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Il OVERVIEW

1. Portfolio Theory in a Mean-Variance world
2. Capital Asset Pricing Model (CAPM)

3. Estimating Mean and CoVariance matrix

4. Black-Litterman Model

o Taking a view
o Bayesian Updating



Il EXPECTED RETURNS & VARIANCE

« Expected returns (linear)

p = Elry,] = w;u;, where each w; = Z:hjhj
J

= Variance
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Il ILLUSTRATION OF 2 ASSET CASE

= For certain weights: w, and (1-w,)
= wy Efry]+ (1-wy) E[r,]
o’ =W, 6,° + (1-w,)? 6,° + 2 wy(1-w,)o; 5, P 5
(Specify 02p and one gets weights and p's)
» Special cases [w, to obtain certain o]
o p1,=1 = w,;=(+/-0,-07,)/(c,-05))
0o P1,=-1 = w,=(+/-6,+0,)/ (0, +05,)



l2 ASSETS p = 1

op = |’UJ10'1 —+ (1 — w1)02| Hence, w, — 4o, —0o
tp = wipr + (1 — wy)pe o1z
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The Efficient Frontier: Two Perfectly Correlated Risky Assets



l2 ASSETS p = -1

For p,, =-1: op = |wior — (1 — wi)os| Hence, w; = Eyf&
o1+toso
tp = wipy + (1 — wi)ps
a 01 + 2l

_ 0
M= 530t T oiFo; © oy F0y P

E[rz] = B
«<~—— slope: '(‘;i—+’(j—;c7p
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Efficient Frontier: Two Perfectly Negative Correlated Risky Assets



2 ASSETS -1<p< 1

E[r,] (
Elr,]

v

Efficient Frontier: Two Imperfectly Correlated Risky Assets



12 ASSETS o, =0

v

The Efficient Frontier: One Risky and One Risk Free Asset



Il EFFICIENT FRONTIER WITH N RISKY ASSETS

« A frontier portfolio is one which displays minimum variance
among all feasible portfolios with the same expected portfolio

return. R
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l EFFICIENT FRONTIER WITH N RISKY ASSETS

oY i’

g_)\ F —wte=0
L T1
O~ 1l —w’l =0

The first FOC can be written as:

Vwp = Ae +y1 or
wp = AV le +~4V 711
Twp = ATV le) +4(eTV 1)
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l EFFICIENT FRONTIER WITH N RISKY ASSETS

Noting that e’ w, = w' e, using the first foc, the second foc
can be written as

Elrp] = eTwp = )\\(GTV_le)J-I—W\(eTV_ll)J

=B =:A
pre-multiplying first foc with 1 (instead of e') yields

1w, = wgl = 11v-le) +~y(1Tv—11) =1
1=x1'v i) +y(@lv 1y

: = A =:C
Solving both equations for A and y
_CE-A _ B—AFE
A= =FH=and v = =5

where D = BC — A?.
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l EFFICIENT FRONTIER WITH N RISKY ASSETS

Hence, w, = A Ve +v V1 becomes

W _ CE_AV_le-l— B_AEV_ll
D D

P

(vector) (vector)

A (scalar) v (scalar)

- % [B(v11)-A(V )]+ % c(ve)- AV 1)E

» Result: Portfolio weights are linear in expected

portfolio return
w.=9g + h E

P

IfE=0, Wp=g

Hence, g and g+h are portfolios
fE=1,  wp=g+h 5and e P

on the frontier. 12



Il EFFICIENT FRONTIER WITH RISK-FREE ASSET

Market Portfolio

Expected Return
o
5

. Portfolio with highest

sharp ratio

0.05 0.1 0.15 0.2 0.25

The Efficient Frontier: One Risk Free and n Risky Assets
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lEFFICIENT FRONTIER WITH RISK-FREE ASSET

MiNy, %wTVw
s.t. wlie4 (1 — le)rf = E[rp]

FoC: Wwp = )\V_l(e—rfl)

Elrp]—ry

Multiplying by (e—r, 1)" and solving for A yields A\ =

i (e—rfl)TV_l(e—rfl)

w, =V He—rsl) E[TIZ}];”
\_v_u/
nXx1

where H = \/B — 2Ar; + CT? is a number
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lEFFICIENT FRONTIER WITH RISK-FREE ASSET

= Result 1: Excess return in frontier excess return

Covlry,rp] = wZpr
Eir, | —r
= v ) P
Elrq]—ry
- (Elrgl —r)([Elrp) —7y)
— e
N2
I VGT[Tpvrp] — (E[Tp;_lz Tf)
Covlrg, rp]
F — —_— E —
ral =T = et PP T
3=ﬁq,p

