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Computational Complexity  
and Information Asymmetry  
in Financial Products
By Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge

1. IntRoDuCtIon
A financial derivative is a contract entered between two par-
ties, in which they agree to exchange payments based on 
events or on the performance of one or more underlying 
assets—independently of whether they own or control the 
underlying assets (e.g., the DOW Jones index falling below 
10,000). Securitization of cash flows using derivatives trans-
formed the financial industry over the last three decades. 
However, mispricing of these derivatives is believed to 
have contributed to the financial crash of 2008 (see e.g. 
Brunnermeier8 and Coval et al.10).

There are also suggestions that derivatives were delib-
erately misused. In Spring 2010 there was a famous 
 allegation about investment bank Goldman Sachs’s 
Abacus derivative. The security and exchange commis-
sion alleged that Goldman Sachs collaborated with short-
seller Paulson to select particularly bad mortgages as the 
underlying assets for this derivative. Tranches of Abacus 
were sold to ABN Amro and IKB Deutsche Industriebank, 
who were unaware of Goldman’s selection methods and 
lost almost $1 billion within a few months of buying these 
assets.

Hence, it is not surprising that derivatives have attracted 
criticism—Warren Buffett famously called them “financial 
weapons of mass destruction”—accompanied with calls for 
extensive regulation and even an outright ban. Others point 
out—with ample justification from economic theory—that 
derivatives are beneficial because they allow better risk shar-
ing by “completing” markets, and also protect buyers from 
the effects of asymmetric information, ameliorating the so-
called “lemon” problem (which arises whenever one party 
in the transaction has more information about the asset 
than the other; cf. Section 2). According to this viewpoint, 
problems with derivatives would disappear with use of more 
accurate financial models, more vigilance by buyers and 
 better governmental oversight.

In our paper,5 which the current write-up is trying to 
describe at a simplified level, we injected a new aspect into 
this debate. We show that even when the underlying financial 
model used by buyers and sellers is correct there is an inherent 
obstacle to accurate pricing due to computational complex-
ity. Formally, even in industry-standard models, the pric-
ing problem can be as difficult as solving the planted dense 
subgraph problem, which has been proposed as a basis for 
cryptosystems. The practical implication is that though 
derivatives such as collateralized debt obligations (CDOs) 
can theoretically ameliorate the effects of asymmetric 

information in the market, in practice these effects will per-
sist—or even get worse—because market participants are not 
computationally sophisticated enough to solve cryptographic 
problems. This suggests that better regulation and more 
informed buyers are not sufficient for derivatives market to 
work correctly, or at least that regulators and buyers should 
take computational complexity into account. Such issues are 
further discussed at the end of the paper in Section 5.
the bite of computational complexity: Computational com-
plexity studies intractable problems, such as NP-complete prob-
lems, which are conjectured to require more computational 
resources than can be provided by the fastest computers. (For 
an introduction see the text.4) The key reason it comes naturally 
into the study of financial derivatives is that it implies an asym-
metry between the ease of creating  problems and solving them. 
A simple example is the problem of factoring integers. It is easy 
to take two random prime numbers—say 7019 and 5683—and 
multiply them—in this case, to obtain 39888977. However, given 
39888977, it is not that easy to factor it to get the two numbers 
7019 and 5683. Algorithms that search over potential factors 
take very long time. This difficulty becomes more pronounced 
as the numbers have more and more digits. Computer scien-
tists believe that factoring an n-digit number requires roughly 
exp(n1/3) time to solve,a a quantity that becomes astronomical 
even for a moderate n like 10,000. The intractability of this prob-
lem leads to a concrete realization of information asymmetry. 
Anybody who knows how to multiply can randomly generate 
(using a few coin flips and a pen and paper) a large integer by 
multiplying two smaller factors. This  integer could have say 
1000 digits, and hence can fit in a paragraph of text. The per-
son who generated this integer knows its (prime) factors, but 
no computational device in the universe can find a nontrivial 
factor in any plausible amount of time.b This informational 
asymmetry underlies modern cryptosystems, which allow (for 

