A MACROECONOMIC MODEL WITH A FINANCIAL SECTOR MARKUS BRUNNERMEIER & YULIY SANNIKOY

Princeton University

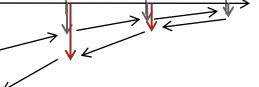
Motivation

- Financial instability
 - Persistence of shocks
 - Amplification
 - Non-linear liquidity spirals adverse feedback loops
 - Go beyond log-linearization
 - Endogenous risk
 - "Volatility paradox"
- Asset pricing implications
 - Fat tails
 - Endogenous correlation structure

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

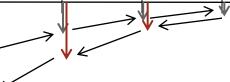


- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)



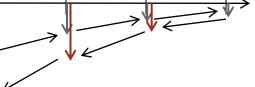
- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)



- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)
- Brunnermeier & Sannikov (2010) only equity constraint
 - Instability and volatility dynamics, volatility paradox

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)

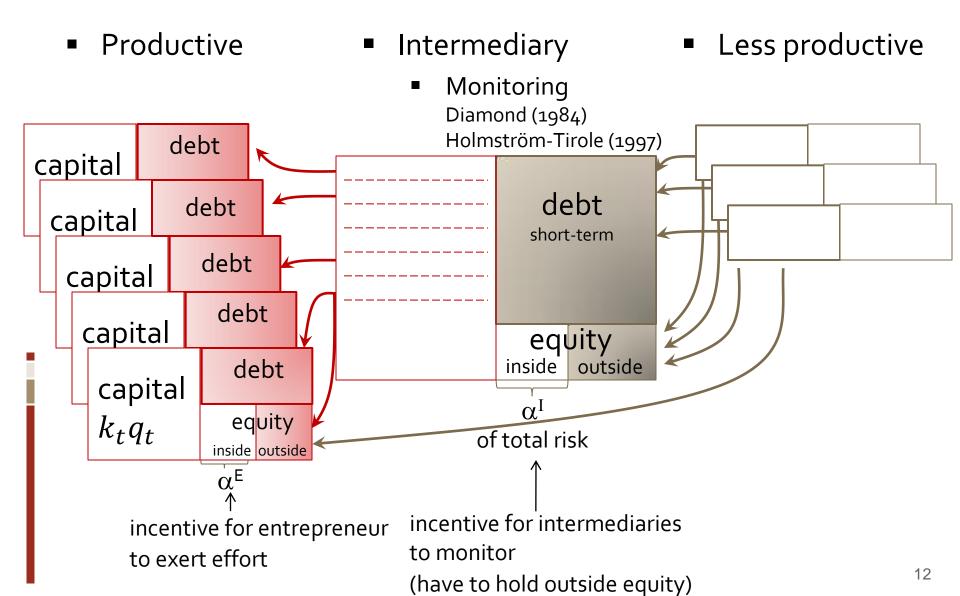


- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)
- Brunnermeier & Sannikov (2010)
 - Instability and volatility dynamics, volatility paradox
- Brunnermeier & Pedersen (2009), Geanakoplos
 - Volatility interaction with margins/haircuts (leverage) debt constraint

Preview of results

- Full equilibrium dynamics + volatility dynamics
 - Near "steady state"
 - (large) payouts balance profit making
 - intermediaries must be unconstrained and amplification is low
 - Below "steady state"
- Crises episodes have significant endogenous risk, correlated asset prices, larger spreads and risk premia
- "Volatility paradox"
- SDF is driven by constraint & $c \ge 0$
- Securitization and hedging of idiosyncratic risks can lead to higher leverage, and greater systemic risk

Model setup



Model details

- Output $y_t = ak_t$ (spend for consumption investment)
- Capital $dk_t = (\Phi(\iota_t) \delta) k_t dt + \sigma k_t dZ_t$ =g investment rate
- Agents
 - More productive
 - U = E_o[$\int_0^\infty e^{-\rho t} c_t dt$]
 - Production frontier