Holds for any frontier portfolio p, in particular the market portfolio! 15



Il EFFICIENT FRONTIER WITH RISK-FREE ASSET

» Result 2: Frontier is linear in (E[r], o)-space

(Elrp] —7)°
Varry,,rp,] = pH2 !
Elr,] = ry+ Hoy,
F —
H p— [Tp] "f where H is the Sharpe ratio

Op
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Il TWO FUND SEPARATION

= Doing it in two steps:
o First solve frontier for n risky asset
o Then solve tangency point

« Advantage:

o Same portfolio of n risky asset for different agents
with different risk aversion

o Useful for applying equilibrium argument (later)
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Il TWO FUND SEPARATION

Market Portfolio

Price of Risk
= highest
Sharpe ratio

Expected Return
(=]
=

¥~ Portfolio with highe st

sharp ratio

0.05 0.1 0.15 0.2 0.25

Optimal Portfolios of Two Investors with Different Risk Aversion
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Il MEAN-VARIANCE PREFERENCES

= U(u,, o,) with 5;2 > 0, gg <0

TN

o Example: E[W] - 2Var[W]
» Also in expected utility framework
o quadratic utility function (with portfolio return R)
U(R)=a+bR+cR?
vNM: E[U(R)] = a + b E[R] + ¢ E[R?]
=a+bp, + cp?+co)?
= 81y Op)

o asset returns normally distributed = R=>, w! r normal

- if U(.) is CARA = certainty equivalent = i, - p,/267,
(Use moment generating function)
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Il OVERVIEW

1. Portfolio Theory in a Mean-Variance world
2. Capital Asset Pricing Model (CAPM)

3. Estimating Mean and CoVariance matrix

4. Black-Litterman Model

o Taking a view
o Bayesian Updating
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2. EQUILIBRIUM LEADS TO CAPM

» Portfolio theory: only analysis of demand
o price/returns are taken as given
o composition of risky portfolio is same for all investors

« Equilibrium Demand = Supply (market portfolio)

= CAPM allows to derive

i o equilibrium prices/ returns.
I o risk-premium
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| THE CAPM WITH A RISK-FREE BOND

« The market portfolio is efficient since it is on the
efficient frontier.

» All individual optimal portfolios are located on
the half-line originating at point (O,r;).

. The slope of Capital Market Line (CML): ERul=R:

O'm

i
: E[RM]_Rf

O'm

E[R,]1=R, +

P

22



Il CAPITAL MARKET LINE
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Il SECURITY MARKET LINE

E(r) Y
SML
E(r)
E(rM)
:
" ; 5
Covlr;,ru]

Blrs) = s = 15 + gt s (Blrad =)
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Il OVERVIEW

1. Portfolio Theory in a Mean-Variance world
2. Capital Asset Pricing Model (CAPM)
3. Estimating Mean and CoVariance matrix
4. Black-Litterman Model
o Taking a view
o Bayesian Updating
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Il 3. ESTIMATING MEAN AND CO-VARIANCE

« Consider returns as stochastic process (e.g. GBM)

« Mean return (drift)
o For any partition of [0,T] with N points (At=T/N),
N*E[r] =2N._, ri\=Pr-Py  (inlog prices)
o Knowing first p, and last price p; is sufficient
o Estimation is very imprecise!

= Variance
o Var[r]=1/N 2N_, (r,-E[r])? = 0% as N—>oo
o Theory: Intermediate points help to estimate co-variance

o Real world:
. time-varying
. Market microstructure noise

26



Il 3. 1000 ASSETS

Invert a 1000x1000 matrix
Estimate 1000 expected returns

Estimate 1000 variances
Estimate 1000*1001/2 — 1000 co-variances

i m) Reduce to fewer factors

... 50 far we used past data

(and assumed future will behave the same)

27



Il OVERVIEW

1. Portfolio Theory in a Mean-Variance world
2. Capital Asset Pricing Model (CAPM)

3. Estimating Mean and CoVariance matrix

4. Black-Litterman Model

o Taking a view
i o Bayesian Updating
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Il 4.BLACK-LITTERMAN MODEL

« So far we estimated expected returns using
historical data.

We ignored statistical priors:

o A sector with an unusually high (or low) past return was

assumed to earn (on average) the same high (or low)
return going forward.

o We should have attributed some of this past return to

luck, and only some to the sector being unusual relative
to the population.

29



Il EXPECTED RETURNS

« We also ignored economic priors:

o A sector with a negative past return should not be

expected to have negative expected returns going
forward.

o A sector thatis highly correlated with another sector
should probably have similar expected returns.

I” H

o A “good deal” in the past (i.e. good realized return

relative to risk) should not persist if everyone is applying
mean-variance optimization.