A previous version of this paper appeared in The First 
Symposium on Innovations in Computer Science (ICS 2010).
Tsinghua University Press, Beijing, China; 49−65.

a The precise function is more complicated, but in particular the security of 
most electronic commerce depends on the infeasibility of factoring integers 
with roughly 800 digits.
b Experts in computational complexity should note that we use factoring 
merely as a simple illustrative example. For this reason we ignore the issue 
of quantum computers, whose possible existence is relevant to the factor-
ing problem, but does not seem to have any bearing on the computational 
 problems used in this paper.
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And we show in this note that pricing certain financial deriva-
tives may require solving problems that are believed to be intrac-
table, hence placing it beyond the reach of any real-life agent.

2. the “Lemons PRoBLem” In eConomICs
To understand the theoretical benefits of financial deriva-
tives it is useful to recall the lemons problem, introduced 
in Akerlof’s classic 1970 paper.1 The simplest setting is as 
follows. You are in the market for a used car. A used car in 
working condition is worth $1000. However, 20% of the used 
cars are lemons (i.e., are useless, even though they look fine 
on the outside) and their true worth is $0. Thus if you could 
pick a used car at random then its expected worth would 
be only $800 and not $1000. Now consider the seller’s per-
spective. Suppose sellers know whether or not they own a 
lemon. A seller who knows he has a non-lemon would be 
unwilling to sell for $800, and would therefore withdraw 
from the  market. The market would be left only with lem-
ons, and knowing this, buyers would refuse to buy any car. 
Thus the market grounds to a halt. Akerlof’s paper goes 
on to analyze reasons why used cars do sell in real life. We 
will be interested in one of the reasons, namely, that there 
could be a difference between what a car is worth to a buyer 
versus a seller. In the above example, the seller’s value for a 
working car might be $200 less than the buyer’s—perhaps 
because the seller is moving across the country and needs 
the cash—thus allowing trade to occur. In this case we say 
that the “lemon cost” of this market is $200. Some authors 
refer to the lemon cost as a wedge. Generally, the higher this 
cost, the less efficient the market.

The lemons problem can potentially arise in almost every 
area of the economy, and a large body of work in information 
economics describes how it can be ameliorated. Akerlof’s 
original paper already described signaling mechanisms 
by which a seller can reliably communicate his private 
  information—namely, prove that his car is not a lemon—
to the buyer. For example, a used car dealer can show the 
buyer repair records, or provide a warranty for 6 months, or 
point out to his stellar reputation and rating from the Better 
Business Bureau.

3. fInanCIaL DeRIVatIVes anD CDos
The lemons problem also arises in the financial industry 
and the usual mechanisms for dealing with lemons prob-
lems (as identified by Akerlof) have also flowered: borrower 
FICA  ratings (a.k.a. credit scores), ratings of individual 
 securities by agencies such as Moody’s, etc. Financial deriva-
tives  provide another mechanism for dealing with the lem-
ons problem. Below we will illustrate this with a common 
derivative called the collateralized debt obligation or CDO.

It is not commonly known, but the humble home mort-
gage is actually a very complex instrument that presents 
great risks for lenders. The payoff structure is complicated; 
risk of default is fairly high (compared say to a U.S. trea-
sury bond); and there is high risk of prepayment at times of 
low interest rates, which is precisely when the mortgage’s 
locked-in higher rate is most valuable to the lender. CDOs 
are financial devices that allow many mortgages to be aggre-
gated into a security that has a supposedly much more 

example) two parties to exchange information over an open 
channel in a way that an eavesdropper can extract no informa-
tion from  it—not even distinguish it from a randomly gener-
ated sequence of symbols. More generally, in computational 
complexity we consider a computational task infeasible if the 
resources needed to solve it grow exponentially in the length of 
the input, and consider it feasible if these resources only grow 
polynomially in the input length.