 $a - \iota$

- Less productive
 - U = E_o[$\int_0^\infty e^{-rt} c_t dt$]
 - Production frontier

$$\bullet \underline{\delta} > \delta$$

• $\underline{\iota}_t = 0$

• Endogenous price process for capital $dq_t = \mu_t^q q_t dt + \sigma_t^q q_t dZ_t$ $q_t \ge \underline{q} = \frac{a}{r+\delta}$

g

per unit of capital

if HH limited to buy-hold strategy

Market value of capital/assets $k_t q_t$

- Capital
 - $dk_t = g(\iota)k_t dt + \sigma k_t dZ_t \text{ ``cash flow news'' (dividends a_t)}$
- Price

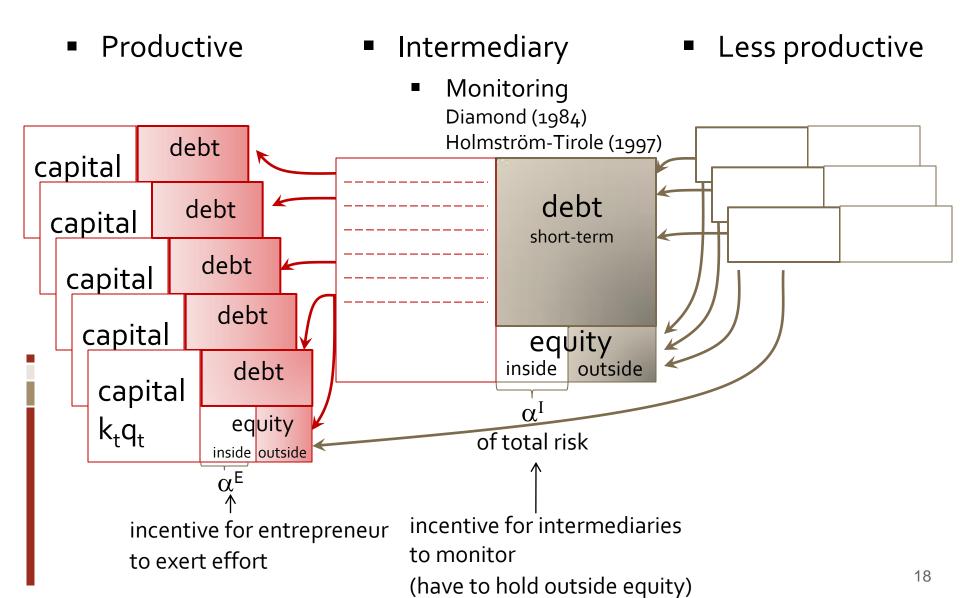
•
$$dq_t = \mu_t^q q_t dt + \sigma_t^q q_t dZ_t$$
 "SDF news"

• $k_t q_t$ value dynamics

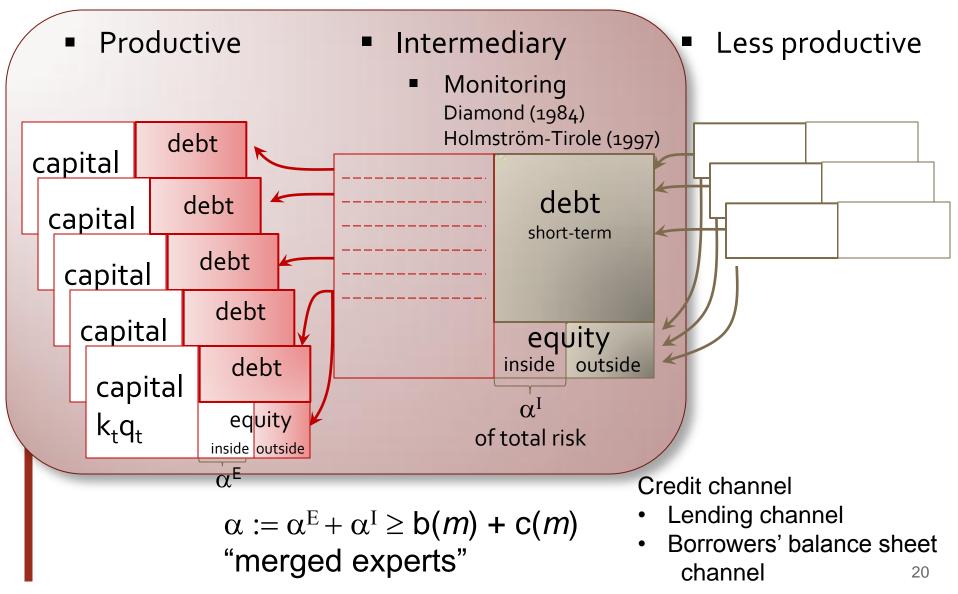
Market value of capital/assets $k_t q_t$

