THE ITHEORY OF MONEY

MARKUS BRUNNERMEIER & YULIY SANNIKOV

Princeton University

Updates: http://www.princeton.edu/~markus/research/papers/i_theory_slides.pdf

Motivation

- Unified framework to study financial and monetary stability
- Combines <u>intermediation</u> (credit) and money <u>i</u>nside money
- Value of money endogenous store of value, liquidity
 - (Samuelson, Bewley, Kiyotaki-Moore...)
- Fisher (1933) **deflationary spiral** after *negative* productivity shock
 - Negative shock hits asset side of intermediaries' balance sheets and is amplified through leverage and volatility dynamics

Difference to literature!

- Decline in inside money, leads to deflationary pressure that hits intermediaries' balance sheet on the liability side
- Inside money and outside money
 - "Endogenous" money multiplier = f(health of intermediary sector)
- Monetary policy (interest rates, open market operations)
 - Fills in demand for money when money multiplier contracts
 - Redistribution from/towards intermediary sector
 - Difference to New Keynesian framework

Some Literature

- Medium of exchange
- Store of value & liquidity
 - Samuelson's OLG
 - Bewley
 - Scheinkman & Weiss
 - Homstrom & Tirole
 - Kiyotaki & Moore (2008)

(new) monetarists

Consumption smoothing

Precaution savings for

uninsurable endowment shocks

to keep project running

new investment opportunity + "resell constraint"

- Financial stability & monetary policy
 - Diamond & Rajan (2006)
 - Stein (2010)
 - Curdia & Woodford (2010)

New Keynesian framework

- Economies with financial frictions
 - Bernanke, Gertler & Gilchrist, Kiyotaki & Moore, Geanakoplos, He & Krishnamurthy, Brunnermeier & Sannikov 2010

Outline of Modeling Ideas

heterogeneous agents

net worth

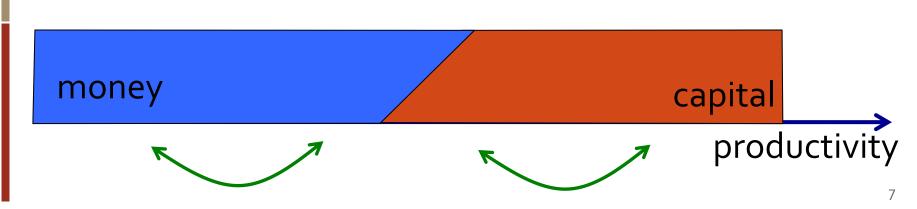
Efficient Allocation of Physical Capital

heterogeneous agents

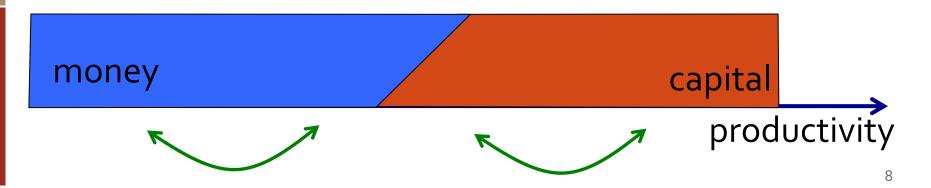
net worth

productivity

Allocation with Extreme Financial Constraint


heterogeneous agents

capital


Switching Types and Money

- Money (gold) intrinsically worthless
- Agents willing to hold money if someone (productive agents becoming unproductive) will want to hold money later

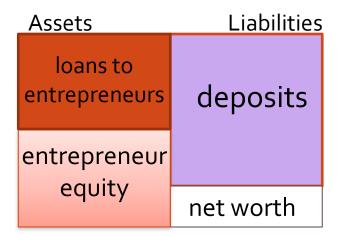
Switching Types and Money

- Money (gold) intrinsically worthless
- Agents willing to hold money if someone (productive agents becoming unproductive) will want to hold money later
- Inefficiencies
 - Allocation (money does not generate any income)
 - Underinvestment (price of capital and hence investment is low)

Two polar cases

Economy	Assets	Value of fiat money
Frictions (severe)	No claims	high
Frictionless	Issue claimsDebtEquity	low

Two polar cases introducing intermediaries


Economy	Assets	Value of fiat money	Intermediaries' capitalization
Frictions (severe)	No claims	high	defunct
Frictionless	Issue claims • Debt • Equity	low	perfect