I

[

» Whatis a good starting point from which to update
based on our analysis?

30



Il BAYESIAN UPDATING

" Bayes’ Rule allows one to update distribution after observing
some signal/data

0 from prior to posterior distribution

" Recall if all variables are normally distributed with can use the
projection theorem
0 E.g. prior: 0 =N (u,7 ); signal/view x =0 + ¢, where e = N(0, o )

0 Weights depend on relative precision/confidence of prior vs.
signal/view (on portfolio)

2 2
O T

E(F|X) = + X
(01%) ° +o° H ° + o’
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I BLACK LITTERMAN PRIOR

All expected returns are in proportion to their
risk.
— Expected returns are distributed around

Bi (E[R,] = Ry)
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Il PROPERTIES OF A CAPM PRIOR

All expected returns are in proportion to their risk.
- Expected returns are distributed around

Bi (E[Rm] _ Rf)

Is this a good starting point?
We can still use optimization

We don’t throw out data (e.g. still can estimate
covariance structure accurately)

It is internally consistent — if we don’t have an
edge, the prior will lead us to holding the market
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Il BLACK-LITTERMAN

The Black-Litterman model simply takes the
starting point that there are no good deals...

And then adjusts returns according to any
“views” that the investor has from:

O

Seeing abnormal returns in the past that
expected to persist (or reverse)

Fundamental analysis
Alphas of active trading strategies

“views” concern portfolios and not necessarily
individual assets

34



I BLACK LITTERMAN PRIORS - MORE SPECIFIC

See He and Litterman

= Su ppose returns of N-assets (in vector/matrix notation)
r o~ N(u,2)
« Equilibrium risk premium,

I = 2w

where v risk aversion, we9 market portfolio weights

» Bayesian prior (with imprecision)

u = I+ eg, where g ~ N (0, 7X)
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Il VIEWS

» View on a single asset affects many weights

« “Portfolios views”
o views on K portfolios
o P: K x N-matrix with portfolio weights
o Q: K-vector of expected returns on these portfolios

» [nvestor’s views
Pu=Q +¢,, where &, ~ N(0,9Q)
o Q)is a off-diagonal values are all zero
o &y and&q are all orthogonal
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I BAYESIAN POSTERIOR - REWRITTEN

02 2_2
E(O]|X) = ( jy+[ > ij
T -I-CT T +0

[n/r]/fn/a ]ﬂ*(]/f/fj/a
i H/ ()7* p+1/0 x)

}
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I BAYESIAN UPDATING

Black Litterman updates returns to reflect views using Bayes’
Rule.
The updating formula is just the multi-variate (matrix) version

_(1/7% u+1/c” - X)

E(0]x) =

1/z° 1/6

| E[R|Q] - (=) +P P (=) 'n+P 0 Q]
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I BAYESIAN UPDATING

E(O]|Xx) =

1
1. 1o

v

E[RIQI=|(=) + P P

Scaling term — Total precision

(/7% u+1/c?-X)

(=)'m+PTQQ)



I BAYESIAN UPDATING

E(O]|Xx) =

1/7? il/az (1/12.#,“/02.)()

E[R|Q]= [(rz)‘1 + PTQ—lp}l[(rz)‘lh + PTQ‘lQ]

|

i |
CAPM Prior

expected returns




I BAYESIAN UPDATING IN BLACK LITTERMAN

E(H‘X):]/z-z 4:1_-]7/02 @-ﬂ+1/02.X)

\
\

E[R|Q]= [(rz)‘1 + PTQ‘lPr[(sz)'ll_I + PTQ‘lQ]

i |
Weighted by

precision of CAPM
Prior




I BAYESIAN UPDATING

E(O]|Xx) =

E[R|Q]= [(rz)‘1 + PTQ‘lPr[(TZ)_ll_I +PTQ"

= 1/0 (1/7 u+1/ o’ z)

-
-
s
> -
L3 -,
V¢

Qf
/

Vector of expected
return views




I BAYESIAN UPDATING

E(O]|Xx) =

E[R|Q]= [(rz)‘1 + PTQ‘lPr[(TZ)_ll_I + F;TQ"LQ]

1
/7% +1/o?

(1/72-y+

1/57-x)

|

Weighted by
precision of views




Il ADVANTAGES OF BLACK-LITTERMAN

Returns are only adjusted partially towards the investor’s
views using Bayesian updating

o Recognizes that views may be due to estimation error

o Only highly precise/confident views are weighted heavily
Returns are modified in a way that is consistent with
economic priors

o highly correlated sectors have returns modified in the same way
Returns can be modified to reflect absolute or relative views

The resulting weights are reasonable and do not load up on
estimation error
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