- Capital $dk_t = g(\iota)k_t dt + \sigma k_t dZ_t$ exogenous risk Price $dq_t = \mu_t^q q_t dt + \sigma_t^q q_t dZ_t$ endogenous risk *k_tq_t* value dynamics • $d(k_tq_t) =$ $\left(\Phi(\iota_t) - \delta + \mu_t^q + \sigma\sigma_t^q\right)(k_tq_t)dt + \left(\sigma + \sigma_t^q\right)(k_tq_t)dZ_t$ exogenous endogenous risk
 - Ito's Lemma product rule: $d(X_tY_t) = dX_tY_t + X_tdY_t + \sigma^X\sigma^Y dt$

Interlinked balance sheets



Merging productive HH & Intermediaries



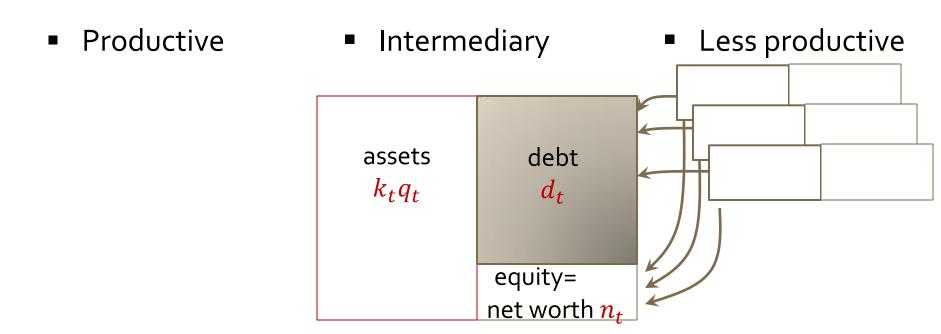
Balance sheet dynamics

Productive

• Intermediary • Less productive assets $k_t q_t$ debt d_t equity= net worth n_t

assume $\alpha = 1$ (for today)

Balance sheet dynamics



$$dr_t^k = \left(\frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma\sigma_t^q\right)dt + \left(\sigma + \sigma_t^q\right)dZ_t$$
$$dn_t = rn_t dt + (dr^k - rdt)(k_t q_t) - dc_t = \cdots$$

Intuition – main forces at work

Investment

- Scale up
 - Scalable profitable investment opportunity
 - Higher leverage (borrow at r)
- Scale back
 - Precaution: don't exploit full (GE) debt capacity "dry powder"
 - Ultimately, stay away from fire-sales prices
 - Debt can't be rolled over if $d > k_t q$ (note, price is depressed)
 - Solvency constraint
- Consumption
 - Consume *early* and borrow $r < \rho$
 - Consume *late* to overcome investment frictions

aggregate leverage!

Definition of equilibrium

- An equilibrium consists of functions that for each history of macro shocks $\{Z_s, s \in [0, t]\}$ specify
 - *q_t* the price of capital
 - kⁱ_t, k^h_t capital holdings and
 - *dcⁱ_t*, *dc^h_t* consumption of representative expert and households
 - ι_t rate of internal investment of a representative expert, per unit of capital
 - *r_t* the risk-free rate
- such that
 - intermediaries and households maximize their utility, given prices q_t as given and
 - markets for capital and consumption goods clear

Solving for equilibrium

- **1.** Households: risk free rate of r_t = households discount rate
 - Makes HH indifferent between consuming and saving, s.t. consumption market clears
 - Required return when their capital >o

$$\frac{\frac{a}{q_t} - \underline{\delta} + \mu_t^q + \sigma \sigma_t^q}{expected \ return \ from \ capital} = r$$