Role of intermediaries

- Relax financing constraint by monitoring productive agents
- Have to take on productive agent's equity risk (so that they have incentive to monitor)
- Intermediation depends on their ability to absorb risk net worth of intermediaries

Monitoring technology Diamond (1984) Homstrom-Tirole (1997)

intermediaries

heterogeneous agents

deposits monev

Monitoring technology Diamond (1984) Homstrom-Tirole (1997)

intermediaries

Assets

Liabilities

entrepreneur equity

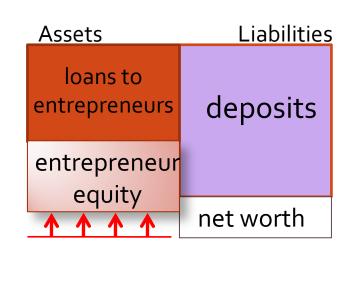
deposits

net worth

deposits

loans to entrepreneurs money

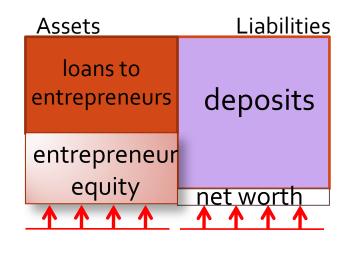
Monitoring technology Diamond (1984) Homstrom-Tirole (1997)


intermediaries

Assets	Liabilities
loans to entrepreneurs	deposits
entrepreneur	
equity	net worth

deposits money

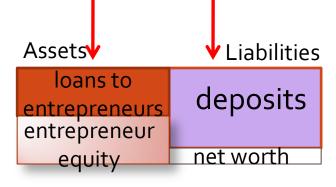
Negative Macro Shocks


intermediaries

deposits money

Negative Macro Shocks

intermediaries



deposits money

Shrinking Balance Sheets

- Intermediary net worth
- Lending to entrepreneurs \downarrow
- Value of capital q
- Deposit/inside money
- Value of outside money p
- Multiplier

deposits money

Overview

- Passive monetary policy: "Gold standard"
 - Quantity of outside money fixed
 - Interest rate zero
 - When a negative macro shock hits intermediaries
 - quantity of inside money shrinks
 - value of outside money increases deflationary spiral
 - intermediaries are hit on the liability side
- Active Monetary Policy
 - Introduce long-term bond
 - Short-term interest rate policy
 - Value of long-term bonds rises in downturns substitute for reduction of inside money
 - Asset purchase and OMO
 - Redistributional effects
- Comparison to New Keynesian and Monetarism

consumption rate

Output:
$$y_t^{\omega} = a^{\omega} k_t^{\omega} = (c_t^{\omega} + i_t^{\omega}) k_t^{\omega}$$

investment rate

Capital:
$$dk_t^{\omega} = (\Phi(i_t^{\omega}) - \delta^{\omega})k_t dt + d\varepsilon_t^{\omega}$$

$$\Phi(0) = 0, \Phi' > 0, \Phi'' < 0$$

$$Cov[\varepsilon_t^{\omega}, \varepsilon_t^{\omega'}]$$

heterogeneous agents

Outside money (gold) is in fixed supply

Brunnermeier & Sannikov 2011

intermediaries

Liabilities **Assets** loans to deposits entrepreneurs entrepreneur equity net worth

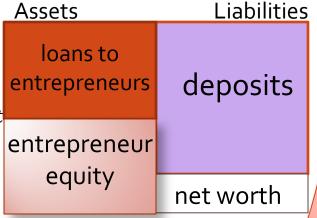
Interm's portfolio $abla \zeta_t(\omega)$

HH's holding

 $\xi_t(\omega)$

heterogeneous agents

deposits money


HH's net worth distribution

 $\theta(\omega)$

Scale Invariance

- Allocation of capital
 - $\int \zeta_t(\omega)d\omega + \int \xi_t(\omega)d\omega = 1$
 - All capital in the economy = K_t
 - Capital value (in output) = $q_t K_t$
- Outside money supply = 1
 - Value of money (in output) = $= P_t = p_t K_t$

intermediaries

Interm's portfolion $\zeta_t(\omega)$

HH's holding

$$\xi_t(\omega)$$

heterogeneous agents

deposits money

(1

 $\theta(\omega)(q_tK_t + P_t - N_t)$ HH's net worth distr.