Computational complexity immediately implies the exis-
tence of hard-to-price derivatives, albeit unnatural ones. 
Consider for example a derivative whose contract contains 
a 10,000 digit integer n and has a nonzero payoff iff the unem-
ployment rate next January, when rounded to the nearest 
integer, is the last digit of a factor of n. A relatively unsophis-
ticated seller can generate such a derivative together with 
a fairly accurate estimate of its yield (to the extent that unem-
ployment rate is predictable), yet even a sophisticated investor 
like Goldman Sachs would have no idea what to pay for it. This 
example shows both the difficulty of pricing  arbitrary deriva-
tives and the possible increase in asymmetry of information 
via derivatives.

While this “factoring derivative” is obviously far removed 
from anything used in current markets, in this work we 
show that similar effects can be obtained in simpler and 
more popular classes of derivatives that are essentially the 
ones used in real life in securitization of mortgages and 
other forms of debt. The person selling the derivative can 
structure (“rig”) the derivative in a way such that it has low 
yield, but distinguishing it from a normal (“unrigged”) 
higher yield derivative is computationally intractable. Thus 
any  efficient pricing mechanism would either overvalue the 
rigged derivative or undervalue the unrigged one, hence 
 creating an inefficiency in the market.
Densest subgraph problem: Our result relies on the conjec-
ture that there does not exist a tractable algorithm to detect 
large dense subgraphs in random graphs. This is a more 
 specialized assumption than the familiar P ¹ NP conjecture. 
We needed this assumption because we needed to exhibit 
the intractability of “real-life” derivatives, and the setting 
there naturally leads to random graphs, as will be clear in 
the description in Section 4.
Computational complexity and “bounded rationality”: 
Computational complexity can be related to the bounded 
rationality concept in economics. Simon14 proposed the 
notion of bounded rationality to recognize that in decision 
making, real-life agents are limited by their cognitive ability 
to process information and the finite amount of time they 
have. Simon postulates that agents use heuristics instead 
of time-consuming and complex optimizing behavior. 
Experimental evidence on behavioral biases supports this 
notion (e.g. Kahneman,13 etc.). On the other hand, economic 
experiments also suggest that as the stakes rise and people 
face similar situations repeatedly, they behave more delib-
eratively in a way that approaches rationality. In particular 
this is the case in the setting of finance, where stakes are high 
and traders have access to cutting edge technology. However, 
even the most sophisticated traders cannot escape the limita-
tions of computational complexity, since no physically realiz-
able computational device can solve intractable problems. 
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predictable yield, and hence more attractive to risk-averse 
lenders such as retirement funds.

Consider the following simplistic example: suppose 
a bank holds a portfolio of 100 mortgages, and that each 
mortgage yields $0 if the borrower defaults and $1 million oth-
erwise. For now assume the probability of default is 10%, 
which implies that the expected yield (and hence fair price) 
for the entire portfolio is $90 million. The bank would like to 
get all or most of these mortgages off its books because this 
is favorable for regulatory reasons. Since each individual 
mortgage may be unacceptably risky for a risk-averse buyer, 
the bank holding the mortgages can do the following. Create 
two new assets by combining the above 100 mortgages. Set 
a threshold, say $80 million. The first asset, called the senior 
tranche, has claim to the first 80  million of the yield; and the 
second, called the junior tranche, has claim to the rest. These 
assets are known as collateralized debt obligations (CDOs). 
The bank offers the senior tranche to the risk-averse buyer 
and holds on to the junior tranche (Figure 1).

