Institutional Finance Lecture 09 : Banking and Maturity Mismatch

Markus K. Brunnermeier

Preceptor: Dong Beom Choi

Princeton University

ROLE OF BANKS

- Select/monitor borrowers
 - Sharpe (1990)
- Reduce
 - asymmetric info
 - idiosyncratic risk
 - by bundling assets/mortgages (security design)
 - Opaqueness is not necessarily bad
 - Gorton-Pennachi (1990)
- Insurer of idiosyncratic liquidity shocks
 - Diamond-Dybvig (1983), Allen-Gale,

Traditional Banking

Role of banks

Channel funds	Long-run repayment
Maturity transformation	Retail funding
Info-insensitive securities	Demand deposits

SHADOW BANKING SYSTEM

Originate & distribute

- Securitization
 - Pooling
 - Tranching
 - Insuring (CDS)
- Dual purpose
 - Tradable asset
 - Collateral
 - feeds repo market for Invorina

Prospect of selling off

Wholesale funding (money market funds, repo partners, conduits, SIVs, ...)

ABCP, MTN, overnight repos, securities lending

Loans

(long-

term)

CHANGING BANKING LANDSCAPE

Traditional Banking

Polo of banks

		lovoring
Channel funds	Long-run repayment	Prospect of selling off
Maturity ransformation	Retail funding	Wholesale funding (money market fund repo partners, conduits, SIVs,)
nfo-insensitive ecurities	Demand deposits	ABCP, MTN, overnight repos, securities lending

Originate & distribute

- Securitization
 - Pooling
 - Tranching
 - Insuring (CDS)
- **Dual purpose**
 - Tradable asset
 - Collateral
 - feeds repo market for

SIV/Conduit

AAA

BBB

Equity

. . .

Loans (long-

term)

ABCP/MTN

^Eunds,

MATURITY MISMATCH: DIFFERENT THEORIES

- Diamond-Dybvig (1983)
 - Insure against liquidity shocks (sudden expenditures)
- Calomiris-Kahn (1991), Diamond-Rajan (2001)
 - Control management withdraw funds when CEO shirks
- Brunnermeier-Oehmke (2009)
 - Maturity rat race
 - Excessive short-term funding
- Extending leveraging theory

DIAMOND AND DYBVIG MODEL

- Three dates, $t \in \{0, 1, 2\}$
- Continuum of ex ante identical agents
- Everyone endowed with one unit good each
- Assume CRRA utility

$$u(c) = \frac{1}{1-\gamma}c^{1-\gamma} \qquad \gamma > 0$$

if $\gamma=1$, log utility u(c)=log(c)

TECHNOLOGY

- Two assets are available
 - Short-term project
 - : one unit invested at t gives 1 unit at t+1.
 - Long-term project

: one unit invested at t gives R units at t+2, but only L≤1 if liquidated early at t+1.

Investment projects	t=0	t=1	t=2
Risky investment project			
(a) Continuation	-1	0	R>1
(b) Early liquidation	-1	L	0
Storage technology			
(a) From t=0 to t=1	-1	1	
(b) From t=1 to t=2		-1	1

PREFERENCE SHOCK

- At date 0, uncertainty over preferences
 - With probability λ , "early consumers" only consume at t=1
 - With probability 1- λ , "late consumers" only consume at t=2

$$U(c_1, c_2) = \begin{cases} u(c_1) & \text{with prob } \lambda \\ u(c_2) & \text{with prob } 1 - \lambda \end{cases}$$

- Uncertainty is resolved at date 1.
 - Agents try to insure themselves against their uncertain liquidity needs.
- Independence across individual
 - No aggregate uncertainty.
 - λ of them are "early consumers" with certainty.

CASE 1 : AUTARKY CASE

- No trading
- Each agent invests
 - x in the long-term project and
 - (1-x) in the short-term project to maximize ex ante expected utility

$$\max_{x} \lambda u(c_1) + (1 - \lambda)u(c_2)$$

s.t. $c_1 = xL + (1 - x)$
 $c_2 = xR + (1 - x)$

- Note that $c_1 \in [L,1]$, $c_2 \in [1,R]$
- Welfare can be improved if trading of asset is allowed at t=1

CASE 2 : MUTUAL FUND ARRANGEMENT

- Agents can sell their long-term project at t=1
- Early consumers will sell their long-asset to late consumers and get short-asset to consume
- Price of long-asset should be p=1
 - with p=1, investors are indifferent between short-term and long-term asset at t=0
 - for p≠1, investors either invest all in short-term asset or all in long-term asset

 \rightarrow c₁=1, c₂=R. Better than autarky

Can this be improved?

