVaR, the value at risk (VaR) of the �nancial
system conditional on institutions being under distress. We de�ne an institution�s contribu-
tion to systemic risk as the di¤erence between CoVaR conditional on the institution being
under distress and the CoVaR in the median state of the institution. From our estimates
of CoVaR for the universe of publicly traded �nancial institutions, we quantify the extent
to which characteristics such as leverage, size, and maturity mismatch predict systemic risk
contribution. We also provide out of sample forecasts of a countercyclical, forward look-
ing measure of systemic risk and show that the 2006Q4 value of this measure would have
predicted more than half of realized covariances during the �nancial crisis.
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1 Introduction

During times of �nancial crises, losses tend to spread across �nancial institutions, threatening

the �nancial system as a whole.1 The spreading of distress gives rise to systemic risk� the

risk that the intermediation capacity of the entire �nancial system is impaired, with potentially

adverse consequences for the supply of credit to the real economy. In systemic �nancial events,

spillovers across institutions can arise from direct contractual links and heightened counterparty

credit risk, or can occur indirectly through price e¤ects and liquidity spirals. As a result of both,

measured comovement of institutions�assets and liabilities tends to rise above and beyond levels

purely justi�ed by fundamentals. Systemic risk measures capture the potential for the spreading

of �nancial distress across institutions by gauging this increase in tail comovement.

The most common measure of risk used by �nancial institutions� the value at risk (VaR)�

focuses on the risk of an individual institution in isolation. The q%-VaR is the maximum

dollar loss within the q%-con�dence interval; see Kupiec (2002) and Jorion (2006) for overviews.

However, a single institution�s risk measure does not necessarily re�ect systemic risk� the risk

that the stability of the �nancial system as a whole is threatened. First, according to the

classi�cation in Brunnermeier, Crocket, Goodhart, Perssaud, and Shin (2009), a systemic risk

measure should identify the risk to the system by �individually systemic� institutions, which

are so interconnected and large that they can cause negative risk spillover e¤ects on others, as

well as by institutions that are �systemic as part of a herd.�A group of 100 institutions that

act like clones can be as precarious and dangerous to the system as the large merged identity.

Second, risk measures should recognize that risk typically builds up in the background in the

form of imbalances and bubbles and materializes only during a crisis. Hence, high-frequency risk

measures that rely primarily on contemporaneous price movements are potentially misleading.

Regulation based on such contemporaneous measures tends to be procyclical.

The objective of this paper is twofold: First, we propose a measure for systemic risk. Second,

we outline a method to construct a countercyclical, forward looking systemic risk measure by

1Examples include the 1987 equity market crash, which was started by portfolio hedging of pension funds
and led to substantial losses of investment banks; the 1998 crisis, which was started with losses of hedge funds
and spilled over to the trading �oors of commercial and investment banks; and the 2007-09 crisis, which spread
from SIVs to commercial banks and on to investment banks and hedge funds. See e.g. Brady (1988), Rubin,
Greenspan, Levitt, and Born (1999), Brunnermeier (2009), and Adrian and Shin (2010a).
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predicting future systemic risk using current institutional characteristics such as size, leverage,

and maturity mismatch. To emphasize the systemic nature of our risk measure, we add to

existing risk measures the pre�x �Co, �which stands for conditional, contagion, or comovement.

We focus primarily on CoVaR, where institution i�s CoVaR relative to the system is de�ned as the

VaR of the whole �nancial sector conditional on institution i being in distress.2 The di¤erence

between the CoVaR conditional on the distress of an institution and the CoVaR conditional

on the �normal� state of the institution, �CoVaR, captures the marginal contribution of a

particular institution (in a non-causal sense) to the overall systemic risk.

There are several advantages to the �CoVaR measure. First, while �CoVaR focuses on the

contribution of each institution to overall system risk, traditional risk measures focus on the risk

of individual institutions. Regulation based on the risk of institutions in isolation can lead to

excessive risk-taking along systemic risk dimensions. To see this more explicitly, consider two

institutions, A and B, which report the same VaR, but for institution A the �CoVaR= 0, while

for institution B the�CoVaR is large (in absolute value). Based on their VaRs, both institutions

appear equally risky. However, the high �CoVaR of institution B indicates that it contributes

more to system risk. Since system risk might carry a higher risk premium, institution B might

outshine institution A in terms of generating returns in the run up phase, so that competitive

pressure might force institution A to follow suit. Regulatory requirements that are stricter for

institution B than for institution A would break this tendency to generate systemic risk.

One could argue that regulating institutions�VaR might be su¢ cient as long as each insti-

tution�s �CoVaR goes hand in hand with its VaR. However, this is not the case, as (i) it is not

welfare maximizing that institution A should increase its contribution to systemic risk by fol-

lowing a strategy similar to institution B institution and (ii) empirically, there is no one-to-one

connection between an institution�s �CoVaR (y-axis) and its VaR (x-axis), as Figure 1 shows.

Another advantage of our co-risk measure is that it is general enough to study the risk

spillovers from institution to institution across the whole �nancial network. For example, �

CoVaRjji captures the increase in risk of individual institution j when institution i falls into

2Just as VaR sounds like variance, CoVaR sounds like covariance. This analogy is no coincidence. In fact,
under many distributional assumptions (such as the assumption that shocks are conditionally Gaussian), the VaR
of an institution is indeed proportional to the variance of the institution, and the CoVaR of an institution is
proportional to the covariance of the �nancial system and the individual institution.
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Figure 1: The scatter plot shows the weak link between institutions�risk in isolation, measured
by VaRi (x-axis), and institutions�contribution to system risk, measured by �CoVaRi (y-axis).
The VaRi and�CoVaRi are unconditional 1% measures estimated as of 2006Q4 and are reported
in weekly percent returns for merger adjusted entities. VaRi is the 1% quantile of �rm returns,
and �CoVaRi gives the percentage point change in the �nancial system�s 1% VaR when a
particular institution realizes its own 1% VaR. The institutions used in the �gure are listed in
Appendix D.

distress. To the extent that it is causal, it captures the risk spillover e¤ects that institution

i causes on institution j. Of course, it can be that institution i�s distress causes a large risk

increase in institution j, while institution j causes almost no risk spillovers onto institution i.

That is, there is no reason why �CoVaRjji should equal � CoVaRijj .

So far, we have deliberately not speci�ed how to estimate the CoVaR measure, since there are

many possible ways. In this paper, we primarily use quantile regressions, which are appealing for

their simplicity and e¢ cient use of data. Since we want to capture all forms of risk, including not

only the risk of adverse asset price movements, but also funding liquidity risk (which is equally

important), our estimates of �CoVaR are based on (weekly) changes in (market-valued) total

assets of all publicly traded �nancial institutions. However, �CoVaR can also be estimated

using methods such as GARCH models, as we show in the appendix.

Our paper also addresses the problem that (empirical) risk measures su¤er from the rarity of

�tail observations�. After a string of good news, risk seems tamed, but, when a new tail event
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occurs, the estimated risk measure may sharply increase. This problem is most pronounced if

the data samples are short. Hence, regulatory requirements should be based on forward looking

risk measures. We propose the implementation of a forward-�CoVaR that is constructed to be

forward looking and countercyclical.

We calculate unconditional and conditional measures of �CoVaR using the full length of

available data. We use weekly data from 1986Q1 to 2010Q4 for all publicly traded commercial

banks, broker-dealers, insurance companies, and real estate companies. While the unconditional

�CoVaR estimates are constant over time, the conditional ones model variation of �CoVaR

as a function of state variables that capture the evolution of tail risk dependence over time.

These state variables include the slope of the yield curve, the aggregate credit spread, and

implied equity market volatility from VIX. We �rst estimate �CoVaR conditional on the state

variables. In a second step we use panel regressions, and relate these time-varying �CoVaRs� in

a predictive, Granger causal sense� to measures of each institution�s characteristics like maturity

mismatch, leverage, market-to-book, size, and market beta.

We show that the predicted values from the panel regressions (which we call �forward

�CoVaRs�) exhibit countercyclicality. In particular, consistent with the �volatility paradox�

that low volatility environments breed the build up of systemic risk, the forward �CoVaRs

are strongly negatively correlated with the contemporaneous �CoVaRs. We also demonstrate

that the �forward-�CoVaRs� have out of sample predictive power for realized correlation in

tail events. In particular, the forward-�CoVaRs estimated using data through the end of 2006

predicted half of the cross sectional dispersion in realized covariance during the �nancial crisis

of 2008.

The forward-�CoVaR can be used to monitor the buildup of systemic risk in a forward

looking manner. It indicates which �rms are expected to contribute most to systemic �nancial

crisis, based on current �rm characteristics. The forward-�CoVaR can thus be used to calibrate

the systemic risk capital surcharges. A capital surcharge based on (forward) systemic risk

contribution changes ex-ante incentives to conduct activities that generate systemic risk. In

addition, it increases the capital bu¤er of systemically important �nancial institutions, thus

protecting the �nancial system against the risk spillovers and externalities from systemically

important �nancial institutions.
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Related Literature. Our co-risk measure is motivated by theoretical research on externalities

across �nancial institutions that give rise to amplifying liquidity spirals and persistent distor-

tions. CoVaR tries to capture externalities, together with fundamental comovement. CoVaR

also relates to econometric work on contagion and spillover e¤ects.

Spillovers and �externalities�can give rise to excessive risk taking and leverage in the run-up

phase. The externalities arise because each individual institution takes potential �re-sale prices

as given, while as a group they cause the �re-sale prices. In an incomplete market setting,

this pecuniary externality leads to an outcome that is not even constrained Pareto e¢ cient.

This result was derived in a banking context in Bhattacharya and Gale (1987) and a general

equilibrium incomplete market setting by Stiglitz (1982) and Geanakoplos and Polemarchakis

(1986). Prices can also a¤ect borrowing constraints. These externality e¤ects are studied in

within an international �nance context by Caballero and Krishnamurthy (2004), and most re-

cently shown in Lorenzoni (2008), Acharya (2009), Stein (2009), and Korinek (2010). Runs on

�nancial institutions are dynamic co-opetition games and lead to externalities, as does banks�

liquidity hoarding. While hoarding might be microprudent from a single bank�s perspective it

need not be macroprudent (fallacy of the commons). Finally, network e¤ects can also lead to

externalities, as emphasized by Allen, Babus, and Carletti (2010).