Now a risk-averse buyer may reason as follows: if the 
mortgage defaults are independent events (which is a big 
if, though in practice justified by pooling mortgages made 
to a geographically diverse group of homeowners, whose 
defaults are presumably independent) then the senior 
tranche is extremely unlikely to ever yield less than its maxi-
mum total value of $80 million. In fact for this to happen, 
more than 20 mortgages need to default, which happens 
only with probability . Thus 
the senior tranche is a very safe asset with a highly predictable 
yield, and such derivatives were often rated by credit-rating 
agencies to be as safe as a U.S. treasury bond. In real-life 
CDOs the mortgage yields, payment streams, and tranching 
are all much more complex, but the basic idea is the same.
the lemons problem enters: There is an obvious lemons prob-
lem in the above scenario because of asymmetric information: 
The bank that issued the mortgages has the most accurate 

estimate of the rate of default, whereas the buyer may have 
a less precise idea—say that the rate lies between 10% and 
15%. Economic theory says that in addition to transforming 
the risk profile of the asset, the CDO also protects the inves-
tor from this lemons problem. The crucial observation is that 
even if the probability of default was 15%, the probability of the 
senior tranche yielding its maximum of $80 million would still 
be roughly 99.9%, and hence the tranching insulates the buyer 
from the information-sensitive part of the mortgage pool.

In fact, as was shown by DeMarzo,11 the choice of the 
threshold can be used as a signaling mechanism that allows 
the bank to transmit in a trustworthy way the true default 
value. We now illustrate the idea behind this result. Consider 
the problem from the bank’s viewpoint. It is interested in 
getting rid of as many mortgages—specifically, the largest 
possible portion of the entire portfolio—from its book as 
possible, so it wants to set the threshold as high as possible. 
Suppose it knows the default rate is 15%. This is the highest 
possible default rate, so it can simply sell the whole bundle 
of mortgages (i.e. set the threshold to 100%). The buyers will 
use their most pessimistic evaluation (that the default rate 
is 15%) and pay the price of $85 million. Both the seller and 
the buyer are satisfied because the price is just equal to the 
estimated yield. Suppose on the other hand that the bank 
knows the default rate is actually only 10%, the lowest pos-
sible rate. Now setting the threshold to 100% is no longer its 
best strategy, since the buyers will just pay $85 million while 
the bundle is now worth $90 million. To signal its confidence 
in the quality of mortgages, the bank will tranch the pool, 
set the threshold to 80%,c and offer to hold the riskier part—
the junior tranche. Knowing that the bank will not offer this 
lower threshold when the default rate is high (indeed, the best 
threshold for default rate 15% is 100%), the rational buyers 
should correctly interpret this as a signal to the true default 
rate and pay close to $80 million for the senior tranche. Again, 
both the seller and the buyer are satisfied because the price is 
almost equal to the estimated yield of the senior tranche.

Making the above intuitive argument precise in the usual 
rational expectations framework of economic theory takes 
some work, and was done in DeMarzo,11 where it is shown 
that the CDO is the optimum solution to the lemons prob-
lem in a setting somewhat more general than the above 
 simplistic one. Specifically, the CDO allows the lemon 
cost—i.e., the difference in valuation of the security by 
buyer and bank required for the sale to occur—to approach 
0.d That is, the bank’s secret information does not lead to 
large market inefficiencies. Henceforth we will refer to this 
as DeMarzo’s Theorem.

4. WhY ComPLexItY matteRs
We presented above the traditional justification for CDOs 
from economic theory. Now we explain at an intuitive level 

c The exact threshold here depends on a number of factors, including  default 
rate and discount factor. The discount factor shows how much the seller pre-
fers cash to assets. The threshold can be computed exactly using methods 
in DeMarzo.11

d A nonzero difference in valuation or wedge between the bank and buyer 
arises because the buyer holds cash and the bank holds the mortgages, and 
the bank prefers cash to mortgages because of regulatory or other reasons.
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Aggregating mortgages gives
an asset with predictable yields

figure 1. aggregating many mortgages into a single asset makes the 
yield more predictable due to the law of large numbers (central limit 
theorem). this assumes that the yields of the different mortgages 
are independent random variables.
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gaussians and the central limit theorem

The ability of CDOs to ameliorate effects of asymmet-
ric  information relies on the law of large numbers, 
which informally speaking states that the total payoff 
of a bundle of mortgages is close to the mean (or 
 expected) value. More precisely, we have the central 
limit theorem: The sum of sufficiently many bounded 
and independent random variables will be approxi-
mately distributed like a Gaussian with same mean 
and variance. The Gaussian is a good approximation 
even when the number of variables is only in the hun-
dreds. Therefore, if there are 100 mortgages, each pay-
ing 1 with probability 1/2 and paying 0 otherwise, the 
distribution of the total payoff is like a Gaussian with 
mean 50 and standard deviation 5. The probability that 
the payoff is outside [35, 65] (three standard devia-
tions) is less than 0.2%.