2. Experts choose $\{k_t, \iota_t, c_t\}$ dynamically to maximize utility $\max_{c,\iota,k} E\left[\int_0^\infty e^{-\rho t} dc_t\right] \quad \text{s.t.}$

$$dn_t = -dc_t + (\Phi(i_t) - \delta + \mu_t^q + \sigma \sigma_t^q)(k_t q_t)dt + (\sigma + \sigma_t^q)(k_t q_t)dZ_t + [(a - \iota_t)k_t - rd_t]dt dn_t \ge 0$$

3. Markets clear: total demand for capital is K_t

Solving for equilibrium

- 1. Internal investment (static)
- 2. External investment
 - Given price dynamics
 - Solvency constraint
- 3. When to consume?

ic)

$$k_{t}$$

$$dq_{t}/q_{t} = \mu_{t}^{q}dt + \sigma_{t}^{q}dZ_{t}$$

$$dynamic$$

$$n_{t} \ge 0$$

$$dc_{t}$$

 α 1

Bellman equation w/ value function $\theta_t n_t$

payoff experts generate from a dollar of net worth by trading undervalued capital proportional to net worth, atomistic experts have no price impact

$$\rho \theta_t n_t dt = \max_{k_t, dc_t} E[dc_t + d(\theta_t n_t)]$$

Solving dynamic optimization

Let value of extra \$

$$d\theta_t = \mu_t^{\theta} \theta_t dt + \sigma_t^{\theta} \theta_t dZ_t$$

• recall $dn_t = \dots$

• Use Ito's lemma to expand the Bellman equation $\rho \theta_t n_t dt = \max_{k_t, dc_t} E[dc_t + d(\theta_t n_t)]$

Risk free:
$$\begin{array}{ll}
\overset{r}{\underset{risk-free}{}} + & \underbrace{\mu_{t}^{\theta}}_{E[change \ of \ invest-}} = & \underbrace{\rho}_{required \ return} \\
\overset{r}{\underset{ment \ opportunities]}{}} \\
\end{array}$$
Capital:
$$\begin{array}{ll}
\overset{a}{\underset{required}{}} + & a_{t} + \\
\overset{q}{\underset{required}{}} + & \sigma \\
\overset{q}{\underset{required}{}} - & r \\
\end{array}$$

$$\underbrace{\begin{array}{l}}\underbrace{q_t}_{E[excess\ return\ of\ capital]} \\ \theta_t \geq 1, \text{ and } dc_t^i > 0 \text{ only when } \theta_t = 1. \end{array}$$

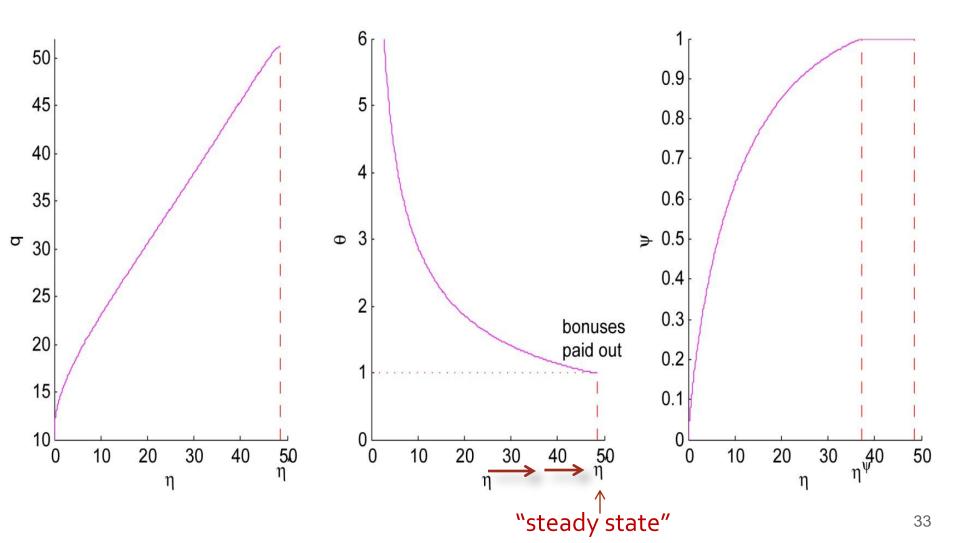
• $e^{-\rho t} \theta_t / \theta_0$ is the experts' stochastic discount factor ²⁸