CASE 3 : BANK ARRANGEMENT

- By forming a bank, optimal insurance can be provided
- Bank offers a deposit contract (c^{*}₁, c^{*}₂) which maximizes the agents' ex ante utility

$$max \quad \lambda u(c_1) + (1-\lambda)u(c_2)$$

s.t.
$$\lambda c_1 = 1 - x$$

$$(1-\lambda)c_2 = Rx$$

BANK ARRANGEMENT

From the first order condition

$$\left(\frac{c_1}{c_2}\right) = \left(\frac{1}{R}\right)^{\frac{1}{\gamma}}$$

- Mutual fund arrangement is optimal only if γ=1 (log utility).
- If $\gamma > 1$, smoother consumption: $c_1^* > 1$, $c_2^* < R$

However, possibility of bank run

BANK RUN

î

- There is a bank run equilibrium where even late consumers withdraw early, fearing that others withdraw
- Let y be proportion of late consumers who withdraw. Total withdrawal at date 1 is $\hat{\lambda} = \lambda + (1 - \lambda)y$. Let L=1.
- Sequential servicing constraint!
- Payoffs

Payoffs

	$\hat{\lambda} \leq 1/c_1^*$	$\hat{\lambda} > 1/c_1^*$
Withdraw	c_1^*	$\frac{1}{\hat{\lambda}}$
Not withdraw	$\frac{1-\hat{\lambda}c_1^*}{1-\hat{\lambda}}R_2$	0

- Bank run is also Nash equilibrium
- How to prevent run?
 - Suspension of convertibility
 - Deposit insurance

CASH IN THE MARKET PRICING-ALLEN AND GALE

- Aggregate risk is introduced $\rightarrow \lambda_L < \lambda_H$
- Uncertainty revealed at t=1
- Price of long-asset
 - + p_{H} if $\lambda {=} \lambda_{H}$
 - p_L if $\lambda = \lambda_L$
- At t=0,
 - aggregate investment in short term project : 1-x
 - aggregate investment in long term project : x

PRICE OF LONG ASSET AT T=1

- If λ=λ_L enough "late consumers" (liquidity) to absorb selling from "early consumers"
 - $p_L = R$, since
 - \circ if p_L>R even late diers will sell long-term asset and
 - \circ if p_L>R excessive demand for long asset once L is realized.
- If λ=λ_H, too many sellers ("early consumers") but not enough liquidity ("late consumers")
 - Supply of asset = $\lambda_H x$
 - Supply of cash = $(1 \lambda_H)(1-x)$
 - Market clearing, "cash in the market pricing" $\rightarrow p_{\mu} = (1 - \lambda_{\mu})(1 - x) / (\lambda_{\mu} x)$. Note that $p_{\mu} < p_{\mu}$

MATURITY RAT RACE

- A financial institution can borrow
 - from multiple creditors
 - at different maturities
- Negative externality causes excessively short-term financing:
 - shorter maturity claims dilute value of longer maturity claims
- Externality arises
 - for any maturity structure
 - particularly during times of high volatility (crises)

Successively unravels all long-term financing:

 \rightarrow A Maturity Rat Race

MODEL SETUP: CREDIT MARKETS

- Risk-neutral, competitive lenders
- All promised interest rates
 - are endogenous
 - depend aggregate maturity structure
- Debt contracts specifies maturity and face value:
 - can match project maturity: D_{0,T}
 - or shorter maturity $D_{0,t}$, then rollover $D_{t,t+\tau}$ etc.
 - lenders make uncoordinated rollover decisions
- Maturing debt has equal priority in default:
 - proportional to face value

MODEL SETUP: CREDIT MARKETS (2)

- Financial institution deals bilaterally with multiple creditors:
 - simultaneously offer debt contracts to creditors
 - cannot commit to aggregate maturity structure
 - can commit to aggregate amount raised
- An equilibrium maturity structure must satisfy two conditions:
 - 1. Break even: all creditors must break even
 - 2. **No deviation**: no incentive to change one creditor's maturity

INTUITION BEHIND THE DEVIATION

- Rollover face value D_{t,T} (promised interest rate)
 - is endogenous
 - adjusts to interim information

Interim Signal	$D_{t,T}$	default	no default
Negative	high	LT creditors lose	no effect
Positive	low	LT creditors gain	no effect

Since default more likely after negative signals:

• On average LT creditors lose

A SIMPLE EXAMPLE WITH ONE ROLL OVER DATE

- For now: focus on only one possible rollover date, t < T
- α is fraction of `short-term' debt with maturity t
- Outline of thought experiment:
 - Conjecture an equilibrium in which all debt has maturity T
 - Calculate break-even face values
 - At break-even interest rate, is there an incentive do deviate?