In addition to their value as limiting distributions for the 
sum of independent random variables, Gaussians arise 
in one other way in finance: often the payoffs of assets 
themselves are  assumed to be Gaussians. The joint distri-
bution of these Gaussian valued assets is the well-known 
Gaussian copula:

Although in the illustrative example we assumed binary 
payoffs for a single asset, similar results hold for asset 
yields that form a Gaussian copula with the same mean, 
variance, and covariance.
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why introducing computational complexity into the picture 
greatly complicates the picture, and even takes away some of 
the theoretical benefits of CDOs. The full analysis appears in 
our longer paper.

The important twist we introduce in the above scenario 
is that a large bank is selling many CDOs and not just a 
single one. DeMarzo’s theorem does not generalize to this 
case, and indeed we will show that whether or not the CDOs 
ameliorate the lemons problem depends upon the compu-
tational ability of the buyer. The lemons problem gets ame-
liorated only if the buyer is capable of solving the densest 
subgraph problem, which is currently believed to be com-
putationally difficult.

We will use the assumption—consistent with practice—
that mortgages are grouped into classes depending upon 
factors such as the borrower’s credit score, geographic loca-
tion, etc., and that default rates within a class are the same. 
Consider for simplicity a bank with N asset classes, each of 
which contains C assets. Some asset classes are “lemons”: 
assets in these classes will always default and have payoff 0. 
All other asset classes are good: assets in these classes pay 
1/C with probability 1/2 and default (i.e., have payoff 0) with 
probability 1/2. The yields of assets from different asset 
classes are independent.

The buyer’s prior is that the number of lemon classes is 
uniformly distributed in [0, 2n] for some n < N/2, and the 
set of lemon classes is uniformly picked among all classes. 
However, the bank has additional information: it knows 
precisely which classes are lemons (this implies that it 
knows the number of lemons as well). This is the asymmet-
ric information.

Since the expected number of lemon classes is n, each 
with payoff 0 and the remaining N – n good classes have 
 payoff 1/2, a buyer purchasing the entire portfolio would 
be willing to pay the expected yield, which is (N – n)/2. Thus 
a wedge à la Akerlof arises for banks who discover that the 
number of lemons is lower than the expectation, and they 
would either exit the market, or would need to prefer cash by 
an amount that overcomes the wedge.

Of course, DeMarzo’s theorem allows this lemons prob-
lem to be ameliorated, via securitization of the entire 
portfolio into a single CDO. As already mentioned, we are 
interested in the case where the number of assets held by 
the bank is large, and so, rather then using a single CDO, the 
bank partitions them into multiple CDOs. Now how does the 
bank’s extra information affect the sale? Clearly, it has new 
cherry-picking possibilities, involving which asset to pack-
age into which CDO. We will assume that all transactions 
are public and visible to all buyers, which means that seller 
must do any such cherry picking in full public view.e

Now let us show that in principle derivatives should still 
allow buyers to rule out any significant cherry picking, thus 
ameliorating the lemon wedge. Consider the following: 
the seller creates M new financial products, each of them 

