Institutional Finance
 Financial Crises, Risk Management and Liquidity

Markus K. Brunnermeier

Preceptor: Dong Beom Choi

Princeton University

III Lending/Insuring vs. Trading

■ Lending/Borrowing + Insuring
■ = trading assets/securities

- Bond
- Stock
- Derivatives, e.g. CDS
!■ At what price/rate?
- How are different asset prices linked?
- How do institutional investors constraint affect asset prices?
(not only utility function of representative agent matters)

III Pricing Principal I

- No risk-free Arbitrage
- Relative vs. Absolute Asset Pricing

III How to deal with complexity?

- Subtasks
- Independence/separation results
- Simplify
- form models - simplified pictures of reality
- Standardize

See Brunnermeier \& Oehmke "Complexity in Financial Markets"

III Abstraction - Event tree

IIILaw of one Price,No risk-free Arbitrage

- Law of one price (LOOP)
- Securities (strategies) with the same payoff in the future must have the same price today.
- Price of actual security = price of synthetic security
- No (risk-free) Arbitrage
- There does not exists an arbitrage strategy that costs nothing today, but yields non-negative and a strictly positive future payoff in at least one future state/event and
- There does not exist an arbitrage strategy that yields some strictly positive amount today and has non-negative payoffs at later point in time.
- No Arbitrage \rightarrow LOOP

IIIArbitrage Strategy

- Static:
- Acquire all positions at time t
- No retrades necessary

Dynamic:

- Future retrades are necessary for an arbitrage strategy
- Retrades depend on price movements

III Abstraction - Event tree, again

III Bond - Simplest Event Tree

- A zero-coupon bond pays $\$ 100$ at maturity with no intermediate cashflows
- The future value ($\mathrm{FV}=\$ 100$) and the present value ($\mathrm{PV}=$ bond price, B) are related by the following equation: $\mathrm{PV} x(1+r)=\mathrm{FV}$, where R is the periodic interest rate
- Equivalently, PV = FV / (1+r)
- The bond price is: $B=\$ 100 /(1+r)$

III Bond Pricing Example

$$
1+r_{0,12}=\left(1+r_{0,6}\right)\left(1+r_{6,12}\right)
$$

Ill Law of One Price

Payoffs to purchasing the securities

	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{1}$
Long Bond	$-B_{\text {Long }}$	0	100
Short Bond	$-B_{\text {Short }}$	100	
Futures	0	$-F$	100

Suppose you want $\$ 100$ in one year

	0	0.5	1
Long Bond	$-\mathrm{B}_{\text {Long }}$	0	100
Buy 1 long-term bond			

Alternatively

	0	0.5	1
Short Bond	$-B_{\text {Short }} \times F / 100$	F	
Futures	0	$-F$	100
Net	$-B_{\text {Short }} \times F / 100$	0	100

2 ways of getting the same payoffs should have the same price:

$$
\mathrm{B}_{\text {Short }} \times \mathrm{F} / 100=\mathrm{B}_{\text {Long }}
$$

III Synthetic Long-term Bond

- The pricing relation: $\mathrm{B}_{12}=\mathrm{B}_{6} \times \mathrm{F} / 100$, can be rearranged to solve for any of the securities
- The RHS represents a "synthetic" long-term bond
(1 futures contract and F/100 short-term bonds)
- For example, $\mathrm{F}=\mathrm{B}_{12} / \mathrm{B}_{6} \times 100$
- If this pricing relation does not hold, then there is a risk-free profit opportunity
- a risk-free arbitrage

III Bond Pricing Example

- What if you observe the following prices:
- Long Bond $=\$ 94.50$
- Short Bond = $\$ 95.00$
- Futures = \$98.00
- Synthetic LBond = BShort x F/100 = \$93.10

Arbitrage Trade

	0	0.5	1
Sell 1 Long Bond	94.50	0.00	-100.00
Buy 0.98 Short Bonds	-93.10	98.00	0.00
Buy 1 Futures	0.00	-98.00	100.00
Net	1.40	0.00	0.00

II Example in International Setting

- Any one of the following four securities:
- Domestic bond
- Foreign bond
- Spot currency contract
- Currency futures contract
can be replicated with the other three.
- Create a synthetic $\$ / £$ futures contract using:
- US bond = \$95
- UK bond = £96
- Pounds spot = \$1.50/£

|l| Bid-Ask Spread limits arbitrage

- What is the market price for a security?
- Ask:
- Bid or offer: the market price to sell
- prices at which market orders are executed
- If we view the midpoint as the "fair value", then $1 / 2 \times($ Ask-Bid $)=$ transaction cost per unit traded
- A round-trip market order transaction will pay the full spread
- If the transaction size exceeds quantity being offered at the best bid or ask?
- Transaction cost is an increasing function of order size
- UpTick records the difference between a trade's average transaction price and mid-price prevailing immediately prior to the trade as the trade's transaction cost.