Procyclicality occurs because risk measures tend to be low in booms and high in crises.

The margin/haircut spiral and precautionary hoarding behavior outlined in Brunnermeier and

Pedersen (2009) and Brunnermeier and Sannikov (2009) led �nancial institutions to shed assets

at �re-sale prices. Adrian and Shin (2010b) and Gorton and Metrick (2010) provide empirical

evidence for the margin/haircut spiral. Borio (2004) is an early contribution that discusses a

policy framework to address margin/haircut spirals and procyclicality.

Recently a number of systemic risk measures complementary to CoVaR have recently been

proposed. Huang, Zhou, and Zhu (2010) develop a systemic risk indicator measured by the

price of insurance against systemic �nancial distress, based on credit default swap (CDS) prices.

Acharya, Pedersen, Philippon, and Richardson (2010) focus on high-frequency marginal expected

shortfall as a systemic risk measure. Like our �exposure CoVaR�, they switch the conditioning

and addresses the question which institutions are most exposed to a �nancial crisis as opposed

to which institution contributes most to a crisis. Importantly, their analysis focuses on the cross
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sectional comparison across �nancial institutions and do not address the problem of procyclical-

ity that arises from contemporaneuous risk measurement. In other words, they do not address

the stylized fact that risk is building up in the background during boom phases characterized by

low volatility and materializes only in crisis times. Billio, Getmansky, Lo, and Pelizzon (2010)

propose a systemic risk measure that relies on Granger causality among �rms. Giglio (2011)

uses a nonparametric approach to derive bounds of systemic risk from CDS prices. A number of

recent papers have extended the CoVaR method and applied it to additional �nancial sectors.

For example, Adams, Füss, and Gropp (2010) study risk spillovers among �nancial institutions,

using quantile regressions; Wong and Fong (2010) estimate CoVaR for the CDS of Asia-Paci�c

banks; Gauthier, Lehar, and Souissi (2009) estimate systemic risk exposures for the Canadian

banking system.

The CoVaR measure is related to the literature on volatility models and tail risk. In a seminal

contribution, Engle and Manganelli (2004) develop CAViaR, which uses quantile regressions in

combination with a GARCH model to model the time varying tail behavior of asset returns.

Manganelli, Kim, and White (2011) study a multivariate extension of CAViaR, which can be

used to generate a dynamic version of the CoVaR systemic risk measure.

The CoVaR measure can also be related to an earlier literature on contagion and volatility

spillovers (see Claessens and Forbes (2001) for an overview). The most common method to test

for volatility spillover is to estimate multivariate GARCH processes. Another approach is to

use multivariate extreme value theory. Hartmann, Straetmans, and de Vries (2004) develop a

contagion measure that focuses on extreme events. Danielsson and de Vries (2000) argue that

extreme value theory works well only for very low quantiles.

Another important strand of the literature, initiated by Lehar (2005) and Gray, Merton, and

Bodie (2007), uses contingent claims analysis to measure systemic risk. Bodie, Gray, and Merton

(2007) develop a policy framework based on the contingent claims. Segoviano and Goodhart

(2009) use a related approach to measure risk in the banking system.

Outline. The remainder of the paper is organized in four sections. In Section 2, we outline

the methodology and de�ne �CoVaR and its properties. In Section 3, we outline the estima-

tion method via quantile regressions. We also introduce time-varying �CoVaR conditional on
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state variables and present estimates of these conditional �CoVaR. Section 4 shows how to use

�CoVaR to implement preemptive macroprudential supervision and regulation by demonstrat-

ing that institutional characteristics such as size, leverage, and maturity mismatch can predict

systemic risk contribution in the cross section of institutions. We conclude in Section 5.

2 CoVaR Methodology

2.1 De�nition of CoVaR

Recall that VaRiq is implicitly de�ned as the q quantile, i.e.,

Pr
�
Xi � VaRiq

�
= q,

where Xi is the variable of institution i for which the VaRiq is de�ned. Note that VaR
i
q is

typically a negative number. In practice, the sign is often switched, a sign convention we will

not follow.

De�nition 1 We denote by CoVaRjjiq the VaR of institution j (or the �nancial system) con-

ditional on some event C
�
Xi
�
of institution i. That is, CoVaRjjiq is implicitly de�ned by the

q-quantile of the conditional probability distribution:

Pr

�
X j � CoVaRjjC(X

i)
q j C

�
Xi
��
= q.

We denote institution i�s contribution to j by

�CoVaRjjiq = CoVaR
jjXi=VaRiq
q � CoVaRjjXi=Mediani

q .

For most of the paper we focus on the conditioning event of
�
Xi = V aRiq

	
and simplify the

notation to CoVaRjjiq . Furthermore, we primarily study the case where j = system, i.e., when

the return of the portfolio of all �nancial institutions is at its VaR level. In this case, we drop the

superscript j. Hence, �CoVaRi denotes the di¤erence between the VaR of the �nancial system

conditional on the distress of a particular �nancial institution i and the VaR of the �nancial

system conditional on the median state of the institution i.
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The more general de�nition of CoVaRjji� i.e., the VaR of institution j conditional on in-

stitution i being at its VaR level� allows the study of spillover e¤ects across a whole �nancial

network. Moreover, we can derive CoVaRjjsystem; which answers the question of which insti-

tutions are most at risk should a �nancial crisis occur. �CoVaRjjsystem reports institution j�s

increase in value-at-risk in the case of a �nancial crisis. We call �CoVaRjjsystem the �expo-

sure CoVaR,�because it measures the extent to which an individual institution is a¤ected by

systemic �nancial events.3

2.2 The Economics of Systemic Risk

Systemic risk has two important components. First, it builds up in the background during credit

booms when contemporaneously measured risk is low. This buildup of systemic risk during times

of low measured risk gives rise to a �volatility paradox.�The second component of systemic risk

are the spillover e¤ects that amplify initial adverse shocks in times of crisis.

The contemporaneous �CoVaRi measure quanti�es these spillover e¤ects by measuring how

much an institution adds to the overall risk of the �nancial system. The spillover e¤ects can

be direct, through contractual links among �nancial institutions. This is especially the case

for institutions that are �too interconnected to fail.�Indirect spillover e¤ects are quantitatively

more important. Selling o¤ assets can lead to mark-to-market losses for all market participants

who hold a similar exposure� common exposure e¤ect. Moreover, the increase in volatility

might tighten margins and haircuts forcing other market participants to delever as well (margin

spiral). This can lead to crowded trades which increases the price impact even further.

The notion of systemic risk that we are using in this paper captures direct and indirect

spillover e¤ects and is based on the tail covariation between �nancial institutions and the �-

nancial system. De�nition 1 implies that �nancial institutions whose distress coincides with the

distress of the �nancial system will have a high systemic risk measure. Systemic risk contribu-

tion gauges the extent to which �nancial system stress increases conditional on the distress of

a particular �rm, and thus captures spillover e¤ects. It should be noted, however, that the ap-

proach taken in this paper is a statistical one, without explicit reference to structural economic

3Huang, Zhou, and Zhu (2010) and Acharya, Pedersen, Philippon, and Richardson (2010) propose systemic
risk measures that reverse the conditioning of CoVaR. These alternative measures thus use the same conditioning
logic as that for the �exposure CoVaR�.
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models. Nevertheless, we conjecture that the �CoVaRi measure would give rise to meaningful

time series and cross sectional measurement of systemic risk in such economic theories.

Many of these spillovers are externalities. That is, when taking on the initial position

with low market liquidity funded with short-term liabilities� i.e. with high liquidity mismatch,

each individual market participant does not internalize that his subsequent individually optimal

response in times of crisis will cause a (pecuniary) externality on others. As a consequence the

initial risk taking is often excessive in the run-up phase.

In section 4, we construct a �forward �CoVaR�. This forward measure captures the stylized

fact that systemic risk is building up in the background, especially during in low volatility

environments. As a result, contemporaneous systemic risk measures are not suited to fully

capture the buildup component of systemic risk. Our �forward �CoVaR�measure avoids the

�procyclicality pitfall�by estimating the relationship between current �rm characteristics and

future spillover e¤ects, as proxied by �CoVaRi.

2.3 Properties of CoVaR

Cloning Property. Our CoVaR de�nition satis�es the desired property that, after splitting

one large �individually systemic� institution into n smaller clones, the CoVaR of the large

institution (in return space) is exactly the same as the CoVaRs of the n clones. Put di¤erently,

conditioning on the distress of a large systemic institution is the same as conditioning on one of

the n clones.

Causality. Note that the �CoVaR measure does not distinguish whether the contribution

is causal or simply driven by a common factor. We view this as a virtue rather than as a

disadvantage. To see this, suppose a large number of small hedge funds hold similar positions

and are funded in a similar way. That is, they are exposed to the same factors. Now, if only one

of the small hedge funds falls into distress, this will not necessarily cause any systemic crisis.

However, if the distress is due to a common factor, then the other hedge funds� all of which

are �systemic as part of a herd�� will likely be in distress. Hence, each individual hedge fund�s

co-risk measure should capture the notion of being �systemic as part of a herd� even in the

absence of a direct causal link. The �CoVaR measure achieves exactly that. Moreover, when
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we estimate �CoVaR, we control for lagged state variables that capture variation in tail risk

not directly related to the �nancial system risk exposure.

Tail Distribution. CoVaR focuses on the tail distribution and is more extreme than the

unconditional VaR, as CoVaR is a VaR that conditions on a �bad event�� a conditioning that

typically shifts the mean downwards, increases the variance, and potentially increases higher

moments such as negative skewness and kurtosis. The CoVaR, unlike the covariance, re�ects

shifts in all of these moments. Estimates of CoVaR for di¤erent q allow an assessment of the

degree of systemic risk contribution for di¤erent degrees of tailness.