e This assumption of transparency only makes our negative results stron-
ger. It also may be a reasonable approximation if buyers are well-informed, 
and recent financial regulation has mandated more transparency into the 
 market.
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a CDO depending on a pool of D of the underlying assets. 
We assume MD = NC and that every asset occurs in exactly 
one pool. Clearly, assets in the same class should be distrib-
uted to different products in order to ensure the diversity 
of the products. Each CDO will have assets from distinct 
classes (and hence have stochastically independent yields) 
so that sum of their yields follows the central limit theo-
rem. Suppose each one of the M products has the follow-
ing design: it pays off N/(3M) units as long as the number 
of assets in its pool that defaulted is at most  for 
some parameter t (set to be about ), and otherwise it 
pays 0. Henceforth we call such a product a “binary CDO”; it 
can be viewed as the senior tranche of a simple CDO.f Assets 
contained in the same product come from different classes, 
the yields of good assets are uniformly iid, so the expected 
number of defaults among D good assets is D/2 and the 
standard deviation is . Now the central limit theorem 
applies and the total number of defaults may be assumed 
to be distributed like a Gaussian. Thus so long as the frac-
tion of lemon classes is much smaller than the safety mar-
gin of t standard deviations, the probability of default for 
an individual CDO is tiny. Thus, if V denotes the combined 
expected yield of these M products, then V ≈ M × N/3M = N/3. 
(The exact value of V is unimportant below.)

If the bank were to pick the pools truly randomly—
i.e., the entire portfolio of assets is randomly partitioned 
into the M pools—then the portfolio’s expected yield is only 
mildly affected by the presence of lemons. Specifically, if V 
is the expected yield when there are no lemon classes, then 
it can be shown that the yield is still V – o(n) (i.e. larger than 
V – n for any  > 0) when the  number of lemon classes is 2n, 
the maximum possible. In this sense derivatives can help 
significantly reduce the lemon wedge from n to o(n), thus 
performing their task of allowing a party to sell off the least 
information-sensitive portion of the risk.

However, the above description assumed that the seller 
creates the pools disinterestedly using pure randomness. But 
this may be against his self-interest given his secret informa-
tion! Given that the seller’s interest is to give out the minimum 
yield possible, as long as this is undetected by the buyer, it 
turns out that his optimum strategy is to pick some subset of 
m of the financial products, and ensure that the lemon assets 
are overrepresented in the pools of these m products—to an 
extent about  which is just enough to significantly skew 
the probability of default. We call this subset of n CDOs the 
“boobytrap.” Thus the CDOs in the boobytrap have a much 
higher probability of default than buyers expect, causing the 
expected yield of the entire portfolio of CDOs to be smaller by 
an amount proportional to m (roughly mN/(3M) ).g

With some settings of m the tampered derivative can 
have much smaller yield than the yield of V – o(n) obtained 

by random pooling. The question is whether buyers can be 
fooled by this cherry picking. We have to consider two cases, 
based on the buyer’s computational powers.
fully rational (computationally unbounded) buyer: He 
will not be fooled. Even though he does not know the set 
of lemon classes, he knows thanks to random graph theory 
(see the excellent references of Alon and Spencer2 and 
Bollobás7) that in a randomly chosen portfolio of CDOs the 
possibility of accidentally setting up such a boobytrap is 
vanishingly remote. Therefore it suffices for him to rule out 
the existence of any boobytrap in the presented portfolio: 
he enumerates over all possible 2n-sized subsets of the N 
classes and verifies that none of them are over-represented 
in any subset of m products. The same calculations as above 
guarantee him that in this case the yield of the derivative is 
at least V – o(n), even though he does not know the identity 
of the lemon classes. Thus a seller has no incentive to plant 
a boobytrap for a fully rational buyer, and the lemon wedge 
is indeed ameliorated greatly if buyers are fully rational.
real-life buyer, who is feasibly rational (computationally 
bounded): For him the above computation for detecting 
 boobytraps is infeasible even for moderate parameter values.

To get an appreciation of the infeasible problem lurking 
here, it helps to take a graph-theoretic view of the problem. 
Recall that a bipartite graph consists of two disjoint sets of 
 vertices A, B such that each edge has an endpoint in both 
A and B. We can use a bipartite graph to represent the port-
folio of CDOs: A is the set of asset classes and B is the set of 
CDOs, and an edge (a, b) indicates that the CDO numbered 
b contains an asset from the asset class numbered a (see 
Figure 2).