$$\int \theta(\omega)d\omega = 1$$

 $\overline{ heta(\omega)}$

Brunnermeier & Sannikov 2011

The Model: Preferences

All agents have logarithmic utility with discount rate

$$E\left[\int_0^\infty e^{-\rho t}\log c_t\,dt\right]$$

- Retirement: intermediary gets utility boost, when it decides to become a household forever
- Implications of log utility:
 - Consumption $= \rho \times net \ worth$
 - Required return = Cov[asset risk, net worth risk]
 - Consumption is independent of investment opportunity
 - Asset demands are myopic
 (no Mertonian hedging demand, no precautionary motive)

Equilibrium Definition

- For each history of shocks $\{\{d\varepsilon_s^{\omega}\}_{\omega}, s \in [0, t]\}$
 - $ullet q_t$ the price of physical capital
 - $P_t = p_t K_t$ the value of money
 - $\zeta_t(\omega), \xi_t(\omega)$ the allocation of capital
 - ullet i_t^ω the rate of entrepreneurs investment
 - rates of consumption of all agents
 - Retirement rate of intermediaries

such that

- Given prices all agents choose portfolios & consumption to maximize utility, intermediaries choose optimally when to retire
- Markets for capital, money and consumption goods clear

Derivation - Roadmap

- Individual choices
 - $c_t = \rho * \text{net worth}$
 - $-i_t^{\alpha}$
 - Required excess return = Cov [asset risk, net worth risk]
 - Postulate: $dq_t = \mu_t^q dt + d\varepsilon^q$ and $dp_t = \mu_t^p dt + d\varepsilon_t^p$
- Market clearing
 - $ilde{\ }$ Endogenously determines μ^q_t , $darepsilon^q_t$, μ^p_t , $darepsilon^q_t$
- Derive μ_t^q , $d\varepsilon_t^q$, μ_t^p , $d\varepsilon_t^q$ as functions of η
- Need low of motion of η
 - Depends on postulated price processes q_t and p_t (fixed point)

Internal investment decision

$$dk_t^{\omega} = (\Phi(i_t^{\omega}) - \delta^{\omega})dt + d\varepsilon_t^{\omega}$$

• Given the price of capital q_t , the optimal investment solves

$$\max_{i} \Phi(i) q_t - i \Rightarrow i^*(q_t)$$

• Determines for each HH ω

$$c^{\omega}(q_t) = a^{\omega} - i^*(q_t)$$

Return on physical capital

• If $dq_t = \mu_t^q q_t dt + q_t d\varepsilon_t^q \leftarrow$ endogenous

$$dr_t^{\omega} = \left(\frac{c^{\omega}(q_t)}{q_t} + g^{\omega}(q_t) + \mu_t^q + Cov[d\varepsilon_t^{\omega}, d\varepsilon_t^q]\right) dt + (d\varepsilon_t^{\omega} + d\varepsilon_t^q)$$

$$\text{dividend} \qquad \text{capital gains} \qquad \text{risk}$$

$$\text{yield} \qquad \text{rate} \qquad \qquad \text{(endogenous)}$$

Return on Money

In the "long-run"

$$\frac{dK_t}{K_t} = \underbrace{\int (\zeta(\omega) + \xi(\omega))g^{\omega}(q_t)d\omega}_{\mu_t^K} + \underbrace{\int \zeta(\omega) + \xi(\omega)d\varepsilon_t^{\omega}}_{d\varepsilon_t^K}$$

If $dp_t = \mu_t^p p_t dt + p_t d\varepsilon_t^p \leftarrow$ endogenous then a dollar invested in money earns return

$$dr_t^M = (\mu_t^K + \mu_t^p + Cov[d\varepsilon_t^K, d\varepsilon_t^p])dt + \underbrace{d\varepsilon_t^K + d\varepsilon_t^p}_{d\varepsilon_t^M}$$

Intermediaries' "Risk Balance Sheet"