Scale invariance

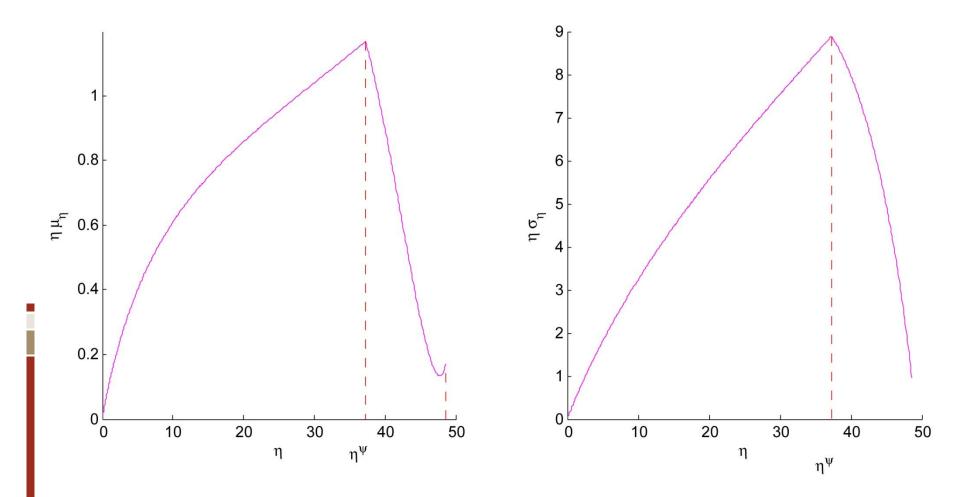
- Model is scale invariant
 - K_t total physical capital
 - N_t total net worth of all experts
- Solve q_t and θ_t as a function of the single state variable
 $\eta_t = \frac{N_t}{K_t}$
- ⇒ Mechanic application of Ito's lemma Pricing equations get transformed into ordinary differential equations for $q(\eta)$ and $\theta(\eta)$

Equilibrium

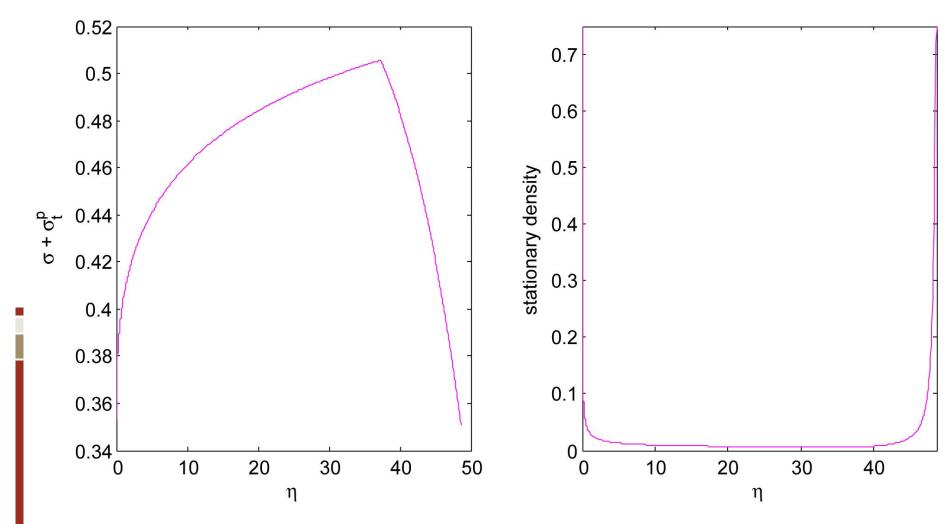
Boundary conditions: $q(o) = \underline{q}, \theta(o) = \infty, \theta(\eta^*) = 1, q'(\eta^*) = \theta'(\eta^*) = o$



