Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Asset Pricing under Asymmetric Information Modeling Information & Solution Concepts

Markus K. Brunnermeier

Princeton University

August 22, 2007

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Books:

Brunnermeier (2001), "Asset Pricing under Asym. Info." Vives (2006), "Information and Learning in Markets" O'Hara (1995), "Market Microstructure Theory"

References

(日)、(型)、(E)、(E)、(E)、(O)()

Articles:

Biais et al. (JFM 2005), "Market Microstructure: A Survey" many others - see syllabus

Some parts of these slides rely on Princeton lecture notes by Nöldeke (1993)

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Two Interpretations of Asymmetric Information

- different information
- different interpretation of the same information (different background information)

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Modeling information I

- State space $\boldsymbol{\Omega}$
 - state $\omega \in \Omega = full$ description of reality
 - fundamentals
 - signals
 - state space is common knowledge and fully agreed among agents

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Modeling information II

• Partition

- $(\omega_1, \omega_2, \omega_3), (\omega_4, \omega_5), (\omega_6, \omega_7, \omega_8)$
- $\mathcal{P}_1^i, \mathcal{P}_2^i, \mathcal{P}_3^i$ (partition cells)
- later more about 'knowledge operators' etc.
- Field (Sigma-Algebra) \mathcal{F}^i
- Probability measure/distribution P

Modeling Info & Equilibria

Modeling Information

Distribution

Solution Concepts

Classification of Models

Modeling information III

Prior distribution

- Common prior assumption (CPA) (Harsanyi doctrine)
 - any difference in beliefs is due to differences in info
 - has strong implications
- Rational Expectations
 - prior^{*i*} = objective distribution $\forall i$
 - implies CPA
- Non-common priors
 - Problem: almost everything goes
 - Way out: Optimal Expectations (structure model of endogenous priors)
- Updating/Signal Extraction

Modeling Info & Equilibria

Modeling Information Partitions

Distribution

Solution Concepts

Classification of Models

Modeling information III

• Updating (general)

Bayes' Rule

$$P^{i}(E_{n}|D) = \frac{P^{i}(D|E_{n})P^{i}(E_{n})}{P^{i}(D)},$$

• if events
$$E_1, E_2, ..., E_N$$
 are a partition

$$P^{i}(E_{n}|D) = \frac{P^{i}(D|E_{n})P^{i}(E_{n})}{\sum_{n=1}^{N}P^{i}(D|E_{n})P^{i}(E_{n})},$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Updating - Signal Extraction - general case

- Updating Signal Extraction
 - $\omega = \{v, S\}$
 - desired property: signal realization S^H is always more favorable than S^L
 - formally: $G(v|S^H)$ FOSD $G(v|S^L)$
 - Milgrom (1981) shows that this is equivalent to *f_S*(*S*|*v*) satisfies monotone likelihood ratio property (MLRP)
 - $f_S(S|v)/f_S(S|\bar{v})$ is increasing (decreasing) in S if $v > (<)\bar{v}$

$$rac{f_S\left(S|v
ight)}{f_S\left(S|v'
ight)} > rac{f_S\left(S'|v
ight)}{f_S\left(S'|v'
ight)} orall v' > v ext{ and } S' > S.$$

(日)、(型)、(E)、(E)、(E)、(O)()

• another property: hazard rate $\frac{f_S(S|v)}{1-F(S|v)}$ is declining in v

Modeling Info & Equilibria

Modeling Information Partitions Distribution

Solution Concepts

Classification of Models

Updating - Signal Extraction -Normal distributions

• updating normal variable X after receiving signal S = s

$$E[X|S = s] = E[X] + \frac{Cov[X,S]}{Var[S]}(s - E[S])$$

$$Var[X|S = s] = Var[X] - \frac{Cov[X,S]^2}{Var[S]}$$

• *n* multidimensional random variable $\left(ec{X},ec{S}
ight)\sim\mathcal{N}\left(\mu,\Sigma
ight)$

$$\mu = \left[\begin{array}{c} \mu_X \\ \mu_S \end{array} \right]_{n \times 1}; \Sigma = \left[\begin{array}{cc} \Sigma_{X,X} & \Sigma_{X,S} \\ \Sigma_{S,X} & \Sigma_{S,S} \end{array} \right]_{n \times n}$$

• Projection Theorem (X|S = s)

$$\sim \mathcal{N}\left(\mu_{X} + \Sigma_{X,S}\Sigma_{S,S}^{-1}\left(s - \mu_{S}\right), \Sigma_{X,X} - \Sigma_{X,S}\Sigma_{S,S}^{-1}\Sigma_{S,X}\right)$$

Modeling Info & Equilibria

Modeling Information Partitions Distribution

Solution Concepts

Classification of Models

Special Signal Structures

. .