Conditioning. Note that CoVaR conditions on the event C, which we mostly assume to be

the event that institution i is at its VaR level, occurs with probability q. That is, the likelihood

of the conditioning event is independent of the riskiness of i�s strategy. If we were to condition

on a return level of institution i (instead of a quantile), then more conservative (i.e., less risky)

institutions could have a higher CoVaR simply because the conditioning event would be a more

extreme event for less risky institutions.

Endogeneity of Systemic Risk. Note that each institution�s CoVaR is endogenous and

depends on other institutions�risk taking. Hence, imposing a regulatory framework that inter-

nalizes externalities alters the CoVaR measures. We view as a strength the fact that CoVaR is

an equilibrium measure, since it adapts to changing environments and provides an incentive for

each institution to reduce its exposure to risk if other institutions load excessively on it.

Directionality. CoVaR is directional. That is, the CoVaR of the system conditional on

institution i does not equal the CoVaR of institution i conditional on the system.

Exposure CoVaR. The direction of conditioning that we consider is �CoVaRsystemjiq . How-

ever, for risk management questions, it is sometimes useful to compute the opposite conditioning,

�CoVaRijsystemq , which we label exposure �Exposure CoVaR�. The Exposure CoVaR is a mea-

sure of an individual institution�s exposure to system wide distress, and is similar to the stress

tests performed by individual institutions.
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CoES. Another attractive feature of CoVaR is that it can be easily adopted for other �corisk-

measures.�One of them is the co-expected shortfall, Co-ES. Expected shortfall has a number

of advantages relative to VaR4 and can be calculated as a sum of VaRs. We denote the CoESiq,

the expected shortfall of the �nancial system conditional on Xi � VaRiq of institution i. That is,

CoESiq is de�ned by the expectation over the q-tail of the conditional probability distribution:

E
�
Xsystem jXsystem � CoVaRiq

�
Institution i�s contribution to CoESiq is simply denoted by

�CoESiq = E
�
Xsystem jXsystem � CoVaRiq

�
� E

�
Xsystem jXsystem � CoVaRi50%

�
.

Ideally, one would like to have a co-risk measure that satis�es a set of axioms as, for example,

the Shapley value does (recall that the Shapley value measures the marginal contribution of a

player to a grand coalition).5

2.4 Market-Valued Total Financial Assets

Our analysis focuses on the VaRiq and �CoVaR
i
q of growth rates of market-valued total �nancial

assets. More formally, denote by MEit the market value of an intermediary i�s total equity, and

by LEV it the ratio of total assets to book equity. We de�ne the growth rate of market valued

total assets, Xi
t , by

Xi
t =

MEit � LEV it �MEit�1 � LEV it�1
MEit�1 � LEV it�1

=
Ait �Ait�1
Ait�1

, (1)

where Ait = MEit � LEV it . Note that Ait = MEit � LEV it = BAit �
�
MEit=BE

i
t

�
, where BAit

are book-valued total assets of institution i. We thus apply the market-to-book equity ratio to

transform book-valued total assets into market-valued total assets.6

4Note that the VaR is not subadditive and does not take distributional aspects within the tail into account.
These concerns are however more of theoretical nature since the exact distribution within the tails is di¢ cult to
estimate.

5Tarashev, Borio, and Tsatsaronis (2009) elaborate the Shapley value further, and Cao (2010) shows how to
use Shapley values to calculate systemic risk contributions of CoVaR. See also Brunnermeier and Cheridito (2011).

6There are several alternatives to generating market valued total assets. One possibility is to use a structural
model of �rm value in order to calculate market valued assets. Another possibility is to add the market value of
equity to the book value of debt. We did not �nd that any of these alternative ways to generate market valued
total assets had a substantial impact on the qualitative outcomes of the subsequent analysis.
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Our analysis uses publicly available data. In principle, a systemic risk supervisor could

compute the VaRiq and �CoVaR
i
q from a broader de�nition of total assets which would include

o¤-balance-sheet items, exposures from derivative contracts, and other claims that are not prop-

erly captured by the accounting value of total assets. A more complete description of the assets

and exposures of institutions would potentially improve the measurement of systemic risk and

systemic risk contribution. Conceptually, it is straightforward to extend the analysis to such a

broader de�nition of total assets.

We focus on the VaRiq and �CoVaR
i
q of total assets as they are most closely related to the

supply of credit to the real economy. Ultimately, systemic risk is of concern for economic welfare

as systemic �nancial crisis have the potential to ine¢ ciently lower the supply of credit to the

non�nancial sector.

Our analysis of the VaRiq and �CoVaR
i
q for market valued assets could be extended to

compute the risk measures for equities or liabilities. For example, the �CoVaRiq for liabilities

captures the extent to which �nancial institutions rely on debt funding� such as repos or com-

mercial paper� that can collapse during systemic risk events. Equity is the residual between

assets and liabilities, so the �CoVaRiq measure applied to equity can give additional information

about the systemic risk embedded in the asset-liability mismatch. The study of the properties of

�CoVaRiq for these other items of intermediary balance sheets is a potentially promising avenue

for future research.

2.5 Financial Institution Data

We focus on publicly traded �nancial institutions, consisting of four �nancial sectors: commercial

banks, security broker-dealers (including the investment banks), insurance companies, and real

estate companies. We start our sample in 1986Q1 and end it in 2010Q4. The data thus cover

three recessions (1991, 2001, and 2007-09) and several �nancial crisis (1987, 1998, 2000, and

2008). We obtain daily market equity data from CRSP and quarterly balance sheet data from

COMPUSTAT. We have a total of 1226 institutions in our sample. For bank holding companies,

we use additional asset and liability variables from the FR Y9-C reports. Appendix C provides

a detailed description of the data.
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3 CoVaR Estimation

In this section we outline CoVaR estimation. In Section 3.1, we describe the basic time-invariant

regressions that are used to generate Figure 1. In Section 3.2, we describe estimation of the

time-varying, conditional CoVaR. Details on the econometrics are given in Appendix A. Section

3.3 provides estimates of CoVaR and discusses properties of the estimates.

3.1 Estimation Method: Quantile Regression

We use quantile regressions to estimate CoVaR.7 To see the attractiveness of quantile regres-

sions, consider the predicted value of a quantile regression of the �nancial sector X̂system;i
q on a

particular institution or portfolio i for the qth-quantile:

X̂system;i
q = �̂iq + �̂

i

qX
i, (2)

where X̂system;i
q denotes the predicted value for a particular quantile conditional on institution

i.8 In principle, this regression could be extended to allow for nonlinearities by introducing

higher order dependence of the system return as a function of returns to institution i. From the

de�nition of value at risk, it follows directly that

VaRsystemq jXi = X̂system;i
q . (3)

That is, the predicted value from the quantile regression of the system on institution i gives

the value at risk of the �nancial system conditional on Xi, since the VaRq given Xi is just the

conditional quantile. Using a particular predicted value of Xi =VaRiq yields our CoVaR
i
q mea-

sure (for the conditioning event
�
Xi = V aRiq

	
). More formally, within the quantile regression

7The CoVaR measure can be computed in various ways. Quantile regressions are a particularly e¢ cient way
to estimate CoVaR. It should be emphasized, however, that quantile regressions are by no means the only way
to estimate CoVaR. Alternatively, CoVaR can be computed from models with time-varying second moments,
from measures of extreme events, or by bootstrapping past returns. In Appendix B we provide a comparison to
estimation using a bivariate GARCH model.

8Note that a median regression is the special case of a quantile regression where q = 50%.We provide a short
synopsis of quantile regressions in the context of linear factor models in Appendix A. Koenker (2005) provides a
more detailed overview of many econometric issues.
While quantile regressions are used regularly in many applied �elds of economics, their applications to �nancial

economics are limited.
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framework, our speci�c CoVaR measure is simply given by

CoVaR
systemjXi=VaRiq
q := VaRsystemq jVaRiq = �̂iq + �̂

i

qVaR
i
q. (4)

The �CoVaRiq is then given by

�CoVaRsystemjiq = �̂
i

q

�
VaRiq �VaRi50%

�
: (5)

The unconditional VaRiq and �CoVaR
i
q estimates for Figure 1 are based on equation (5), where

an asset�s estimated VaRiq is simply the q
th -quantile of its returns. In the remainder of the

paper, we use conditional VaR and �CoVaR estimates that explicitly model the time variation

of the joint distribution of asset returns as a function of lagged systematic state variables.

3.2 Time Variation Associated With Systematic State Variables

The previous section presented a methodology for estimating CoVaR that is constant over time.

To capture time variation in the joint distribution ofXi andXsystem, we estimate the conditional

distribution as a function of state variables. We indicate time-varying CoVaRt and VaRt with

a subscript t and estimate the time variation conditional on a vector of lagged state variables

Mt�1. We run the following quantile regressions in the weekly data (where i is an institution):

Xi
t = �i + 
iMt�1 + "

i
t, (6a)

Xsystem
t = �systemji + �systemjiXi

t + 

systemjiMt�1 + "

systemji
t . (6b)

We then generate the predicted values from these regressions to obtain

V aRit(q) = �̂iq + 
̂
i
qMt�1, (7a)

CoV aRit(q) = �̂systemji + �̂
systemji

V aRit(q) + 
̂
systemjiMt�1. (7b)

14



Finally, we compute �CoV aRit for each institution:

�CoV aRit (q) = CoV aRit (q)� CoV aRit (50%) (8)

= �̂
systemji �

V aRit (q)� V aRit (50%)
�
. (9)

From these regressions, we obtain a panel of weekly �CoVaRit. For the forecasting regressions

in Section 4, we generate a quarterly time series by summing the risk measures within each

quarter.

The systematic state variablesMt�1 are lagged. They should not be interpreted as systematic

risk factors, but rather as conditioning variables that are shifting the conditional mean and the

conditional volatility of the risk measures. Note that di¤erent �rms can load on these risk

factors in di¤erent directions, so that particular correlations of the risk measures across �rms�

or correlations of the di¤erent risk measures for the same �rm� are not imposed by construction.