Of course the buyer will also try other possible algo-
rithms to detect the boobytrap. If the bank randomly 
throws assets into CDOs, then this graph that represents 
the portfolio is some kind of random graph. If the bank 
creates a boobytrap as described above, then the boobytrap 
corresponds to a dense subgraph in this bipartite graph: it is 
a subset of asset classes (the lemons) and a subset of CDOs 
(the boobytrapped ones) where the number of edges lying 
between them is substantially higher than it would be in a 
random graph.

The problem of detecting a boobytrap is equivalent to the 
so-called hidden dense subgraph problem, which is widely 
believed to be intractable. In fact the conjecture is that there 
is no efficient way to distinguish the truly random bipartite 

f This is a so-called synthetic binary option. The more popular CDO derivative 
described above behaves in a similar way, except that if there are defaults 
above the threshold (in this case ) then the payoff is not 0 but 
the defaults are just deducted from the total payoff. We call this a “tranched 
CDO” to distinguish it from the binary CDO.
g The non-booby trapped CDOs will have a slightly smaller probability of 
 default than in the untampered (i.e., random) case, but a simple calculation 
shows that this will only contribute a negligible amount to the yield.

figure 2. using a bipartite graph to represent asset classes and 
derivatives. there are M vertices on top corresponding to the 
derivatives and N vertices at the bottom corresponding to asset 
classes. each derivative references D assets in different classes.
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graph from one in which the bank has “planted” the dense 
subgraph (a.k.a. boobytrap). Formally, the two kinds of 
graphs are believed to be computationally indistinguishable 
for polynomial-time algorithms and this was the basis of 
a recent cryptosystem proposed by Applebaum et al.3

The conjecture is that even quite large boobytraps may 
be undetectable: the expected yield of the entire portfolio 
could be much less than say V – n1.1 and yet the buyer may not 
be able to distinguish it from a truly random (i.e., honestly 
 constructed) portfolio, whose yield is V – o(n).

We conclude that if buyers are computationally 
bounded, then introducing derivatives into the picture not 
only fails to reduce the lemon wedge, but paradoxically, 
amplifies it even beyond the total value 2n of all lemon 
assets. Though the above example is highly simplified, it 
can be embedded in settings that are closer to real life and 
similar results are obtained.

4.1. Can the cost of complexity be mitigated?
In Akerlof’s classic analysis, the no-trade outcome dictated 
by lemon costs can be mitigated by appropriate signal-
ing mechanism—e.g., car dealers offering warranties to 
increase confidence that the car being sold is not a lemon. 
In the above setting, however, there seems to be no direct 
way for seller to prove that the financial product is untam-
pered i.e., free of boobytraps. (It is believed that there is 
no simple way to prove the absence of a dense subgraph; 
this is related to the NP ¹ coNP conjecture.) Furthermore, 
we can show that for suitable parameter choices the tam-
pering is undetectable by the buyer even ex post. The buyer 
realizes at the end that the financial products had a much 
lower yield than expected, but would be unable to prove 
that this was due to the seller’s tampering. Nevertheless, 
we do show in our paper5 that one could use ideas from 
computer science in designing derivatives that are tam-
perproof in our simple setting.

4.2. Complexity ranking
Recently, Brunnermeier and Oehmke9 suggested that trad-
ers have an intuitive notion of complexity for derivatives. 
Real-life markets tend to view derivatives such as CDO2 
(a CDO whose underlying assets are CDOs like the one 
described earlier) as complex and derivatives like CDO3 
(a CDO whose underlying assets are CDO2) as even more so. 
One might think that the number of layers of removal from 
a simple underlying real asset could be a natural measure 
of complexity. However, as Brunnermeier and Oehmke9 
point out, such a definition might not be appropriate, 
since it would rank e.g. highly liquid stocks of investment 
banks, which hold CDO2s and other complex assets, as one 
of the most complex securities. Our paper5 proposes an 
alternative complexity ranking which is based on the above 
discussed notion of lemon cost due to complexity. This rank-
ing also confirms the standard intuition that CDO2s are 
more complex than CDOs. Roughly speaking, the cherry-
picking possibilities for sellers of CDOs described in this 
paper become even more serious for derivatives such as 
CDO2 and CDO3.