Assets Liabilities

$$q_{t}K_{t}\int \zeta_{t}(\omega)(d\varepsilon_{t}^{q}+d\varepsilon_{t}^{\omega})d\omega \left[\left(q_{t}K_{t}\int \zeta_{t}(\omega)d\omega-N_{t}\right)d\varepsilon_{t}^{M} \right]$$

$$\begin{split} dN_t &= -\rho N_t dt + N_t dr_t^M \\ &+ q_t K_t \int \zeta_t(\omega) Cov \big[d\varepsilon_t^q + d\varepsilon_t^\omega - d\varepsilon_t^M, d\varepsilon_t^N \big] d\omega \, dt \\ &+ q_t K_t \int \zeta_t(\omega) \big(d\varepsilon_t^q + d\varepsilon_t^\omega - d\varepsilon_t^M \big) d\omega \end{split}$$

runnermeier & Sannikov 20

 $d\eta_t = d(N_t/K_t) = \cdots$

Equilibrium Conditions

1. Market clearing for capital goods and bonds

$$\int \zeta_t(\omega)d\omega + \int \xi_t(\omega)d\omega = 1$$

2. Market clearing for output:

$$\int (\zeta_t(\omega) + \xi(\omega))c^{\omega}(q_t)d\omega = \rho(q_t + p_t)$$

- 3. Valuation of capital ω -- return = Cov(risk, net worth risk)
 - Intermediaries

$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^N] \qquad (= if \zeta_t(\omega) > 0)$$

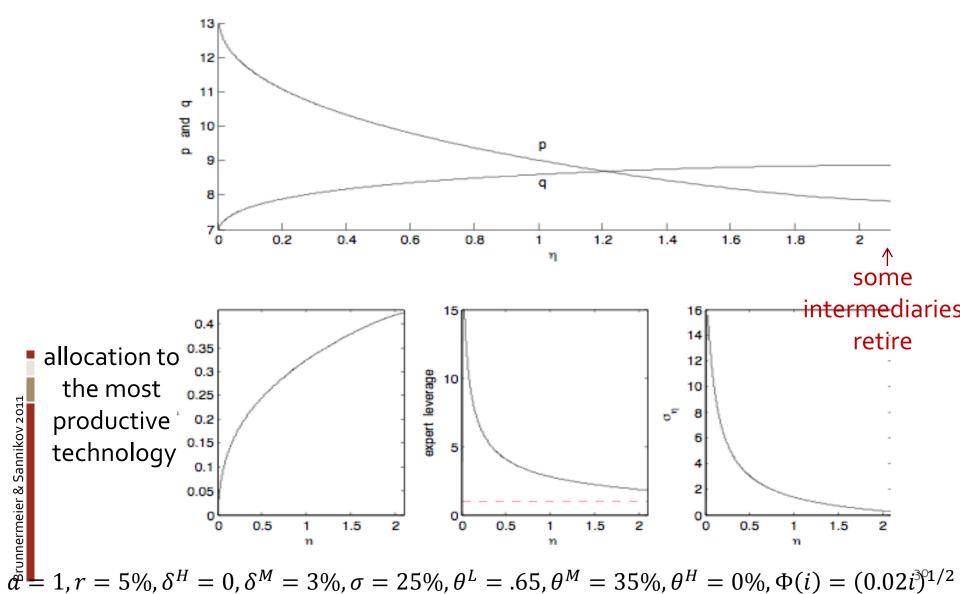
HH ω

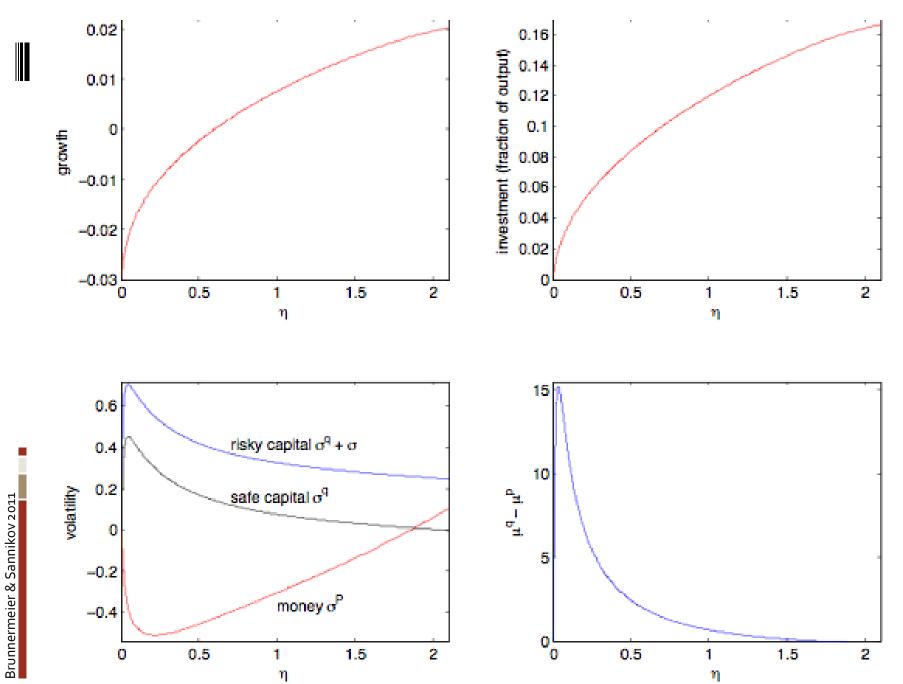
$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^{HH-N}] \ (= if \ \xi_t(\omega) > 0)$$

