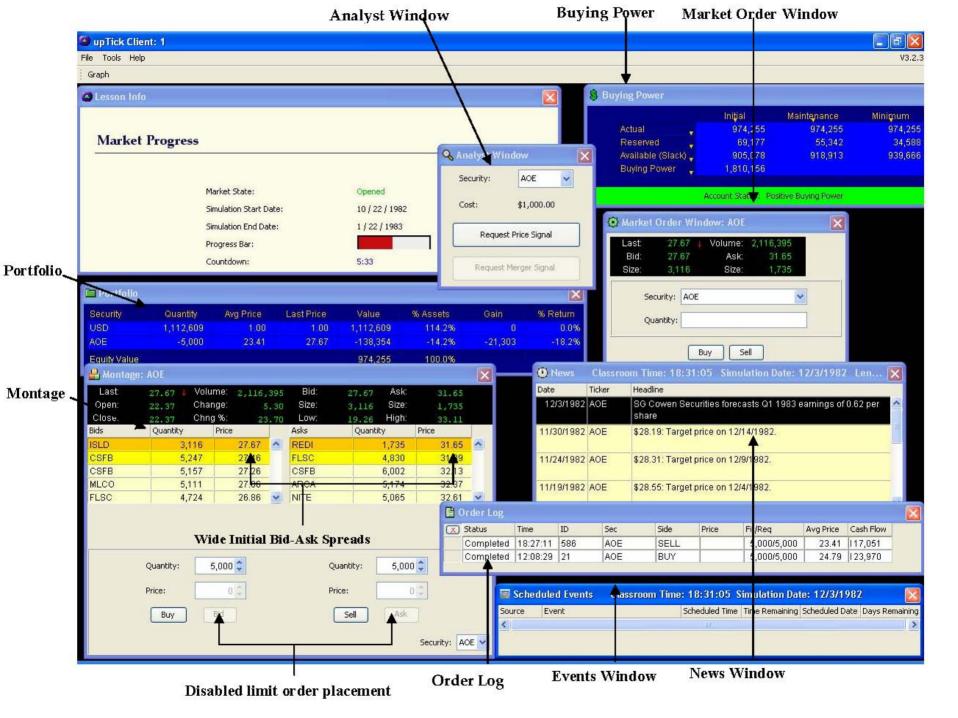


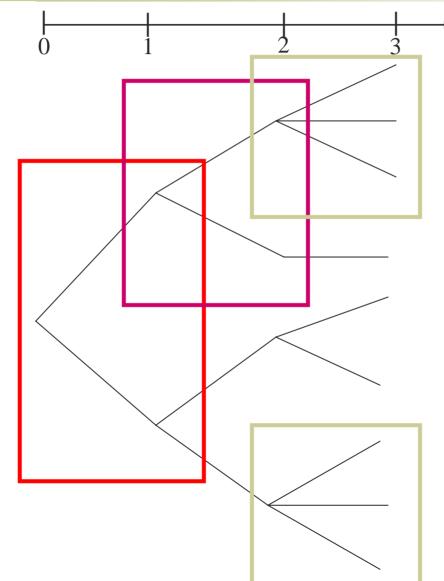
Markus K. Brunnermeier


Preceptor: Filippos Papakonstantinou

Princeton University

Introduction

Main Principles of Finance


- One principle per lesson see syllabus
- Focus on institutional features (frictions matter)
- "UpTick" Trading software developed by
 - Joshua Coval (HBS)
 - Eric Stafford (HBS)
 - If software breaks down, we will switch to a standard lecture
- Student presentation

Philosophy of UpTick

- Price is affected by
 - historical real price data
 - o trading of students
 - Price is loosely anchored around real historical price data
 - 1. Computer traders/market makers find it more and more profitable to trade towards historical price the further price deviates from historical time series
 - 2. Signals reveal historical price x periods ahead
 - 3. Final liquidity value equals historical price
- Realistic trading screen
 - Montage limit order book (shows bid-ask spread + market depth)
 - Event window
- Personal Calculator (Excel)

Abstraction – Event tree

Markus K.

Brunnermeier 9/14/2006

Law of one Price, No risk-free Arbitrage

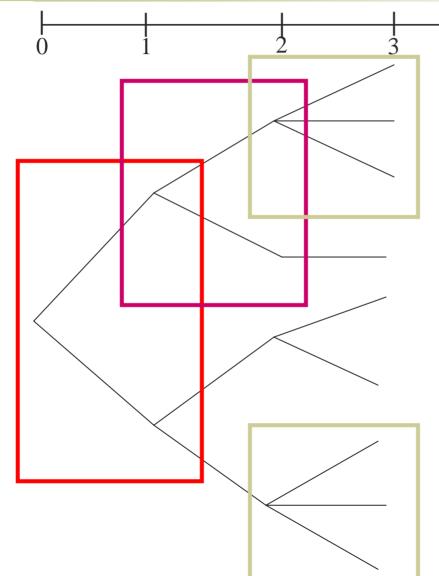
Law of one price (LOOP)

- Securities (strategies) with the same payoff in the future must have the same price today.
- Price of actual security = price of synthetic security
- No (risk-free) Arbitrage
 - There does not exists an arbitrage strategy that costs nothing today, but yields non-negative and a strictly positive future payoff in at least one future state/event AND
 - There does not exist an arbitrage strategy that yields some strictly positive amount today and has non-negative payoffs at later point in time.

