Predatory Trading

Markus K. Brunnermeier Lasse Heje Pedersen

Princeton, CEPR, NBER NYU, CEPR, NBER
Motivation

- Forced liquidation of large position:
 - is often associated with low liquidity
 - can be very costly
 - cross-correlation structure goes wild
 - is a key concern in risk management
- This paper: predatory trading,
 - trading that induces and/or exploits other traders’ need to reduce their positions
- Wall Street conventional wisdom:
 - “They’ll let you in, but they won’t let you out.”
Examples

- Amaranth

- Long-Term Capital Management (LTCM)

 "If lenders know that a hedge fund needs to sell something quickly, they will sell the same asset - driving the price down even faster. Goldman Sachs and counterparties to LTCM did exactly that in 1998. Goldman admits it was a seller but says it acted honorably and had no confidential information."
Examples

- Amaranth
- Long-Term Capital Management (LTCM)
- UBS Warburg and Enron

“UBS Warburg’s proposal to take over Enron’s traders without taking over the trading book was opposed on the ground that “it would present a ‘predatory trading risk’, as Enron traders effectively know the contents of the trading book.”
• Amaranth
• Long-Term Capital Management (LTCM)
• UBS Warburg and Enron
• 1987 Crash, Brady Report:
 “several ‘triggers’ ... ignited mechanical, price-insensitive selling by a number of institution following portfolio insurance strategies ... The selling by these investors, and the prospect of further selling by them, encouraged a number of aggressive trading-oriented institutions to sell in anticipation of further declines. ”
Examples

- Amaranth
- Long-Term Capital Management (LTCM)
- UBS Warburg and Enron
- 1987 Crash
- Askin/ Granite vs. Merrill Lynch
- Metallgesellschaft (MG)
Results

- Under which circumstances occurs predatory trading
- Price overshooting
- Systemic risk
- Time-varying liquidity - dries up when it is needed the most
- “Distress” value < orderly liquidation value < paper value
- Contagion
- Risk management, disclosure
Timeline

Investment Phase

Predation
- exogenous default
- single predator
- multiple predator

endogenous default
systemic risk
Model

• Time is continuous \(t \in [0, T] \)

• Large strategic traders — “big players” \(i \in \{1, 2, \ldots, I\} \):
 • trading intensity/speed: \(a^i(t) \)
 • aggregate speed constraint: \(\sum_i a^i \leq A \)

• position at time \(t \):
 \[x^i(t) = x^i(0) + \int_0^t a^i(\tau) d\tau \]

• aggregate holding
 \[X(t) = \sum_{j=1}^{I} x^j(t) \]

• Long-term traders — many small investors:
 • aggregate demand: \(Y(p) = \frac{1}{\lambda}(\mu - p) \)

• Price:
 \[p(t) = \mu - \lambda(S - X(t)) \]
• **Price**

\[p(t) = \mu - \lambda (S - X(t)) \]

where supply \(S \geq l\bar{x} \), hence, \(p(t) \leq \mu \).

• **Price impact of order flow**

 • “permanent”: \(\lambda \sum_i a^i \)
 • “temporary”: \(\gamma (|\sum_i a^i| - A) \) if \(|\sum_i a^i| > A \)

 equal order priority:

 • no temporary price impact for first \(\bar{a} \) buy- (\(a \) sell-) orders
 • trader \(i \)’s temporary price impact cost:

\[
G := \gamma \max \left\{ 0, a^i - \bar{a}, a - a^i \right\}
\]
Equilibrium Price at t_0
Long-Run Price Shift

\[S \]

\[p \]

\[\mu \]

\[\text{lx}(t_0) \]

\[(l-1)x \]
A trader in crisis/default must liquidate: \(\Rightarrow \) forced to sell at a \textit{minimum speed} of \(A/I \)

What triggers default?
- Part 1: bad luck: \(i \) is in crisis at time \(t_0 \)
- Part 2: wealth fall below critical level: \(W^i(t) \leq W \)
Objective Function and Equilibrium

Strategic trader i’s objective is to maximize his expected wealth

$$
\max_{a^i(\cdot) \in A^i} E \left(x^i(T) \mu - \int_0^T [a^i(t)p(t) + G(a^i(t), a^{-i}(t))] dt \right) \quad (*)
$$

Definition
An equilibrium is a set of processes (a^1, \ldots, a^I) such that, for each i, a^i solves $(*)$, taking $a^{-i} = (a^1, \ldots, a^{i-1}, a^{i+1}, \ldots, a^I)$ as given.
Preliminary Analysis

Agent minimizes trading costs as if his own trades do not affect the price.