State variables: To estimate the time-varying CoVaRt and VaRt, we include a set of state

variables Mt that are (i) well known to capture time variation in conditional moments of asset

returns, and (ii) liquid and easily tradable. We restrict ourselves to a small set of risk factors to

avoid over�tting the data. Our factors are:

(i) VIX, which captures the implied volatility in the stock market reported by the Chicago

Board Options Exchange.9

(ii) A short term �liquidity spread,� de�ned as the di¤erence between the three-month repo

rate and the three-month bill rate. This liquidity spread measures short-term liquidity risk. We

use the three-month general collateral repo rate that is available on Bloomberg, and obtain the

three-month Treasury rate from the Federal Reserve Bank of New York.10

(iii) The change in the three-month Treasury bill rate from the Federal Reserve Board�s

H.15. We use the change in the three-month Treasury bill rate because we �nd that the change,

9The VIX is available only since 1990. We use the VXO for the 1986-90 period by running a regression of
the VIX on the VXO for the 1990-2010 period and then using the predicted value from that regression for the
1986-89 period.
10The three-month repo rate is available on Bloomberg only since 1990. We use the three-month Libor rate as

reported by the British Bankers Association for the 1986-90 period by running a regression of the repo rate on
the libor rate for the 1990-2010 period and then using the predicted value from that regression for the 1986-89
period.
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not the level, is most signi�cant in explaining the tails of �nancial sector market-valued asset

returns.

In addition, we consider the following two �xed-income factors that capture the time variation

in the tails of asset returns:

(iv) The change in the slope of the yield curve, measured by the yield spread between the

ten-year Treasury rate and the three-month bill rate obtained from the Federal Reserve Board�s

H.15 release.

(v) The change in the credit spread between BAA-rated bonds and the Treasury rate (with

the same maturity of ten years) from the Federal Reserve Board�s H.15 release.

We further control for the following equity market returns:

(vi) The weekly equity market return from CRSP.

(vii) The weekly real estate sector return in excess of the market return (from the real estate

companies with SIC code 65-66).

The following table give summary statistics for the state variables. We also report the 1%

stress level, which is the variable�s mean conditional on the �nancial system being in its historical

1% tail.

[Table 1 here]

Table 1 provides summary statistics of the state variables. The 1% stress level is the level

of each respective variable during the 1% worst weeks for �nancial system asset returns. For

example, the average of the VIX during the stress periods is 51.66, as the worst times for

the �nancial system include the times when the VIX was highest. Similarly, the stress level

corresponds to a high level of the liquidity spread, a sharp decline in the Treasury bill rate,

sharp increases of the term and credit spreads, and large negative equity return realizations.

In general, by comparing the extreme values of the state variables to the numbers of standard

deviations away from their mean, we can see that the distributions appear highly skewed.

3.3 CoVaR Summary Statistics

Table 2 provides the estimates of our weekly conditional 1%-CoVaR measures that we obtain

from using quantile regressions. Each of the summary statistics constitutes the universe of
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�nancial institutions.

[Table 2 here]

Line (1) of Table 2 give the summary statistics for the market-valued total asset growth

rates; line (2) gives the summary statistics for the VaRit for each institution; line (3) gives the

summary statistics for �CoVaRit; lines (4) gives the summary statistics for the 1%-stress level

of �CoVaRit; and line (5) gives the summary statistics for the �nancial system value at risk,

VaRsystemt . The stress �CoVaRit is estimated by substituting the worst 1% of state variable

realizations into the �CoVaRit estimates.

Recall that �CoVaRit measures the marginal contribution of institution i to overall systemic

risk and re�ects the di¤erence between the value at risk of the �nancial universe conditional

on the stressed and the median state of institution i. We report the mean, standard deviation,

and number of observations for each of the items in Table 2. All of the numbers are expressed

in weekly percent returns. We have a total of 1226 institutions in the sample, with an average

length of 645 weeks. The institution with the longest history spans all 1300 weeks of the 1986Q1-

2010Q4 sample period. We require institutions to have at least 260 weeks of asset return data

in order to be included in the panel. In the following analysis, we focus primarily on the 1%

and the 5% quantiles, corresponding to the worst 13 weeks and the worst 65 weeks over the

sample horizon, respectively. It is straightforward to estimate more extreme tails following the

methodology laid forward by Chernozhukov and Du (2008), an analysis that we leave for future

research. In the following analysis, we �nd results that are largely qualitatively similar for the

1% and the 5% quantiles.

[Table 3 here]

We obtain time variation of the risk measures by running quantile regressions of asset returns

on the lagged state variables. We report average t�stats of these regressions in Table 3. A higher

VIX, higher repo spread, and lower market return tend to be associated with more negative

risk measures. In addition, increases in the three-month yield, declines in the term spread,

and increases the credit spread tend to be associated with larger risk. Overall, the average

signi�cance of the conditioning variables reported in Table 3 show that the state variables do

indeed proxy for the time variation in the quantiles and particularly in CoVaR.
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3.4 CoVaR versus VaR

Figure 1 shows that, across institutions, there is only a very loose link between an institution�s

VaRi and its contribution to systemic risk as measured by �CoVaRi. Hence, imposing �nancial

regulation solely based on the risk of an institution in isolation might not be su¢ cient to insulate

the �nancial sector against systemic risk. Figure 2 repeats the scatter plot of �CoVaRi against

VaRi for 240 portfolios, grouped by 60 portfolios for each of the four �nancial industries.11 We

do so, since one might argue that �rms change their risk taking behavior over the sample span

of 1986 to 2010. Using portfolios, �CoVaRi and VaRi have only a weak relationship in the

cross section. However, they have a strong relationship in the time series. This can be seen in

Figure 3, which plots the time series of the �CoVaRi and VaRi for the portfolio of large broker

dealers over time. We note that the cross sectional average of �CoVaRi including all institutions

has a very close time series relationship with the value at risk of the �nancial system, VaRi,

per construction. One way to interpret the �CoVaRis is by viewing them as cross sectional

allocation of system wide risk to the various institutions.

4 Forward-�CoVaR

In this section, we calculate forward looking systemic risk measures that can be used for �nancial

stability monitoring, and as a basis for (countercyclical) macroprudential policy. We �rst present

the construction of the �forward -�CoVaR�, and then present out of sample tests. We �nally

discuss how the measures could be used as a basis for capital surcharge calibrations.

Instead of tying �nancial regulation directly to �CoVaR, we propose to link it to �nancial

institutions� characteristics that predict their future �CoVaR. This addresses two key issues

of systemic risk regulation: measurement accuracy and procyclicality. Any tail risk measure,

estimated at a high frequency, is by its very nature imprecise. Quantifying the relationship

between�CoVaR and more easily observable institution-speci�c variables, such as size, leverage,

and maturity mismatch, allows for more robust inference than measuring �CoVaR directly.

Furthermore, using these variables to predict future contributions to systemic risk addresses

the inherent procyclicality of market-based risk measures. This ensures that �CoVaR-based
11The portfolios are constructed from quintiles by market-valued assets, 2- year market-valued asset growth,

maturity mismatch, equity volatility, leverage, and market-to-book ratio for each of the four industries.

18



­6
­4

­2
0

∆
C

oV
aR

­12 ­10 ­8 ­6 ­4
Portfolio VaR

Commercial Banks

­6
­4

­2
0

∆
C

oV
aR

­12 ­10 ­8 ­6 ­4
Portfolio VaR

Insurance Companies

­2
.5

­2
­1

.5
­1

­.
5

0
∆

C
oV

aR

­25 ­20 ­15 ­10 ­5
Portfolio VaR

Real Estate

­5
­4

­3
­2

­1
0

∆
C

oV
aR

­16 ­14 ­12 ­10 ­8
Portfolio VaR

Broker Dealers

Time Series Average ­ ∆ CoVaR vs. VaR

Figure 2: The scatter plot shows the weak cross-sectional link between the time-series average
of a portfolio�s risk in isolation, measured by VaRi (x-axis), and the time-series average of a
portfolio�s contribution to system risk, measured by�CoVaRi (y-axis). The VaRi and�CoVaRi

are in units of weekly percent returns to total market-valued �nancial assets and measured at
the 1% level.

�nancial regulation is implemented in a forward-looking way that counteracts the procyclicality

of current regulation.

4.1 Constructing the Forward-�CoVaR

We relate estimates of time-varying �CoVaR to characteristics of �nancial institutions. We

collect the following set of characteristics:

1. leverage, de�ned as total assets / total equity (in book values);

2. maturity mismatch, de�ned as (short term debt - cash) / total liabilities;

3. market-to-book, de�ned as the ratio of the market to the book value of total equity;

4. size, de�ned by the log of total book equity;

5. equity return volatility, computed from daily equity return data within each quarter;

6. equity market beta calculated from daily equity return data within each quarter.

[Table 4 here]

[Table 5 here]
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Figure 3: This �gure shows the market-valued asset returns (blue), the 1%-VaR (gray), and
the 1%-�CoVaR (red) for a portfolio of the 20% of largest investment banks. The 1%-stress
�CoVaR is also plotted. All risk measures are in precent weekly returns to total market-valued
assets.

Table 4 provides the summary statistics for �CoVaR at the quarterly frequency, and the

quarterly �rm characteristics. In Table 5, we ask whether systemic risk contribution can be

forecast cross sectionally by lagged characteristics at di¤erent time horizons. Table 5 shows

that �rms with higher leverage, more maturity mismatch, and larger size tend to be associated

with larger systemic risk contributions one quarter, one year, and two years later, both at the

1% and the 5% levels. These �CoVaR regressions are run with risk measures that are time-

aggregated by summing the weekly measures within each quarter. The coe¢ cients in Table 5

are sensitivities of �CoVaR with respect to the characteristics expressed in units of basis points

of systemic risk contribution. For example, the coe¢ cient of �6:7 or the leverage forecast at

the two-year horizon implies that an increase in leverage (say, from 15 to 16) of an institution

is associated with an increase in systemic risk contribution of 6:7 basis points of quarterly asset

returns at the 5% systemic risk level. For an institution that has $1 trillion of total market-

valued assets, that translates into $67 billion of systemic risk contribution. Columns (1)-(3)

and (4)-(6) of Table 5 can be understood as a �term structure�of systemic risk contribution if
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read from right to left. The comparison of Panels A and B provide a gauge of the �tailness�of

systemic risk contribution.