5. DIsCussIon
The notion that derivatives need careful handling has been 
extensively discussed before. Coval et al.10 show that pric-
ing (or rating) a structured finance product like a CDO is 
extremely fragile to modest imprecision in evaluating 
underlying risks, including systematic risks. The high level 
idea is that these everyday derivatives are based upon the 
threshold function, which is highly sensitive to small pertur-
bations of the input distribution. Indeed, empirical stud-
ies suggest that valuations for a given financial product by 
different sophisticated investment banks can be easily 17% 
apart6 and that even a single bank’s evaluations of different 
“tranches” of the same derivative may be mutually incon-
sistent.12 Thus one imagines that banks are using different 
models and assumptions in evaluating derivatives.

The question studied in our work is: Is there a problem 
with derivatives even if one assumes away the above possi-
bilities, in other words the yield of the underlying asset exactly 
fits the stochastic model assumed by the buyer? Economic 
theory  suggests the answer is “No”: informed and rational 
buyers need not fear derivatives. (Recall our discussion of 
DeMarzo’s theorem.)

The main contribution of our work has been to formal-
ize settings in which this prediction of economic theory 
may fall short (or even be falsified), and manipulation is 
 possible and undetectable by all real-life (i.e., computation-
ally bounded) buyers. We have worked within existing con-
ceptual frameworks for asymmetric information. It turns 
out that the seller can benefit from his secret information 
(viz., which assets are lemons) by using the well-known fact 
that a random election involving n voters can be swung with 
significant probability by making  voters vote the same 
way; this was the basis of the boobytrap described earlier. 
The surprising fact is that a computationally limited buyer 
may not have any way to distinguish such a tampered CDO 
from untampered CDOs. Formally, the indistinguishabil-
ity relies upon the conjectured intractability of the planted 
dense  subgraph problem.h

The model in our more detailed paper has several nota-
ble features:

1. The largeness of the market—specifically, the fact that 
sellers are constructing thousands of financial prod-
ucts rather than a single product as was the case in the 
model of DeMarzo11—allows sellers to cherry pick in 
such a way that cannot be detected by feasible  rational 
(computationally bounded) buyers—i.e., all real-world 
buyers—while it can be detected by fully rational (com-
putationally unbounded) buyers.

2. The possibility of cherry picking by sellers creates an 
Akerlof-like wedge between buyer’s and seller’s valua-
tions of the financial product. We call this the lemon 
cost due to computational complexity. In our detailed 
paper we can quantify this wedge for several classes of 
derivatives popular in securitization. This allows a par-

h Note that debt-rating agencies such as Moody’s or S&P currently use simple 
simulation-based approaches to evaluate derivatives, which certainly do not 
attempt to solve something as complicated as densest subgraph.
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tial ranking of these classes, which can be seen as a 
quantification of more familiar heuristic notions of 
“complexity.” This answers the open question of 
Brunnermeier and Oehmke.9

3. It can be difficult for regulatory bodies to control the 
above-mentioned cherry picking because the cherry 
picking can be difficult to detect ex ante. In some 
 models the cherry picking seems undetectable even 
ex post. Both these remain true even in a fully trans-
parent market where all transactions occur on a public 
exchange. It also implies that verifying the existence of 
the lemon cost due to computational complexity in 
historical data (in other words, an empirical test of our 
paper) may prove difficult, especially given that the 
market has not been fully transparent.

In sum, our approach of combining insights from computer 
science with economic questions allows one to formally 
study phenomena, such as complexity and bounded ratio-
nality, that are of first-order importance but were difficult 
to capture in formal economic models. These new insights 
should help shape future regulation and the post-2008 
 financial architecture. 
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