Simplified Example

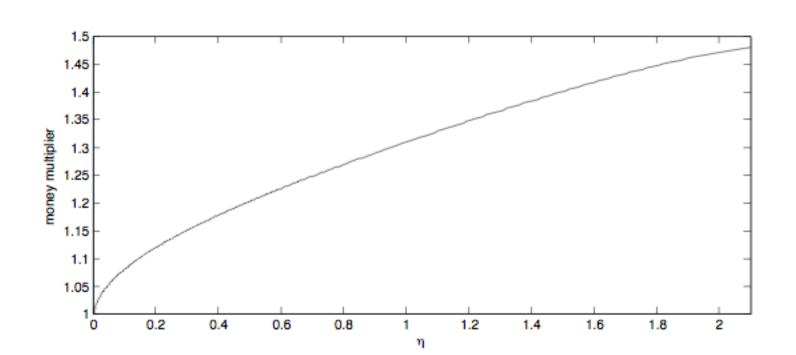
• Three household types ω only

Low: very bad technology, hold money


Medium: risk-free technology,


prefer to hold capital over money

High: risky production – low net worth

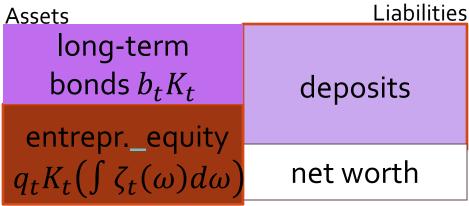

 Intermediaries choose to invest only in the most productive technology (due to high monitoring cost)

Example

Observations

- As η goes down:
- Intermediaries take on less risk, competition decreases
- Price of capital q and investment, i(q), decrease
- Capital is allocated less efficiently
- Unproductive households hold less inside money (loans to intermediaries/entrepreneurs) and more outside fiat money
- Price of outside money goes up (deflation)
- Additional source of amplification in economy with money:
 - value of assets fall
 - value of liabilities increase (due to deflation)

Monetary Policy


- So far, Gold Standard
 - outside money fixed,
 - pays no interest
 - no central bank
 - Introduce consul (perpetual) bond
 pays interest rate in ST (outside) money
- Monetary Policies
 - Short-term interest rate policy
 - Central bank accepts deposits
 & pays interest rate (by printing money)
 - E.g. short-term interest rate is lowered when η becomes small
 - Budget neutral policies (at any point in time)
 - Asset purchase program
 - Bond open market operations (OMO)

Money and Long-term Bond

- Policy instruments (functions of η_t)
 - Central bank pays interest $r_t \ge 0$ on money (by printing)
 - Sets total outstanding value $b_t K_t$ of perpetual bond (by transacting)
- Endogenous market reaction
 - Price of long-term bond (in money, per unit coupon rate)
 - $dB_t = \mu_t^B B_t dt + B_t d\varepsilon_t^B$

intermediaries

- q_t = price of capital
- $p_t K_t$ = value of money

Disentangling Money and Bonds

- Return on money: $dr_t^M = \mu_t^M dt + d\varepsilon_t^M$
- Price of bond: $\frac{dB_t}{B_t} = \mu_t^B dt + d\varepsilon_t^B \quad (\frac{1}{B_t} \text{ is current yield})$
- Return on bonds:

$$dr_t^B = dr_t^M + (\frac{1}{B_t} - r_t + \mu_t^B + Cov[\varepsilon_t^B, \varepsilon_t^M])dt + d\varepsilon_t^B$$