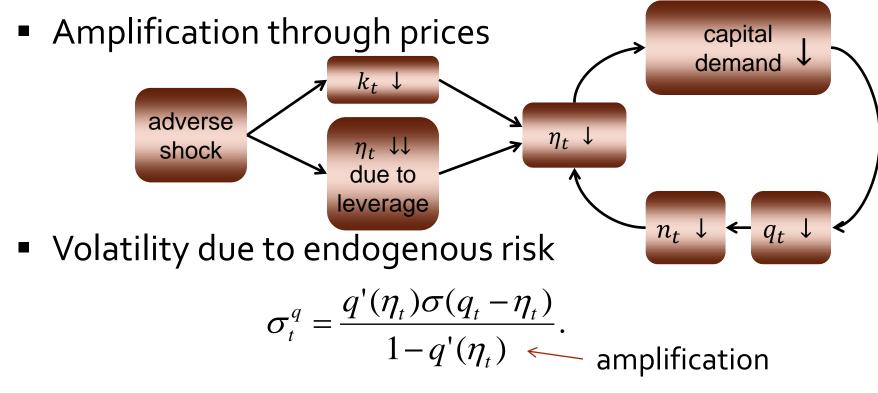
Equilibrium dynamics



Endogenous risk & "Instability"



Endogenous Risk through Amplification



Key to amplification is q'(η)
 Depends how constrained experts are

Dynamics near and away from SS

- Intermediaries choose payouts endogenously
 - Exogenous exit rate in BGG/KM
 - Payouts occur when intermediaries are least constrained

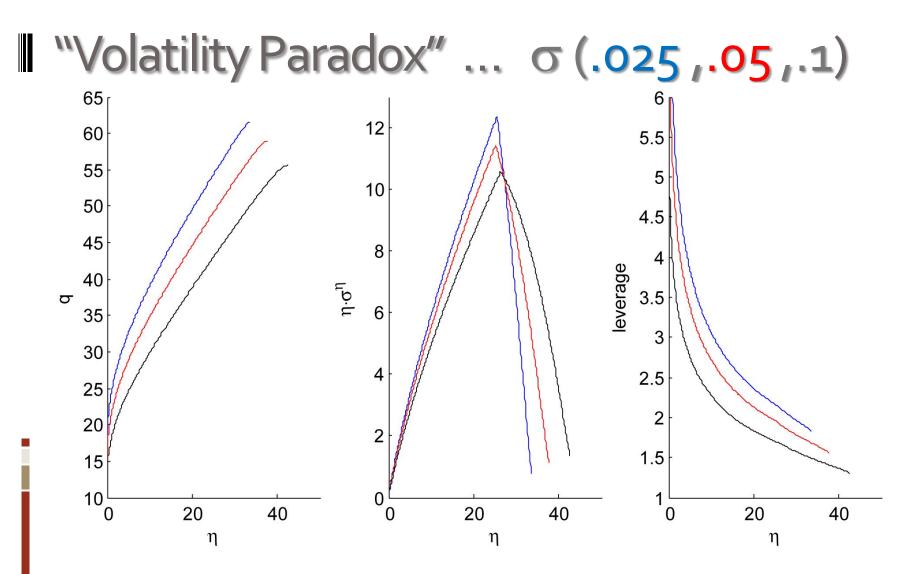
 $q'(\eta^*)=0$

- Steady state: experts unconstrained
 - Bad shock leads to lower payout rather than lower capital demand

$$\quad q'(\eta^*) = 0, \sigma_t^q(\eta^*) = 0$$

- Below steady state: experts constrained
 - Negative shock leads to lower demand
 - $q'(\eta^*)$ is high, strong amplification, $\sigma_t^q(\eta^*)$ is high
 - ... but when η is close to 0, $q \approx \underline{q}(\eta_t), q'(\eta)$ and $\sigma_t^q(\eta^*)$ is low