The regression coe¢ cients of Table 5 can be used to weigh the relative importance of various

�rm characteristics. To make this more explicit, consider the following example: Suppose a small

bank is subject to a tier-one capital requirement of 7%. That is, the �leverage ratio� cannot

exceed 1 : 14.12 Our analysis answers the question of how much stricter the capital requirement

should be for a larger bank with the same leverage, assuming that the small bank and the large

bank are allowed a �xed level of systemic risk contribution �CoVaR. If the larger bank is 10

percent larger than the smaller bank, then the size coe¢ cient predicts that its �CoVaR per

unit of capital is 27 basis points larger than the small bank�s �CoVaR. To ensure that both

banks have the same � CoVaR per unit of capital, the large bank would have to reduce its

maximum leverage from 1 : 14 to 1 : 10. In other words, the large bank should face a capital

requirement of 10% instead of 7%. The exact trade-o¤ between size and leverage is given by

the ratio of the two respective coe¢ cients of our forecasting regressions. Of course, in order to

achieve a given level of systemic risk contribution per units of total assets, instead of lowering

the size, the bank could also reduce its maturity mismatch or improve its systemic risk pro�le

along other dimensions. Similarly, for a Pigouvian taxation scheme, the regression coe¢ cients

should determine the weight of leverage, maturity mismatch, size, and other characteristics in

forming the tax base.

This methods allows the connection of macroprudential policy with frequently and robustly

measured characteristics. �CoVaR� like any tail risk measure� relies on relatively few extreme-

crisis data points. Hence, adverse movements, especially followed by periods of stability, can

lead to sizable increases in tail risk measures. In contrast, measurement of characteristics such

as size are very robust, and they can be measured more reliaiably at higher frequencies. The

debate on �too big to fail� suggests that size is the all-dominating variable, indicating that

large institutions should face a more stringent regulation compared to smaller institutions. As

mentioned above, unlike a co-risk measure, the �size only�approach fails to acknowledge that

many small institutions can be �systemic as part of a herd.�Our solution to this problem is to

12We are loose here, since the Basel capital requirement refers to ratio between equity capital and risk weighted
assets, while our study simply takes total assets.
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combine the virtues of both types of measures by projecting the spillover risk measure �CoVaR

on multiple, more frequently observable variables.

This method can also address the procyclicality of contemporaneous risk measures. Sys-

temic risk builds up before an actual �nancial crisis occurs and any regulation that relies on

contemporaneous risk measure estimates would be unnecessarily tight after adverse events and

unnecessarily loose in periods of stability. In other words, it would amplify the adverse impacts

after bad shocks, while also amplifying balance sheet expansions in expansions.13 Hence, we

propose to focus on variables that can be reliably measured at a quarterly frequency and predict

future, rather than contemporaneous, �CoVaR.

4.2 Forward-�CoVaR for Bank Holding Companies

Ideally, one would like to link macroprudential policies to more instititutional characteristics

than simply size, leverage, maturity mismatch etc. If one restricts the sample to bank holding

companies, we have more characteristic data to extend our method. On the asset side of banks�

balance sheets, we use loans, loan-loss allowances, intangible loss allowances, intangible assets,

and trading assets. Each of these asset composition variables is expressed as a percent of total

book assets. The cross-sectional regressions with these asset composition variables are reported

in Panel A of Table 6. In order to capture the liability side of banks�balance sheets, we use

interest-bearing core deposits (IBC), non-interest-bearing deposits (NIB), large time deposits

(LT), and demand deposits. Each of these variables is expressed as a percent of total book

assets. The variables can be interpreted as re�nements of the maturity mismatch variable used

earlier. The cross-sectional regressions with the liability aggregates are reported in Panel B of

Table 6.

[Table 6 here]

Panel A of Table 6 shows that loan-loss allowances and trading assets are particularly good

predictors for the cross-sectional dispersion of future systemic risk contribution. The fraction of

intangible assets is marginally signi�cant. Conditional on these variables, the size of total loans

as a fraction of book equity tends to decrease systemic risk contribution, which might be due
13See Estrella (2004), Kashyap and Stein (2004), and Gordy and Howells (2006) for studies of the procyclical

nature of capital regulation.
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to the accounting treatment of loans: loans are held at historical book value, and deteriorating

loan quality is captured by the loan-loss reserves. By including loan-loss reserves, trading assets,

and intangible assets in the regression gives rise to lower estimates of systemic risk contribution.

Panel B of Table 6 shows which types of liability variables are signi�cantly increasing or

decreasing systemic risk contribution. Bank holding companies with a higher fraction of non-

interest-bearing deposits have a signi�cantly higher systemic risk contribution, while interest

bearing core deposits and large time deposits are decreasing the forward estimate of �CoVaR.

Non-interest-bearing deposits are typically held by non�nancial corporations and households,

and can be quickly reallocated across banks conditional on stress in a particular institution.

Interest-bearing core deposits and large time deposits, on the other hand, are more stable sources

of funding and are thus decreasing the systemic tail risk contribution (i.e., they have a posi-

tive sign). The share of deposits is not signi�cant. The maturity-mismatch variable that we

constructed for the universe of �nancial institutions is no longer signi�cant once we include the

more re�ned liability measures for the bank holding companies.

In summary, the results of Table 6, in comparison to Table 5, show that more informa-

tion about the balance sheet characteristics of �nancial institutions can potentially improve

the estimated forward �CoVaR. We expect additional data that capture particular activities

of �nancial institutions, as well as supervisory data, to lead to further improvements in the

estimation precision of forward systemic risk contribution.

4.3 Out of Sample Forward-�CoVaR

We compute �forward �CoVaR�as the predicted value from the panel regression reported in

Table 5. We generate this forward �CoVaR �in sample�through 2000, and then out of sample

by re-estimating the panel regression each quarter, and computing the predicted value. Since

one cannot use time e¤ects in an out of sample exercise, we use the macro state variables to

capture common variation across time.

We plot the �CoVaR together with the two-year forward �CoVaR for the average of the

largest 50 �nancial institutions in Figure 4. The �gure clearly shows the strong negative corre-

lation of the contemporaneous �CoVaR and the forward � CoVaR. In particular, during the

credit boom of 2003-06, the contemporaneous �CoVaR is estimated to be small (in absolute
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Figure 4: Out-of-Sample Forward �CoVaR: This �gure shows average forward and contem-
poraneous 5% �CoVaR estimated out-of-sample for the top 50 �nancial institutions estimated
out-of-sample. First, weekly contemporaneous �CoV aR is estimated out-of-sample starting in
2000Q1 at one quarter increments with an expanding window. Forward �CoV aR is generated
as described in the paper but in an out-of-sample fashion, again beginning in 2000Q1. The
forward �CoV aR at a given date uses the data available at that time to predict �CoV aR two
years in the future.

value), while the forward �CoVaR is large (in absolute value). Macroprudential regulation

based on the forward �CoVaR are thus countercyclical.

Next, we extend the in sample panel estimates reported in Tables 5 and 6 to out of sample

estimates. In particular, we show that the forward�CoVaR predicts the cross section of systemic

risk realizations out of sample. In order to show the out of sample performance, we need a

measure of realized systemic risk contribution. As a proxy, we compute covariances of �nancial

institutions with the �nancial system during the �nancial crisis. In particular, we estimate this

crisis covariance as the realized covariance from weekly data for 2007Q2 - 2009Q1. We use the

forward �CoVaR estimated with data as of 2006Q4 in order to forecast the cross section of

realized crisis covariances. We use the 5% level, though we found that the 1% gives very similar

results.

[Table 7 here]
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Table 7 shows that the forward �CoVaR as of the end of 2006 was able to explain a little bit

over 50% of the cross sectional covariance during the crisis. We view this result as a very strong

one. Comparison of columns (1)-(3) shows that the forward horizon did not matter much in

terms of cross sectional explanatory power. Furthermore, column (4) shows that the information

contained in the estimated forward measures captures most of the ability of �rm characteristics

to predict crisis covariance, as the individual characteristics only generate a slightly higher R-

squared statistic. The forward �CoVaR thus summarizes in a single variable for each �rm the

extent to which it is expected to contribute to future systemic risk.

5 Conclusion

During �nancial crises or periods of �nancial intermediary distress, tail events tend to spill across

�nancial institutions. Such spillovers are preceded by a risk-buildup phase. Both elements are

important contributors to �nancial system risk. �CoVaR is a parsimonious measure of systemic

risk that complements measures designed for individual �nancial institutions. �CoVaR broadens

risk measurement to allow a macroprudential perspective. The forward-�CoVaR is a forward

looking measure of systemic risk contribution. It is constructed by projecting �CoVaR on

lagged �rm characteristics such as size, leverage, maturity mismatch, and industry dummies.

This forward looking measure can potentially be used in macroprudential policy applications.
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Appendices

A CoVaR Estimation via Quantile Regressions

This appendix explains how to use quantile regressions to estimate VaR and CoVaR. Suppose

that returns Xi
t have the following linear factor structure

Xj
t = �0 +Mt�1�1 +X

i
t�2 +

�
�3 +Mt�1�4 +X

i
t�5
�
"jt ; (10)

where Mt�1 is a vector of state variables. The error term "t is assumed to be i.i.d. with zero

mean and unit variance and is independent of Mt�1 so that E
h
"jt jMt�1; X i

t

i
= 0. Returns are

generated by a process of the �location scale�family, so that both the conditional expected return

E
h
Xj
t jMt�1; X i

t

i
= �0+Mt�1�1+X

i
t�2 and the conditional volatility V olt�1

h
Xj
t jMt�1; X i

t

i
=�

�3 +Mt�1�4 +X
i
t�5
�
depend on the set of state variablesMt�1 and on Xi

t . The coe¢ cients �0;

�1, and �3 could be estimated consistently via OLS of X
i
t on Mt�1 and Xi

t . The predicted value

of such an OLS regression would be the mean of Xj
t conditional on Mt�1 and Xi

t . In order to

compute the VaR and CoVaR from OLS regressions, one would have to also estimate �3, �4; and

�5, and then make distributional assumptions about "
j
t .
14 The quantile regressions incorporate

estimates of the conditional mean and the conditional volatility to produce conditional quantiles,

without the distributional assumptions that would be needed for estimation via OLS.