No Arbitrage U LOOP Brunnermeier

9/14/2006

Arbitrage Strategy

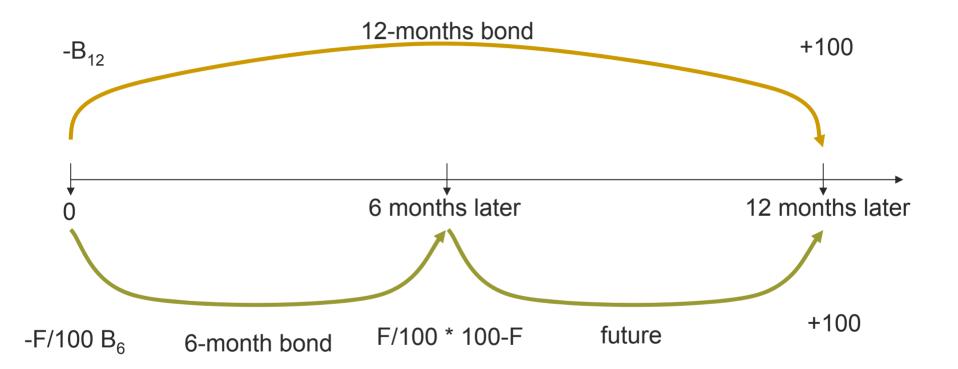

Static:

- acquire all positions at time t
- no retrades necessary

Dynamic:

- Future retrades are necessary for an arbitrage strategy
- Retrades depend on price movements

Abstraction – Event tree, again


Markus K.

Brunnermeier 9/14/2006

Bond - Simplest Event Tree

- A zero-coupon bond pays \$100 at maturity with no intermediate cashflows
- The future value (FV=\$100) and the present value (PV=bond price, B) are related by the following equation: PV x (1+R) = FV, where R is the periodic interest rate
- Equivalently, PV = FV / (1+R)
- The bond price is: B = \$100 / (1+R)

Bond Pricing Example

$$1+r_{0,12} = (1+r_{0,6})(1+r_{6,12})$$

Markus K. Brunnermeier 9/14/2006

Law of One Price

Payoffs to purchasing the securities

	0	0.5	1
Long Bond	-B _{Long}	0	100
Short Bond	-B _{Short}	100	
Futures	0	-F	100

Suppose you want \$100 in one year

	0	0.5	1
Long Bond	-B _{Long}	0	100
Buy 1 long-term bond			

O 0.5 1 Short Bond -B_{Short} x F/100 F Futures 0 -F 100 Net -B_{Short} x F/100 0 100

Markus K. Brunnermeier 9/14/2006 2 ways of getting the same payoffs should have the same price:

Synthetic Long-term Bond

- The pricing relation: B₁₂ = B₆ x F/100, can be rearranged to solve for any of the securities
 - The RHS represents a "**synthetic**" **long-term bond** (1 futures contract and F/100 short-term bonds)
- For example, $F = B_{12} / B_6 \times 100$
- If this pricing relation does not hold, then there is a risk-free profit opportunity
 - a risk-free arbitrage

Bond Pricing Example

What if you observe the following prices:

- Long Bond = \$94.50
- Short Bond = \$95.00
- Futures = \$98.00

Arhitrano Trado

Synthetic LBond = BShort x F/100 = \$93.10

Aibiliage Tidde				
	0	0.5	1	
Sell 1 Long Bond	94.50	0.00	-100.00	
Buy 0.98 Short Bonds	-93.10	98.00	0.00	
Buy 1 Futures	0.00	-98.00	100.00	
Net	1.40	0.00	0.00	

Markus K. Brunnermeier 9/14/2006

Example in International Setting

- Any one of the following four securities:
 - Domestic bond
 - Foreign bond
 - Spot currency contract
 - Currency futures contract

can be replicated with the other three.

- Create a synthetic \$/£ futures contract using:
 - O US bond = \$95
 - UK bond = ± 96
 - Pounds spot = 1.50/E

Bid-Ask Spread limits arbitrage

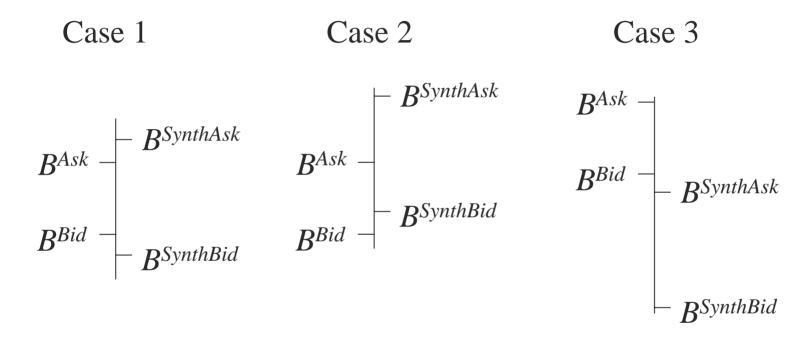
What is the market price for a security?