Lemma

A trader’s problem can be written as

\[
\min_{a^i(t) \in \mathcal{A}^i} \mathbb{E} \int_0^T a^i(t) X^{-i}(t) \, dt
\]

s.t.

\[
x^i(T) = x^i(0) + \int_0^T a^i(t) \, dt = \bar{x} \quad \text{if } i \in \mathcal{I}^p
\]

\[
a^i(t) \in \left[a \left(a^{-i}(t) \right), \bar{a} \left(a^{-i}(t) \right) \right].
\]
Predatory Phase I: Exogenous default

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I^p</td>
<td>λ</td>
<td>μ</td>
<td>S</td>
<td>A</td>
<td>$x(t_0)$</td>
<td>\bar{x}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>140</td>
<td>40</td>
<td>20</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Distressed trader

Single Predator
Price Overshooting

- Exogenous Default
- Single Predator
- Multiple Predators
- Endogenous Default
- Systemic Risk
- Risk Management
- Valuation

Initial Positions
- Necessary Predation

Literature

The diagram illustrates the Price Overshooting model with Friedman predator buys. The graph shows the price over time, with the predator buying at a certain point, leading to a sharp decrease in price. The model is based on the work of Predatory Trading by Brunnermeier & Pedersen.
Price Overshooting

Sell one more share
Price Overshooting

Sell two more shares
Why does the predator keep selling?
Competing Predators Spoil the Prey!

Three examples: $I = 3$, 9, and 27.

<table>
<thead>
<tr>
<th>I^d/I</th>
<th>λ</th>
<th>μ</th>
<th>S</th>
<th>A</th>
<th>$x(t_0) \cdot I$</th>
<th>$\bar{x} \cdot I$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{3}$</td>
<td>1</td>
<td>140</td>
<td>40</td>
<td>20</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

![Graph 1](image1.png)

![Graph 2](image2.png)
Price Overshooting

Summary

1. If "money on the sideline", $\bar{x} - x(t_0)$, is small, then
 \Rightarrow Predatory Trading and
 \Rightarrow Price overshooting

2. Competition among predators reduces price overshooting.

3. If "money on the sideline" is large, there is no predatory trading or price overshooting.
Predatory Phase II: Endogenous Default

- trader defaults if his marked-to-market wealth drops below W
- Others’ selling lowers price and erodes trader’s wealth even further
 \Rightarrow trader’s wealth can drop below W after t_0
- survival hurdle, $W(\cdot)$, is even higher
 \Rightarrow better to start selling now if wealth is lower than survival hurdle
- the more traders are expected to default, the higher is the survival hurdle $W(I^d)$ since
 - predation is more fierce
 - more traders have to fully liquidate their position
Endogenous Default
Predatory Trading
Brunnermeier & Pedersen

Model
Predation
Exogenous Default
Single Predator
Multiple Predators
Endogenous Default
Systemic Risk
Risk Management Valuation

Systemic Risk

\[W(I) \]
\[W(4) \]
\[W(3) \]
\[W(2) \]
\[W(1) \]
\[W \]

Initial Positions
Necessary Predation

Literature
In testimony to the House of Representatives, 10/1/98:

“...the act of unwinding LTCM’s portfolio in a forced liquidation would not only have a significant distorting impact on market prices but also in the process could produce large losses, or worse, for a number of creditors and counterparties, and for other market participants who were not directly involved with LTCM.”
Risk Management

- Risk management should take into account that in times of crisis
 - predatory trading lowers liquidity
 - predatory trading affects correlation structure of assets
 - other large traders’ positions matter: “dealer exit stress test” (Risk Magazine Nov. 2003)
 - rigid risk management strategies can be exploited by predators
- These effects are more severe because $W(I^d)$ is higher
 - in markets that are typically less liquid (higher λ)
 - for open-end funds which may suffer fund outflows
Valuation with Endogenous Liquidity

Three levels of valuation:

1. “paper value”:
2. “orderly liquidation value”:
3. “distressed liquidation value”:

\[V_{\text{paper}} > V_{\text{orderly}} > V_{\text{distressed}} \]
Predatory Trading HAS TO Occur in Equilibrium

“little” money on the sideline ⇒ Predatory Trading

\[\bar{x} - x(t_0) \text{ is low} \]

Nobody defaults

\[t_0 \leq t \]

Someone defaults

Investment phase predatory phase
Predatory Trading HAS TO Occur in Equilibrium

"lots of" money on the sideline ⇒ No Equilibrium
$ar{x} - x(t_0)$ is large

Nobody defaults
Someone defaults

Investment phase

$p(t)$

$p(t_0)$
Further Implications of Predatory Trading

- Front-running
 - predators sell first and buy when distressed traders sell
- Batch Auctions, Trading Halts, Circuit Breakers
 - uniform price execution lowers price overshooting
- Bear Raids and the Uptick Rule
- Contagion
- Collusion
Collusion

• Predators have an incentive to collude:
 • to trigger many defaults
 • to exploit fully the defaults

• Collusive and non-collusive outcomes qualitatively different
Related Literature

- Cai (2002)
- Friedman (1953); DeLong, Shleifer, Summers, and Waldmann (1990a)
- Attari, Mello, and Ruckes (2002);
- Bernardo and Welch (2002)
Conclusion

- Predatory trading important
 - for large traders
 - in illiquid markets
- Predatory trading can lead to
 - price overshooting
 - low distressed liquidation values (time-varying liquidity)
 - systemic risk
 - different cross-correlation across assets
 - contagion