Instead of using OLS regressions, we use quantile regressions to estimate model (10) for

di¤erent percentiles. We denote the cumulative distribution function (cdf) of "j by F"j
�
"j
�
, and

its inverse cdf by F�1
"j
(q) for percentile q. It follows immediately that the inverse cdf of Xj

t is

F�1
Xj
t

�
qjMt�1; X

i
t

�
= �q +Mt�1
q +X

i
t�q, (11)

where �q = �0 + �3F
�1
"j
(q), 
q = �1 + �4F

�1
"j
(q), and �q = �2 + �5F

�1
"j
(q) for quantiles

q 2 (0; 1). We call F�1
Xj
t

�
qjMt�1; X i

t

�
the conditional quantile function. From the de�nition of

14The model (10) could otherwise be estimated via maximum likelihood using a stochastic volatility or GARCH
model if distributional assumptions about " are made. The quantile regression approach does not require speci�c
distributional assumptions for ".
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VaR, we obtain

VaRjq = inf
VaRq

�
Pr
�
Xt � VaRqjMt�1; X

i
t

�
� q
	
= F�1

Xj
t

�
qjMt�1; X

i
t

�
.

The conditional quantile function F�1
Xj
t

�
qjMt�1; X i

t

�
is the VaRjq conditional on Mt�1 and

Xi
t . By conditioning on X

i
t =VaR

i
q, we obtain the CoVaR

jji
q from the quantile function:

CoVaRjjiq = inf
VaRq

�
Pr
�
Xt � VaRqjMt�1; X

i
t = VaR

i
q

�
� q
	
= F�1

Xj
t

�
qjMt�1;VaRiq

�
. (12)

We estimate the quantile function as the predicted value of the q�quantile regression of Xi
t

on Mt�1 and X
j
t by solving

min
�q ;�q ;
q

P
t

8><>: q
���Xj

t � �q �Mt�1�q �Xi
t
q

���
(1� q)

���Xj
t � �q �Mt�1�q �Xi

t
q

���
if
�
Xj
t � �q �Mt�1
q �Xi

t�q

�
� 0

if
�
Xj
t � �q �Mt�1
q �Xi

t�q

�
< 0

.

See Bassett and Koenker (1978) and Koenker and Bassett (1978) for �nite sample and asymp-

totic properties of quantile regressions. Chernozhukov and Umantsev (2001) and Chernozhukov

and Du (2008) discuss VaR applications of quantile regressions.

B Robustness Checks

B.1 GARCH �CoVaR

One potential shortcoming of the quantile estimation procedure described in Section 3 is that

it does not allow for estimation of the time-varying nature of systemic exposure to �rm risk.

An alternative approach is to estimate bivariate GARCH models to obtain the time-varying

covariance between institutions and the �nancial system. However, such an approach requires

strong distributional assumptions and takes the form of a complex optimization problem which

can be di¢ cult to estimate. As a robustness check we estimate �CoVaR using a bivariate

diagonal GARCH model (DVECH) and �nd that this method produces estimates quite similar

to the quantile regression method, leading us to the conclusion that the quantile regression

framework is su¢ ciently �exible to estimate �CoVaR. We begin by outlining a simple Gaussian

framework under which �CoVaR has a closed-form expression, and then discuss the estimation
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results.

Gaussian Model Assume �rm and system returns follow a bivariate normal distribution:

�
Xi
t ; X

system
t

�
� N

0B@0;
0B@ �

�it
�2

�t�
i
t�
system
t

�t�
i
t�
system
t

�
�systemt

�2
1CA
1CA (13)

By properties of the multivariate normal distribution, the distribution of system returns condi-

tional on �rm returns is also normally distributed:

Xsystem
t jXi

t � N
 
Xt
i�
system
t �t
�it

; (1� �2t )
�
�systemt

�2!
(14)

We can de�ne CoVaRit(q; p) as the q%-VaR of the �nancial system given �rm i is at its p%-VaR

level. It is de�ned implicitly by:

Pr
�
Xsystem
t < CoV aRit(q; p)jXi

t = V aR
i
t(p)

�
= q (15)

which, rearranged, gives:
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where
�
Xsystem
t �Xi

t�t�
system
t =�it

�systemt

p
1��2t

�
� N(0; 1). The �rm value-at-risk is given by V aRit(p) =

��1 (p)�it. Combining, we can write:

CoV aRit (q; p) = �
�1 (q)�systemt

q
1� �2t +��1 (p) �t�

system
t (17)

Because ��1 (50%) = 0, solving for �CoVaR gives:

�CoVaR(q,q) = ��1 (q) �t�
system
t (18)

The primary downfall of such a speci�cation is that it uses an estimate of contemporaneous

correlation with the market to gauge the size of potential tail spillover e¤ects. In this sense,

this speci�cation is more contemporaneous than the quantile regression method, which uses
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estimates of the tail correlation taken from the entire data history. Taking into account the

heteroskedasticity of correlation in this way provides cross-sectional forecasting power where the

simple Gaussian model cannot.

Estimation We estimate a bivariate diagonal vech GARCH(1,1) for each institution in our

sample.15 As a robustness check, we estimated the panel regressions of Section 4 on a matched

sample of 145 institutions with $10billion or more in total assets for which our GARCH estimates

converged.

[Table 8 here]

The results in Table 8 show the coe¢ cients on size, maturity mismatch, and leverage are quite

similar between the GARCH and quantile estimation methods. The most notable di¤erence,

however, is that the R-squared values of the GARCH-based regressions are nearly double those

of the quantile regressions. We found that this di¤erence is driven entirely by the time �xed

e¤ects in the regressions, which implies that there is much less cross-sectional variation in the

GARCH �CoVaR than in the quantile regression based estimation. In fact, a large portion of

the time variation in GARCH�CoVaR comes from the estimated time-varying system volatility,

while the time variation in the quantile method comes from �rm-speci�c loadings on time-varying

risk factors. As expected, controlling for �rm instead of time �xed e¤ects signi�cantly increases

the R-squared for the quantile �CoVaR forecast regressions but reduces the R-squared for the

regressions using GARCH �CoVaR.

The di¤erences between the quantile and the GARCH �CoVaR are least pronounced for the

largest institutions, which have persistently high correlation with the �nancial system. Figure

5 shows the close comovement of the quantile and the GARCH based systemic risk measures

for the four largest �nancial institutions. Despite the fact that the estimation methods di¤er

sharply, we can see that the two approaches generate very similar time patterns of systemic risk

contribution. The GARCH based estimators do seem to pick up tails a bit more strongly.

15We were able to get convergence of the Garch model for 75% of �rms. We found that convergence of the
models in our data is very sensitive to both missing values and extreme returns. Truncation of returns generally,
but not consistently, resulted in an increase in the fraction of the models that converged.
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Figure 5: Alternative Estimation of �CoVaR: This �gure shows estimates of 5%-�CoVaR for
the four largest commercial banks: Bank of America, Wells Fargo, Citigroup, and JP Morgan
Chase. The time series and magnitudes of these estimates are remarkably similar, indicating that
the time-varying correlation of the GARCH model adds little information for these institutions.

B.2 Financial System Return Variable

The �nancial system return variable Xsystem
t used in the paper is the weekly return on the

market-valued total assets of the �nancial system, as proxied by the universe of �nancial insti-

tutions. This measure is generated by taking average market valued asset returns, weighted by

lagged market valued total assets. One concern with this methodology is that it might introduce

a mechanical correlation between each institution and the �nancial system proportional to the

relative size of the �nancial institution. We check to see if such a mechanical correlation is

driving our results by reestimating institutions��CoVaR using system return variables formed

from the value weighted returns of all other institutions in the sample, leaving out the institution

for which �CoVaR is being estimated.

[Table 9 here]

We �nd a very strong correlation across institutions, and across time, for the two di¤erent

systemic risk measures. In fact, even for the largest institutions do we �nd a very strong
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correlation between the baseline system return variable and the modi�ed system return, with

correlation coe¢ cients over 99%. Table 9 reports the forward CoVaR regressions for the 5%

level using both speci�cations. The coe¢ cients under the two speci�cations are statistically

indistinguishable, indicating that this mechanical correlation is not driving our results.

C Data Description

C.1 CRSP and COMPUSTAT Data

As discussed in the paper, we estimate �CoVaR for the market-valued asset returns of �nancial

institutions. We start with daily equity data from CRSP for all �nancial institutions with

two-digit COMPUSTAT SIC codes between 60 and 67 inclusive, indexed by PERMNO. Banks

correspond to SIC codes 60, 61, and 6712; insurance companies correspond to SIC codes 63-64,

real estate companies correspond to SIC codes 65-6, and broker-dealers are SIC code 67 (except

for the bank holding companies, 6712). All other �nancial �rms in our initial sample are placed

in an �other�category. We manually adjust the COMPUSTAT SIC codes to account for the

conversions of several large institutions into bank holding companies in late 2008, but otherwise

do not �nd time varying industry classi�cations. Following the asset pricing literature, we keep

only ordinary common shares (which exclude certi�cates, ADRs, SBIS, REITs, etc.) and drop

daily equity observations with missing or negative prices or missing returns. Our keeping only

ordinary common shares excludes several large international institutions, such as Credit Suisse

and Barclays, which are listed in the United States as American Depository Receipts.

The daily data are collapsed to a weekly frequency and merged with quarterly balance sheet

data from the CRSP/COMPUSTAT quarterly dataset. The quarterly data are �ltered to remove

leverage and book-to-market ratios less than zero and greater than 100. We also apply 1% and

99% truncation to maturity mismatch.