- All monetary instruments: $\frac{d(p_t + b_t)K_t}{(p_t + b_t)K_t} = dr_t^M + \frac{b_t}{p_t + b_t}(dr_t^B dr_t^M)$ $= \left(\mu_t^p + \mu_t^b + \mu_t^K + Cov\left[\varepsilon_t^p + \varepsilon_t^b, \varepsilon_t^K\right]\right)dt + d\varepsilon_t^p + d\varepsilon_t^b + \varepsilon_t^K$
- Collecting shocks: $d\varepsilon_t^M + \frac{b_t}{p_t + b_t} d\varepsilon_t^B = d\varepsilon_t^p + d\varepsilon_t^b + \varepsilon_t^K$

Equilibrium Conditions

1. Market clearing for capital goods and bonds

$$\int \zeta_t(\omega)d\omega + \int \xi_t(\omega)d\omega = 1, \qquad \zeta_t^B + \int \xi_t^B(\omega)d\omega = 1$$

2. Market clearing for output:

$$\int (\zeta_t(\omega) + \xi(\omega))c^{\omega}(q_t)d\omega = \rho(q_t + p_t + b_t)$$

3. Valuation of capital ω -- return = Cov(risk, net worth risk)

$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^N] \quad (= if \ \zeta_t(\omega) > 0)$$

$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^{HH-N}] \quad (= if \ \xi_t(\omega) > 0)$$

4. Valuation of bonds

$$\begin{split} E[dr_t^B - dr_t^M] &= Cov[d\varepsilon_t^B, d\varepsilon_t^N] \qquad \text{(assuming } \zeta_t^B > 0) \\ E[dr_t^B - dr_t^M] &\leq Cov[d\varepsilon_t^B, d\varepsilon_t^{HH-N}] \qquad \text{(= if } \xi_t^B(\omega) > 0) \end{split}$$

Short-term interest rate

- Without long-maturity assets changes in short-term interest rate have no effect
 - Interest rate change equals instantaneous inflation change
- With bonds: of all monetary instruments, fraction $p_t/(p_t+b_t)$ is cash and $b_t/(p_t+b_t)$ are bonds
 - deflationary spiral is less pronounced because as η goes down, growing demand for money is absorbed by increase in value of longterm bonds
 - also, intermediaries hedge risks better by holding long-term bonds
 - however, intermediaries also have greater incentives to increase leverage/risk-taking ex-ante
- Effectiveness of monetary policy depend on maturity structure (duration) of government debt

		New Keynesian	I-Theory
	Risk build-up phase		Endogenous due to accommodating monetary policy
	Net worth dynamics	zero profit no dynamics	dynamic
	State variables	Many exogenous shocks Intermediation/friction shock	Endogenous intermediation shock
	Monetary policy rule	Taylor rule (is approximately optimal only if difference in u' is well proxied by output gap) • spreads • credit aggregates (?)	Depends on signal quality and timeliness of various observables
er & Sannikov 2011	Policy instrument	Short-term interest rate + expectations	Short-term interest rate + long-term bond + expectations
Brunnermeier & S	Role of money	In utility function (no deflation spiral)	Storage Precautionary savings

		Monetarism	I-Theory
	Focus	Price stability	Price and Financial stability
	Theory	Quantity theory of money P*Y = v*M	Distribution of wealth (liquidity, balance sheet)
Brunnermeier & Sannikov 2011		Transaction role of money	endogenous money multiplier
	Monetary aggregates	Mo (Brunner, Meltzer) M1-2(Friedman, Schwartz) Inside and outside money are perfect substitutes	Outside money is only imperfect substitute for inside money (intermediation) Bank underwriting (credit lines) is substitute to bank deposits (difficult to measure M1-3 in a meaningful way)
	Monetary policy	Constant growth of M2 (Friedman)	Recapitalize banks through monetary policy Switch off deflationary pressure

Conclusion

- Unified macromodel to analyze both
 - Financial stability
 - Monetary stability
 - Liquidity spirals
 - Fisher deflation spiral
 - GDP drops are associated with deflation (not inflation) absent monetary policy
- Capitalization of banking sector is key state variable
 - Price stickiness plays no role (unlike in New Keynesian models)
- Monetary policy rule
 - Redistributional feature
 - Time inconsistency problem "Greenspan put"
- Further research
 - "Minsky cycle"

Monitoring technology
 Diamond (1984)
 Homstrom-Tirole (1997)

intermediaries

Assets

Liabilities

entrepreneur deposits equity net worth

heterogeneous agents

deposits

loans to entrepreneurs money