•
$$\mathcal{N}$$
-Signals of form: $S_n = X + \varepsilon_n$
(Let X be a scalar and $\tau_y = \frac{1}{Var[y]}$),

$$E[X|s_1, ..., s_N] = \mu_X + \frac{1}{\tau_X + \sum_{n=1}^N \tau_{\varepsilon_n}} \sum_{n=1}^N \tau_{\varepsilon_n} (s_n - \mu_X)$$

$$Var[X|s_1, ..., s_N] = \frac{1}{\tau_X + \sum_{n=1}^N \tau_{\varepsilon_n}} = \frac{1}{\tau_X|s_1, ..., s_N}$$

• If, in addition, all ε_n i.i.d. then

$$E[X|s_1,...,s_N] = \mu_X + \underbrace{\frac{1}{\tau_X + N\tau_{\varepsilon_n}}}_{Var[X|s_1,...,s_N]} N\tau_{\varepsilon_n} \left(\sum_{n=1}^N \frac{1}{N}s_n - \mu_X\right),$$

where $\bar{s} := \sum_{n=1}^{N} \left(\frac{1}{N}\right) s_n$ is a sufficient statistic

Modeling Info & Equilibria

Modeling Information Partitions Distribution

Solution Concepts

Classification of Models

Special Signal Structures

•
$$\mathcal{N}$$
-Signals of form: $X = S + \varepsilon$
 $E[X|S = s] = s$
 $Var[X|S = s] = Var[\varepsilon]$

- Binary Signal: Updating with binary state space/signal
 q = precision = prob(X = H|S = S^H)
- "Truncating signals": $v \in [\overline{S}, S]$
 - v is Laplace (double exponentially) distributed or uniform

イロト 不得 トイヨト イヨト ヨー ろくで

• posterior is a truncated exponential or uniform

(see e.g. Abreu & Brunnermeier 2002, 2003)

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

Solution/Equilibrium Concepts

• Rational Expectations Equilibrium

- Competitive environment
- agents take prices as given (price takers)
- Rational Expectations (RE) \Rightarrow CPA
- General Equilibrium Theory
- Bayesian Nash Equilibrium
 - Strategic environment
 - agents take strategies of others as given
 - CPA (RE) is typically assumed
 - Game Theory
 - distinction between normal and extensive form games simultaneous move versus sequential move

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models The 5 Step Approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

		REE	BNE (sim. moves)
St	tep 1	Specify joint priors	Specify joint priors
		Conject. price mapping s	Conjecture strategy
		$P: \{\mathcal{S}^1,,\mathcal{S}^I,u\} ightarrow \mathbb{R}^{\mathbb{J}}_+$	profile s
St	tep 2	Derive posteriors	Derive posteriors
St	tep 3	Derive individual demand	Derive best response
St	tep 4	Impose market clearing	
St	tep 5	Impose Rationality	Impose Rationality
		Equate undet. coeff.	No-one deviates

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

A little more abstract

• REE

Fixed Point of Mapping: $\mathcal{M}_P(P(\cdot)) \mapsto P(\cdot)$

- BNE (simultaneous moves)
 Fixed Point of Mapping:
 strategy profiles → strategy profiles
- What's different for sequential move games?
 - late movers react to deviation
 - equilibrium might rely on 'strange' out of equilibrium moves
 - refinement: subgame perfection
- Extensive form move games with asymmetric information
 - Sequential equilibrium (agents act sequentially rational)
 - Perfect BNE (for certain games)
 - nature makes a move in the beginning (chooses type)
 - action of agents are observable

Modeling Info & Equilibria

Modeling Information

Partitions Distribution

Solution Concepts

Classification of Models

A Classification of Market Microstructure Models

- simultaneous submission of demand schedules
 - competitive rational expectation models
 - strategic share auctions
- sequential move models
 - screening models: (uninformed) market maker submits a supply schedule first
 - static
 - \diamond uniform price setting
 - ◊ limit order book analysis
 - dynamic sequential trade models with multiple trading rounds

・ロット (雪) ・ (目) ・ (目) ・ (口)

• signalling models:

informed traders move first, market maker second