Market equity and balance sheet data are adjusted for mergers and acquisitions using the

CRSP daily dataset. We use a recursive algorithm to traverse the CRSP DELIST �le to �nd

the full acquisition history of all institutions in our sample. The history of acquired �rms is

collapsed into the history of their acquirers. For example, we account for the possibility that

�rm A was acquired by �rm B, which was then acquired by �rm C, etc. Our �nal panel therefore
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does not include any �rms that we are able to identify as having been ultimately acquired by

another �rm in our universe. Using the merger-adjusted data, we generate weekly leverage data

as a linear interpolation of the quarterly data. Interpolated values of leverage are computed only

between no more than two consecutive quarters of missing leverage data. Weekly leverage and

market equity are used to generate market-valued asset returns. The �nal estimation sample is

restricted to include �rms with at least 260 weeks of non-missing market-valued asset returns. To

construct the overall �nancial system portfolio (for j = system), we simply compute the average

market-valued returns of all �nancial institutions, weighted by the (lagged) market value of their

assets.

C.2 Bank Holding Company Y9-C Data

Balance sheet data from the FR Y-9C reports are incorporated into our panel data set using

a mapping maintained by the Federal Reserve Bank of New York. 16 We are able to match

data for 357 U.S. bank holding companies for a total of 17,382 bank-quarter observations. The

link is constructed by matching PERMCOs in the linking table to RSSD9001 in the Y9-C data.

We then match to the last available PERMCO of each institution in our CRSP/COMPUSTAT

sample. It is important to note that our main panel of CRSP and COMPUSTAT data are

historically merger-adjusted, but the Y9-C data is not. Performing such an adjustment for

a large set of BHCs is infeasible because they mainly acquire smaller non-BHC entities with

di¤erent data-reporting requirements and availability.

In the forecasting regressions of Table 6, these variables are expressed as a percentage of

total book assets. All ratios are truncated at the 1% and 99% level across the panel. Detailed

descriptions of the Y9-C variables listed above can be found in the Federal Reserve Board of

Governors Micro Data Reference Manual.17

16The mapping is available at http://www.ny.frb.org/research/banking_research/datasets.html.
17http://www.federalreserve.gov/reportforms/mdrm
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Date Range FR Y-9C Series Name
Trading Assets 1986:Q1�1994:Q4 bhck2146

1995:Q1�2010:Q4 bhck3545
Loans Net Loan-Loss Reserves 1986:Q1�2010:Q4 bhck2122-bhck3123
Loan-Loss Reserve 1986:Q1�2010:Q4 bhck3123
Intangible Assets 1986:Q1�1991:Q4 bhck3163+bhck3165

1992:Q1�2000:Q4 bhck3163+bhck3164
+bhck5506+bhck5507

2001:Q1�2010:Q4 bhck3163+bhck0426
Interest-Bearing Core Deposits 1986:Q1�2010:Q4 bhcb2210+bhcb3187+bhch6648

-bhdma164+bhcb2389
Non-Interest-Bearing Deposits 1986:Q1�2010:Q4 bhdm6631+bhfn6631
Large Time Deposits 1986:Q1�2010:Q4 bhcb2604
Demand Deposits 1986:Q1�2010:Q4 bhcb2210

D List of Financial Institutions for Figure 118

Banks and Thrifts:
Bank of America, Citigroup, JPMorgan Chase, Wachovia, Wells Fargo

Investment Banks:
Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch, Morgan Stanley

GSEs:
Fannie Mae, Freddie Mac

Insurance Companies:
American International Group, Metlife

18 Industry classi�cations are as of 2006Q4.
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Table 1: State Variable Summary Statistics. The spreads and spread changes are expressed
in basis points, returns in percent.

Variable Mean Std. Dev. Min Max 1% Stress Level
VIX 20.72 8.3 10.1 90.5 51.66
Liquidity Spread 21.56 28.7 -15.6 210.9 56.31
3-month Treasury Change -0.55 10.9 -118.8 47 -23.1
Term Spread Change 0.12 12.71 -63.6 79.6 5.09
Credit Spread Change 0.03 7.4 -38.1 56.1 16.8
Equity Return 0.16 2.4 -15.3 13.827 -7.9
Real Estate Excess Return -0.081 2.8 -14.5 21.330 -4.0

Table 2: Summary Statistics for Estimated Risk Measures. The table reports summary
statistics for the asset returns and 1% risk measures of the 1226 �nancial �rms for weekly data
from 1986Q1-2010Q4. Xi denotes the weekly market-valued asset returns for the �rms. The
individual �rm risk measures V aRi and the system risk measure V aRsystem are obtained by
running 1-% quantile regressions of returns on the one-week lag of the state variables and by
computing the predicted value of the regression. �CoV aRi is the di¤erence between 1% �
CoV aRi and the 50% � CoV aRi, where q � CoV aRi is the predicted value from a q � %
quantile regression of the �nancial system asset returns on the institution asset returns and on
the lagged state variables. The stress �CoV aRi is the �CoV aRi computed with the worst 1%
of state variable realizations and the worst 1% �nancial system returns replaced in the quantile
regression. All quantities are expressed in units of weekly percent returns.

Variable Mean Std. Dev. Obs.
(1) Xi

t 0.34 7.3 791231
(2) V aRit -12.17 8.00 790868
(3) �CoV aRit -1.16 1.30 790868
(4) Stress-�CoV aRit -3.22 3.86 790868

(5) V aRsystemt -6.24 3.53 1226
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Table 3: Average t-Statistics of State Variable Exposures. The table reports average t-
statistics from 1%-quantile regressions. For the risk measures V aRi and the system risk measure
V aRsystem, 1-% quantile regressions are run on the state variables. For CoV aRi, 1-% quantile
regressions of the �nancial system returns are run on the state variables and the �rms�asset
returns.

Variable VaRsystem VaRi CoVaRi

VIX (lag) (-16.18) (-13.14) (-20.76)
Repo spread (lag) (-6.77) (-0.84) (-7.18)
Three month yield change (lag) (-1.85) (-0.69) (-2.38)
Term spread change (lag) (2.64) (-0.59) (3.10)
Credit spread change (lag) (-6.70) (-0.66) (-6.96)
Market return (lag) (16.50) (4.29) (18.64)
Housing (lag) (5.02) (2.72) (2.39)
Portfolio asset return Xi (8.10)

Pseudo-R2 46.62% 24.02% 48.89%

Table 4: Quarterly Summary Statistics. The table reports summary statistics for the
quarterly variables in the forward �CoV aR regressions. The data are from 1986Q1-2010Q4,
covering 1226 �nancial institutions. V aR is expressed in unites of quarterly basis points and
�CoV aR is expressed in quarterly basis points of systemic risk contribution. The rest of the
variables are described in 4.1.

Variable Mean Std. Dev. Obs.
(1) 1% �CoV aRit -1494.9 1619.5 62689
(2) 5% �CoV aRit -1026.7 970.9 62689
(3) 1% V aRit -15873.3 9414.9 62689
(4) 5% V aRit -9027.1 5071.1 62689
(5) Leverage 8.84 6.68 62624
(6) Maturity Mismatch 0.52 0.97 62689
(7) Market to Book 2.03 5.86 62633
(8) Log Equity 18.83 1.94 62637
(9) Volatility 3.09 2.79 59465
(10) Market � 0.74 0.98 62689
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Table 5: �CoVaRi Forecasts for All Publicly Traded Financial Insititutions. This
table reports the coe¢ cients from forecasting regressions of the 5% �CoVaRi on the quarterly,
one-year, and two-year lag of �rm characteristics in Panel A and for the 1% �CoVaRi in Panel B.
Each regression has a cross section of �rms. The methodology for computing the risk measures
VaRi and �CoVaRi is given in the captions of Tables 2 and 3. FE denotes �xed e¤ect dummies.
All regressions include time e¤ects. Newey-West standard errors allowing for up to �ve periods
of autocorrelation are displayed in parentheses.

Panel A: 5% �CoV aRi Panel B: 1% �CoV aRi

(1) (2) (3) (4) (5) (6)
Lagged Variables 2 Years 1 Year 1 Quarter 2 Years 1 Year 1 Quarter

VaR -0.019 -0.012 -0.007 -0.019 -0.014 -0.010
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Log Book Equity -285.129 -279.689 -277.861 -339.067 -334.523 -333.238
(5.553) (5.195) (5.105) (10.067) (9.472) (9.372)

Market � -72.821 -92.945 -99.459 -115.287 -142.982 -152.082
(6.981) (6.372) (6.220) (13.104) (12.117) (11.837)

Maturity Mismatch -13.819 -12.059 -11.650 -46.644 -43.797 -43.048
(7.398) (7.166) (6.866) (14.057) (13.901) (13.386)

Market To Book -18.480 -17.571 -16.672 -22.827 -21.457 -20.084
(3.490) (3.400) (2.988) (5.543) (5.415) (4.856)

Volatility -11.787 -7.516 -6.760 -5.779 -1.747 -4.016
(2.701) (2.686) (3.550) (5.523) (5.512) (7.386)

Leverage -6.765 -7.220 -7.229 -6.924 -6.836 -7.187
(1.965) (1.866) (1.811) (3.472) (3.256) (3.105)

Foreign FE 347.227 328.697 324.499 334.195 316.836 307.916
(57.440) (54.077) (52.155) (87.040) (81.886) (78.677)

Insurance FE 91.849 91.790 95.932 25.479 36.303 48.558
(25.307) (24.119) (23.583) (45.142) (42.953) (41.763)

Real Estate FE -68.005 -59.171 -56.493 -318.607 -293.028 -285.247
(32.997) (31.808) (31.031) (64.465) (62.064) (60.481)

Broker Dealer FE -343.445 -322.611 -304.797 -438.256 -416.258 -398.936
(36.363) (35.215) (34.418) (64.008) (61.757) (59.679)

Others FE -52.677 -35.127 -20.558 10.638 32.362 48.961
(35.654) (33.646) (32.380) (66.097) (63.482) (61.396)

Constant 4,419.804 4,577.975 4,621.168 4,922.344 5,217.287 5,305.055
(126.317) (112.639) (112.157) (230.424) (205.215) (204.945)

Observations 49,351 54,127 57,750 49,351 54,127 57,750
Adjusted R2 43.63% 43.05% 42.59% 25.78% 25.48% 25.01%

39



Table 6: �CoVaRi Forecasts For Bank Holding Companies. This table reports the
coe¢ cients from cross sectional predictive regressions of the 5% �CoVaRi on the quarterly, one
year, and two year lag of asset characteristics in Panel A, and for liability characteristics in
Panel B. Each regression has a cross section of bank holding companies. The methodology for
computing the risk measures VaRi and �CoVaRi is given in the captions of Tables 2 and 3.
All regressions include time e¤ects. IBC deposits denotes interest-bearing core deposits. NIB
deposits denotes Non-Interest-Bearing deposits. LT deposits denote large time-deposits (greater
than $100.000). Newey-West standard errors allowing for up to 5 periods of autocorrelation are
displayed in patentheses.