A SIMPLE EXAMPLE WITH ONE ROLL OVER DATE

- θ (investment payoff at T) only takes two values:
 - θ^{H} with probability p
 - + θ^L with probability 1 p
- p ~ uniform on [0; 1], realized at t.
- If all financing has maturity T:

$$\frac{1}{2}\theta^{L} + \frac{1}{2}D_{0,T} = 1, \qquad D_{0,T} = 2 - \theta^{L}$$

Break-even condition for first t-rollover creditor:

$$(1-p)\frac{D_{t,T}}{2-\theta^{L}}\theta^{L}+pD_{t,T}=\underbrace{D_{0,t}}_{=1}, \qquad D_{t,T}=\frac{2-\theta^{L}}{2p(1-\theta^{L})+\theta^{L}}$$

A SIMPLE EXAMPLE WITH ONE ROLL OVER DATE

Deviation payoff from all long-term financing by

$$\frac{\partial \Pi}{\partial \alpha} = \int_0^1 p \left[D_{0,T} - D_{t,T} \left(p \right) \right] dp$$
$$= \frac{1}{2} D_{0,T} - \int_0^1 p D_{t,T} \left(p \right) dp > 0?$$

• Deviation from $\alpha = 0$?

GENERAL ONE-STEP DEVIATION

 Same argument for any maturity structure that involves some amount of long term financing with maturity T.

Proposition

One-step Deviation. Under a regularity condition on F(.), in any conjectured equilibrium maturity structure with some amount of long-term financing ($\alpha \in [0; 1)$), the financial institution has an incentive to increase the amount of short-term financing by switching one additional creditor from maturity T to the shorter maturity t < T, since $\frac{\partial \Pi}{\partial \alpha} > 0$. As a result, the maturity structure of the financial institution shortens to time-t financing.

MANY ROLLOVER DATES: THE MATURITY RAT RACE

- Up to now: focus on one potential rollover date Assume everyone has maturity of length *T* Show that there is a deviation to shorten maturity to *t*
- This extends to multiple rollover dates
 Assume all creditors roll over for the first time at some time τ < T

By same argument as before, there is an incentive to deviate

 \rightarrow Successive unraveling of maturity structure

RAT RACE STRONGEST DURING CRISES

- Rat race stronger when more information is released at interim dates
 - ability to adjust financing terms becomes more valuable
 - → Volatile environments, such as crises, facilitate rat race
- Explains drastic shortening of unsecured credit markets in crisis
 - e.g. commercial paper during fall of 2008

1.2 SHORTENING MATURITY: I-BANKS

□ Investment banks' main financing in 2007

Repos 1150.9bn Security credit (subject to Reg T) Margin accounts from HH or non-profit 853.5bn From banks 335.7bn "Financial" equity 49.3bn

Repos as a Fraction of Broker/Dealers' Assets

1.3 WHY STRUCTURED PRODUCTS?

Good reasons

- Credit risk transfer risk who can best bear it
 - Banks: hold equity tranch to ensure monitoring
 - Pension funds: hold AAA rated assets due to restriction by their charter
 - Hedge funds: focus on more risky pieces
 - Problem: risks stayed mostly within banking system

banks held leveraged AAA assets – tail risk

Bad reasons - supply

- Regulatory Arbitrage Outmaneuver Basel I (SIVs)
 - esp. reputational liquidity enhancements
- Rating Arbitrage
 - Transfer assets to SIV and issue AAA rated papers
 - instead of issuing A- minus rated papers
 - + banks' own rating was unaffected by this practice
 - ++ buy back AAA has lower capital charge (Basel II)

1.3 WHY STRUCTURED PRODUCTS?

Bad reasons - demand

- Naiveté Reliance on
 - $_{\circ}~$ past low correlation among regional housing markets
 - * Overestimates value of top tranches
 - * explains why even investment banks held many mortgage products on their books
 - rating agencies rating structured products is different
 - * Quant-skills are needed instead of cash flow skills
 - ★ Rating at the edge AAA tranch just made it to be AAA
- Trick your own fund investors own firm (in case of UBS)
 - "Enhance" portfolio returns e.g. leveraged AAA positions extreme tail risk
 - * searching for yield (mean)
 - * track record building (skewness: picking up nickels before the steamroller)
 - Attraction of illiquidity (no price exists) (fraction of "level 3 assets" went up a lot)
 + difficulty to value CDOs (correlation risk)
 - * "mark-to-model": Mark "up", but not "down"
 - \star smooth volatility, increase Sharpe ratio, lower β , increase α
 - Implicit (hidden) leverage

1.4 CONSEQUENCES OF "ORIGINATE AND DISTRIBUTE BANKING MODEL"

- Banks focus only on "pipeline/warehouse risk"
- Deterioration of lending standards
 - Housing Frenzy
 - Private equity bonanza "going private trend" LBO acquisition spree