Note difference to BGG/KM



• As σ decreases, η^* goes down, $q(\eta^*)$ goes up, $\sigma^{\eta}(\eta^*)$ may go up, max σ^{η} goes up

Ext1: asset pricing (cross section)

- Capital: Correlation increases with σ^q
 - Extend model to many types *i* of capital

$$\frac{dk_t^i}{k_t^i} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t + \sigma' dZ_t^i$$

aggregate uncorrelated shock shock

- Experts hold diversified portfolios
 - Equilibrium looks as before, (all types of capital have same price) but
 - Volatility of $q_t k_t$ is $\sigma + \sigma' + \sigma^q$
 - Endogenous risk is perfectly correlated, exogenous risk not
 - For uncorrelated z^i and z^j correlation $(q_t^i k_t^i, q_t^j k_t^j)$ is $(\sigma + \sigma^q)/(\sigma + \sigma' + \sigma^q)$ which is increasing in σ^q

Ext1: asset pricing (cross section)

Outside equity:

- Negative sknewness
- Excess volatility
- Pricing kernel: e^{-rt}
 - Needs risk aversion!

Derivatives:

Volatility smirk

(Bates 2000)

More pronounced for index options (Driessen et al. 2009)

Ext2: Idiosyncratic jump losses

$$dk_t^i = gk_t^i dt + \sigma k_t^i dZ_t + k_t^i dJ_t^i$$

- J_t^i is an idiosyncratic compensated Poisson loss process, recovery distribution F and intensity $\lambda(\sigma_t^q)$
- $q_t k_t^i$ drops below debt d_t , costly state verification

- Time-varying interest rate spread
- Allows for direct comparison with BGG

Ext. 2: Idiosyncratic losses

$$dk_t^i = gk_t^i dt + \sigma k_t^i dZ_t + k_t^i dJ_t^i$$

- J_t^i is an idiosyncratic compensated Poisson loss process, recovery distribution F and intensity $\lambda(\sigma_t^q)$
- $q_t k_t^i$ drops below debt d_t , costly state verification
- Debt holders' loss rate $\lambda(\sigma^p)v\int_{0}^{\frac{a}{v}}(\frac{d}{v}-x)dF(x)$
- Verification cost rate

$$\lambda(\sigma^p) v \int_{0}^{\frac{d}{v}} cxdF(x)$$

- Leverage bounded not only by precautionary motive, but also by the cost of borrowing
- AssetLiabilities $v_t = k_t q_t$ $d_t = k_t q_t n_t$ n_t n_t

Ext2: Equilibrium

- Experts borrowing rate > r
 - Compensates for verification cost
- Rate depends on leverage, price volatility
- $d\eta_t$ = diffusion process (without jumps) because losses cancel out in aggregate

Ext3: Securitization

- Experts can contract on shocks Z_t and dJⁱ_t directly among each other, zero contracting costs
- In principle, good thing (avoid verification costs)
- Equilibrium
 - experts fully hedge idiosyncratic risks
 - experts hold their share (do not hedge) aggregate risk Z_{t} , market price of risk depends on $\sigma_t^{\theta}(\sigma + \sigma_t^q)$
 - with securitization experts lever up more (as a function of η_t) and bonus payments occur "sooner"
 - financial system becomes less stable
 - risk taking is endogenous (Arrow 1971, Obstfeld 1994)

Conclusion

- Incorporate financial sector in macromodel
 - Higher growth
 - Exhibits instability
 - similar to existing models (BGG, KM) in term of persistence/amplification, but
 - non-linear liquidity spirals (away from steady state) lead to instability
- Risk taking is endogenous
 - "Volatility paradox:" Lower exogenous risk leads to greater leverage and may lead to higher endogenous risk
 - Correlation of assets increases in crisis
 - With idiosyncratic jumps: countercyclical credit spreads
 - Securitization helps share idiosyncratic risk, but leads to more endogenous risk taking and amplifies systemic risk
- Welfare: (Pecuniary) Externalities
 - excessive exposure to crises events

Thank you!