Liability Variables Asset Variables
VARIABLES 2 Year 1 Year 1 Quarter 2 Year 1 Year 1 Quarter

VaR -0.022 -0.016 -0.012 -0.022 -0.016 -0.012
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Log Book Equity -283.310 -277.260 -278.986 -285.286 -279.469 -282.433
(11.120) (10.081) (9.744) (10.904) (9.841) (9.528)

Market � -99.405 -133.541 -136.804 -102.564 -139.367 -144.966
(16.666) (14.177) (13.066) (16.732) (14.285) (13.202)

Maturity Mismatch 174.434 156.692 131.794 113.773 77.706 46.122
(74.681) (72.063) (70.369) (74.243) (72.276) (70.856)

Market to Book -209.378 -203.627 -196.384 -217.390 -210.768 -202.713
(17.738) (16.921) (17.084) (18.367) (17.471) (17.753)

Volatility -7.633 -8.995 -20.379 -7.748 -8.220 -18.601
(8.132) (6.956) (7.634) (7.998) (6.969) (7.662)

Leverage -19.213 -17.136 -13.144 -15.785 -13.034 -7.948
(3.752) (3.566) (3.246) (3.723) (3.558) (3.286)

Interest-Bearing Core Deposits 2.719 2.646 2.970
(1.391) (1.344) (1.318)

Non-Interest Bearing Deposits -18.472 -19.464 -20.469
(3.777) (3.514) (3.331)

Long Term Time Deposits 7.812 6.646 6.436
(1.477) (1.403) (1.339)

Demand Deposits 5.506 7.681 8.038
(3.955) (3.649) (3.455)

Total Loans 4.423 5.239 5.736
(1.328) (1.267) (1.198)

Loan Loss Reserves 14.382 -20.714 -45.847
(35.190) (31.371) (28.904)

Intanglible Assets 10.713 16.889 27.305
(9.194) (8.437) (7.939)

Trading Assets -40.947 -41.689 -49.929
(11.804) (11.412) (10.826)

Constant 4,517.685 4,681.621 4,812.781 4,300.257 4,458.028 4,605.641
(253.189) (223.148) (218.943) (247.516) (216.331) (212.531)

Observations 17,175 18,593 19,663 17,175 18,593 19,663
Adjusted R2 50.06% 50.42% 50.00% 49.80% 50.26% 49.95%
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Table 7: �CoVaRi Forecasts For Bank Holding Companies. This table reports a regres-
sion of the realized crisis covariance on the forward �CoVaR for the universe of Bank Holding
Companies. The crisis covariance is the realized covariance for the time span 2007Q1 - 2009Q1,
estimated from weekly data. The forward �CoVaR are the predictive values from a panel
regression of �CoVaR onto lagged balance sheet variables and lagged macro variables, as of
2006Q4.

(1) (2) (3) (4)
VARIABLES Crisis Covariance

2Y Forward �CoV aR -0.709***
1Y Forward �CoV aR -0.709***
1Q Forward �CoV aR -0.710***
Maturity Mismatch -0.044*
Leverage 0.047*
Market Beta 0.312***
Log Book Equity 0.588***

Observations 832 832 832 827
R2 50.3% 50.3% 50.4% 54.2%
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Table 8: �CoVaRi Forecasts using GARCH estimation. This table reports the coe¢ cients
from forecasting regressions of the two estimation methods of 5% �CoVaRi on the quarterly,
one-year, and two-year lag of �rm characteristics. The methodology for computing the quantile
regression �CoVaRi is given in the captions of Tables 2 and 3. FE denotes �xed e¤ect dum-
mies. The GARCH �CoVaRi is computed by estimating the covariance structure of a bivariate
diagnonal VECH GARCH model. All regressions include time e¤ects. In this table VaRi is
estimated using a GARCH(1,1) model. Newey�West standard errors allowing for up to �ve
periods of autocorrelation are dispalyed in parentheses.

2 Year 1 Year 1 Quarter
VARIABLES Quantile GARCH Quantile GARCH Quantile GARCH

VaR (from GARCH) -0.041 -0.024 -0.032 -0.019 -0.032 -0.033
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Log Book Equity -315.817 -398.050 -312.856 -399.817 -315.404 -382.759
(16.038) (14.302) (15.368) (13.031) (15.295) (12.744)

Market � -84.291 -248.159 -139.601 -333.821 -148.788 -488.841
(32.259) (29.281) (30.276) (27.072) (30.312) (28.259)

Maturity Mismatch -27.129 -37.249 -45.519 -45.328 -53.534 -19.636
(38.386) (43.417) (38.461) (44.664) (38.432) (42.863)

Market to Book -15.585 -9.109 -13.118 -10.717 -12.525 -11.651
(3.381) (2.835) (3.622) (2.792) (3.463) (2.057)

Volatility -29.611 35.273 -42.131 59.179 -73.635 67.441
(17.538) (16.681) (15.675) (18.629) (19.603) (24.545)

Leverage -4.783 -5.641 -4.669 -7.172 -3.520 -8.131
(4.678) (2.905) (4.798) (2.823) (4.853) (2.875)

Foreign FE 868.656 492.486 831.951 484.021 812.464 485.913
(127.493) (105.187) (122.831) (96.542) (121.606) (92.098)

Insurance FE 195.261 380.863 178.982 342.528 182.955 312.164
(59.633) (46.646) (58.922) (44.175) (59.656) (42.442)

Real Estate FE -280.118 271.617 -308.240 230.222 -333.649 184.723
(95.111) (108.668) (93.444) (102.622) (89.820) (97.630)

Broker-Dealer FE -581.106 -447.003 -525.245 -347.995 -507.003 -290.299
(86.882) (65.064) (88.249) (63.062) (88.640) (61.052)

Others FE 240.091 409.705 211.535 408.266 237.068 366.190
(164.333) (327.338) (154.073) (260.577) (141.656) (187.654)

Constant 3,283.473 3,570.076 4,311.172 5,720.837 4,402.390 5,467.105
(358.088) (319.286) (328.797) (282.154) (327.029) (282.839)

Observations 8,873 8,873 9,423 9,423 9,823 9,823
Adjusted R2 49.70% 81.22% 49.10% 81.54% 48.68% 82.16%
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Table 9: �CoVaRi Forecasts using alternative system returns variable. This table re-
ports the coe¢ cients from forecasting regressions of the two estimation methods of 5% �CoVaRi

on the quarterly, one-year, and two-year lag of �rm characteristics. In the columns labeled
Xsystem, �CoVaR is estimated using the regular system returns variable described in Section
3, while in columns labeled Xsystem�i, �CoVaR is estimated using a system return variable
that does not include the �rm for which �CoVaR is being estimated. The methodology for
computing the quantile regression � CoVaRi is given in the captions of Tables 2 and 3. FE
denotes �xed e¤ect dummies. All regressions include time e¤ects. Newey�West standard errors
allowing for �ve periods of autocorrelation are displayed in parentheses.

2 Year 1 Year 1 Quarter
VARIABLES Xsystem Xsystem�i Xsystem Xsystem�i Xsystem Xsystem�i

5% V aR -0.019 -0.020 -0.012 -0.012 -0.007 -0.007
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Log Book Equity -285.129 -274.866 -279.689 -279.689 -277.861 -268.137
(5.553) (5.381) (5.195) (5.195) (5.105) (4.934)

Market � -72.821 -74.588 -92.945 -92.945 -99.459 -100.788
(6.981) (6.914) (6.372) (6.372) (6.220) (6.167)

Maturity Mismatch -13.819 -16.075 -12.059 -12.059 -11.650 -13.744
(7.398) (7.328) (7.166) (7.166) (6.866) (6.813)

Market to Book -18.480 -18.113 -17.571 -17.571 -16.672 -16.363
(3.490) (3.416) (3.400) (3.400) (2.988) (2.932)

Volatility -11.787 -9.714 -7.516 -7.516 -6.760 -5.303
(2.701) (2.648) (2.686) (2.686) (3.550) (3.289)

Leverage -6.765 -5.475 -7.220 -7.220 -7.229 -6.107
(1.965) (1.907) (1.866) (1.866) (1.811) (1.773)

Foreign FE 347.227 344.731 328.697 328.697 324.499 323.158
(57.440) (56.363) (54.077) (54.077) (52.155) (51.176)

Insurance FE 91.849 84.374 91.790 91.790 95.932 88.143
(25.307) (25.016) (24.119) (24.119) (23.583) (23.358)

Real Estate FE -68.005 -62.722 -59.171 -59.171 -56.493 -52.235
(32.997) (32.801) (31.808) (31.808) (31.031) (30.893)

Broker-Dealer FE -343.445 -335.785 -322.611 -322.611 -304.797 -297.740
(36.363) (35.759) (35.215) (35.215) (34.418) (33.858)

Others FE -52.677 -47.266 -35.127 -35.127 -20.558 -15.980
(35.654) (35.251) (33.646) (33.646) (32.380) (32.038)

Constant 4,419.804 4,196.287 4,577.975 4,577.975 4,621.168 4,421.007
(126.317) (122.764) (112.639) (112.639) (112.157) (108.720)

Observations 49,351 49,351 54,127 54,127 57,750 57,750
Adjusted R2 43.63% 42.75% 43.05% 43.05% 42.59% 41.72%
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