III Arbitrage with Bid-Ask Spread

- The law of one price holds exactly only for transactable prices (i.e. within the bounds)
- Pricing relation: BLong $=$ BShort $\times \mathrm{F} / 100$

$$
B_{1-y r}^{\text {Synthetic }}=\frac{F}{100} \cdot B_{6-m o}
$$

- Total cost of buying the Long Bond synthetically:

$$
B_{1-y r}^{\text {SyntheticASK }}=\frac{F^{A S K}}{100} \cdot B_{6-m o}^{A S K}
$$

III Arbitrage with Bid-Ask Spread

$$
\begin{gathered}
\text { Case } 1 \\
B^{A s k}-B^{\text {SynthAsk }} \\
B^{\text {Bid }}-B^{\text {SynthBid }}
\end{gathered}
$$

Case 2
Case 3

- Buy and sell direct
- No arbitrage
- Buy direct; Sell synthetic
- No arbitrage
- Buy synthetic; sell direct
- Arbitrage

II Margins limit arbitrage

- Positive size is limited
- Long an asset

■ $\mathrm{m} \%{ }^{*} \mathrm{p}^{*} \mathrm{x} \leq$ marked-to-market wealth

- Short an asset
- Sell asset, receive p = \$100
- Put $p+m \%{ }^{*} p$ in margin account
- Use up $m \%^{*}$ p of your own financial wealth
- Cross-Margining
- Netting: Only perfectly negatively correlated assets
- Portfolio margin constrained
- If better hedge one can take larger positions

Il More on Margins

■ How much leverage should your broker allow you?

- Depends on interest they charge \Leftrightarrow risk they are willing to bear
- Most brokers charge an interest rate that is close to the Federal Funds rate (riskfree rate)
- Hence, from broker's perspective the loan must be close to riskfree (very small probability of you defaulting)
- Broker requires equity cushion sufficient to keep the loan close to riskfree, subject to constraints imposed by the Federal Reserve and exchanges
- Cross-margining/Netting: Most brokers give preferred margin terms to clients with low total portfolio risk
- upTick requires 50% margin to initiate most equity and bond positions
- upTick evaluates the overall risk of portfolios rebates some of the reserved equity for perfectly offsetting positions

Ill More on Margins

\$

- No constraints

Initial Margin (50\%) —— Reg. T 50%

- Can't acquire new position;
- Not received a margin call.

Maintenance Margin (35\%)— NYSE/NASD 25\% long

- Receive margin call 30 \% short
- Fixed amount of time to get to a specified point above the maintenance level before your position is liquidated.
- Failure to return to the initial margin requirements within the specified period of time results in forced liquidation.

Minimum Margin (25\%)

- Immediate liquidated of position

Ill Introduction

- Main Principles of Finance
- One principle per lesson - see syllabus
- Focus on institutional features (frictions matter)

■ "UpTick" Trading software developed by

- Joshua Coval (HBS)
- Eric Stafford (HBS)
- If software breaks down, we will switch to a standard lecture
- Student presentation (Masters students)

III Philosophy of UpTick

- Price is affected by
- historical real price data
- trading of students

Price is loosely anchored around real historical price data

1. Computer traders/market makers find it more and more profitable to trade towards historical price the further price deviates from historical time series
2. Signals reveal historical price x periods ahead
3. Final liquidity value equals historical price

- - Realistic trading screen
- Montage - limit order book (shows bid-ask spread + market depth)
- Event window
- Personal Calculator (Excel)

Ill Simulation - Law of One Price

III Three simulations

1. Equal liquidity for all three assets

- 12-month bond
- 6-month bond
- Future

2. 12-month bond is less liquid
; 3. 6-month bond is less liquid

+ negative endowment in 6-month bond

III Actual vs. synthetic 6-month bond

III More about the simulations

- It's better to study synthetic short-term bond or futures contract (since every 6 months they converge to 100)
- Big jumps are created by computer traders.
- Students should have noticed that short-term bond has to go to 100 after 6 months (expect a jump and trade very aggressively)
- Mispricing was sometimes up to $\$ 4$ - be more aggressive.
- Quantity of trades
- Average quantity for which the bid and ask was valid was 600 contracts
- For roughly the next 200 contracts the price moved by 21 bp (. 21%)
- Often there was significant mispricing (600 contracts make $\$ 1$ and for another 1200 contracts make $.8 \$$ since price moves only $.21 \%$)
- Effect of Cross-margining:
- Creates incentive to perfectly hedged because one can take larger positions
- Simulation with illiquid short-term bond and large short position:

Idea - get out of short-position by taking a long-position in synthetic short-term bond.

Ill Law of one Price - No (risk-free) Arbitrage

- Powerful argument - important principle
- Relative asset prices - consistency check
- Not absolute - what drives true price?
- Main Lessons
- Transaction cost matter! (bid-ask spread)
- Experiment to study depth of the market
- Don't get out of illiquid short position - hedge with synthetic bond!
- Make sure to create perfectly hedged position!