- Ask the market price to buy
- Bid or offer the market price to sell
- These are the prices at which a **market order** will be executed
- If we view the midpoint as the "fair value", then ½ x (Ask-Bid) = transaction cost per unit traded
 - A round-trip market order transaction will pay the full spread
- If the transaction size exceeds quantity being offered at the best bid or ask?
 - T-cost is an increasing function of order size
- UpTick records the difference between a trade's average transaction price and mid-price prevailing immediately

Markus K. prior to the trade as the trade's transaction cost. Brunnermeier 9/14/2006 1-15

Arbitrage with Bid-Ask Spread

- The law of one price holds exactly only for transactable prices (i.e. within the bounds)
- Pricing relation: BLong = BShort x F/100


$$B_{1-yr}^{Synthetic} = \frac{F}{100} \cdot B_{_{6-mo}}$$

Total cost of buying the Long Bond synthetically:

$$B_{1-yr}^{SyntheticASK} = \frac{F^{ASK}}{100} \cdot B_{_{6-mo}}^{ASK}$$

Markus K. Brunnermeier 9/14/2006

Arbitrage with Bid-Ask Spread

- Buy and sell direct
- No arbitrage

- Buy direct; Sell synthetic
- No arbitrage

- Buy synthetic; sell direct
- Arbitrage

Margins limit arbitrage

Positive size is limited

- Long an asset
 - m% * p * x ≥ marked-to-market wealth
- Short an asset
 - Sell asset, receive p = \$100
 - Put p + m*p in margin account
 - Use up m*p of your own financial wealth
- Cross-Margining
 - Netting: Only perfectly negatively correlated assets
 - Portfolio margin constrained
 - If better hedge one can take larger positions

More on Margins

- How much leverage should your broker allow you?
 - Depends on interest they charge $\leftarrow \rightarrow$ risk they are willing to bear
- Most brokers charge an interest rate that is close to the Federal Funds rate (riskfree rate)
- Hence, from broker's perspective the loan must be close to riskfree (very small probability of you defaulting)
 - Broker requires equity cushion sufficient to keep the loan close to riskfree, subject to constraints imposed by the Federal Reserve and exchanges
 - **Cross-margining/Netting:** Most brokers give preferred margin terms to clients with low total portfolio risk
 - upTick requires 50% margin to initiate most equity and bond positions
 - upTick evaluates the overall risk of portfolios rebates some of the reserved equity for perfectly offsetting positions

More on Margins

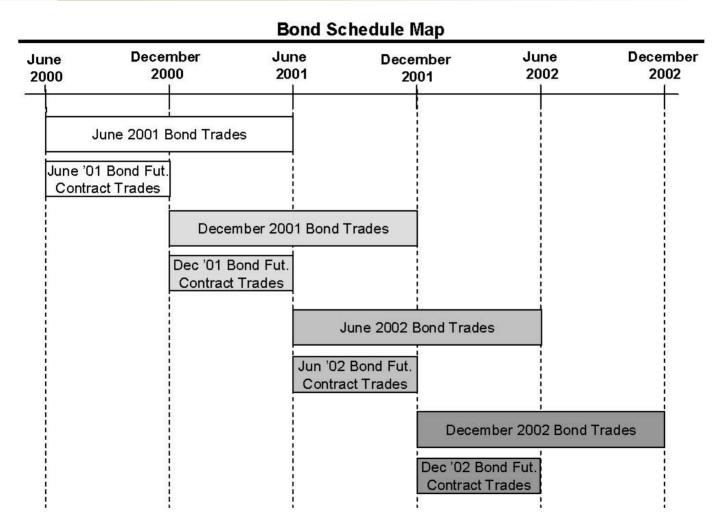
\$

No constraints

Initial Margin (50%) _____ Reg. T 50 %

- Can't add to your position;
- Not received a margin call.

Maintenance Margin (35%) NYSE/NASD 25% long 30% short


- Fixed amount of time to get to a specified point above the maintenance level before your position is liquidated.
- Failure to return to the initial margin requirements within the specified period of time results in forced liquidation.

Minimum Margin (25%)

• Position is always immediately liquidated

Markus K. Brunnermeier 9/14/2006

Simulation – Law of One Price

Three simulations

1. Equal liquidity for all three assets

- o 12-month bond
- 6-month bond
- o Future
- 2. 12-month bond is less liquid
- 3. 6-month bond is less liquid
 + negative endowment in 6-month bond