Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Informatior

Info Efficiency

Noisy REE

Informatior Acquisition

Asset Pricing under Asymmetric Information Rational Expectations Equilibrium

Markus K. Brunnermeier

Princeton University

August 17, 2007

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

A Classification of Market Microstructure Models

- simultaneous submission of demand schedules
 - competitive rational expectation models
 - strategic share auctions
- sequential move models
 - screening models: (uninformed) market maker submits a supply schedule first
 - static
 - \diamond uniform price setting
 - \diamond limit order book analysis
 - dynamic sequential trade models with multiple trading rounds

イロト 不得 トイヨ トイヨ ト ・ シックション

signalling models:

informed traders move first, market maker second

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Overview

- Competitive REE (Examples)
 - Preliminaries
 - LRT (HARA) utility functions in general
 - CARA Gaussian Setup
 - $\diamond \ {\sf Certainty \ equivalence}$
 - $\diamond \ {\sf Recall \ Projection \ Theorem/Updating}$

- REE (Grossman 1976)
- Noisy REE (Hellwig 1980)
- Allocative versus Informational Efficiency
- Endogenous Information Acquisition

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Utility functions and Risk aversion

- utility functions U(W).
- Risk tolerance, $1/\rho = {\rm reciprocal}$ of the Arrow-Pratt measure of absolute risk aversion

$$\rho(W) := -\frac{\partial^2 U/\partial W^2}{\partial U/\partial W}.$$

• Risk tolerance is linear in W if

$$\frac{1}{\rho} = \alpha + \beta W.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

• also called hyperbolic absolute risk aversion (HARA) utility functions.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

LRT(HARA)-Utility Functions

Class	Parameters	U(W) =
exponential/CARA	$\beta = 0, \alpha = 1/\rho$	$-\exp\{-\rho W\}$
generalized power	eta eq 1	$\frac{1}{\beta-1}(\alpha+\beta W)^{(\beta-1)/\beta}$
a) quadratic	$\beta = -1, \alpha > W$	$-(\alpha - W)^2$
b) log	$\beta = +1$	ln(lpha + W)
c) power/CRRA	$\alpha = 0, \beta \neq 1, -1$	$rac{1}{eta-1}(eta \mathcal{W})^{(eta-1)/eta}$

イロン 不聞人 不定人 不定人 一定 一

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Certainty Equivalent in CARA-Gaussian Setup

$$U(W) = -\exp(-
ho W)$$
, hence $ho = -rac{\partial^2 U(W)/\partial (W)^2}{\partial U(W)/\partial W}$

$$E[U(W) \mid \cdot] = \int_{-\infty}^{+\infty} -\exp(-\rho W)f(W|\cdot)dW$$

where
$$f(W|\cdot) = \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp[-\frac{(W-\mu_W)^2}{2\sigma_W^2}]$$

Substituting it in

$$E[U(W) \mid \cdot] = \frac{1}{\sqrt{2\pi\sigma_W^2}} \int_{-\infty}^{+\infty} -\exp(-\frac{\rho z}{2\sigma_W^2}) dW$$

where
$$z = (W - \mu_W)^2 - 2\rho \sigma_W^2 W$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Certainty Equivalent in CARA-Gaussian Setup

Completing squares
$$z = (W - \mu_W - \rho \sigma_W^2)^2 - 2\rho(\mu_W - \frac{1}{2}\rho \sigma_W^2)\sigma_W^2$$

Hence,
$$E[U(W) \mid \cdot] = -\exp[-\rho(\mu_W - \frac{1}{2}\rho\sigma_W^2)] \times$$

Trade-off is represented by

$$V(\mu_W,\sigma_W^2)=\mu-rac{1}{2}
ho\sigma_W^2$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Certainty Equivalent in CARA-Gaussian Setup More generally, multinomial random variables $\boldsymbol{w}\sim\mathcal{N}(0,\boldsymbol{\Sigma})$ with a positive definite (co)variance matrix $\boldsymbol{\Sigma}$. More specifically,

 $E[\exp(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{w} + \mathbf{b}^{\mathsf{T}}\mathbf{w} + d)] =$

$$= |\mathbf{I} - 2\mathbf{\Sigma}\mathbf{A}|^{-1/2} \exp[\frac{1}{2}\mathbf{b}^{\mathsf{T}}(\mathbf{I} - 2\mathbf{\Sigma}\mathbf{A})^{-1}\mathbf{\Sigma}\mathbf{b} + d],$$

where

A is a symmetric $m \times m$ matrix,

b is an *m*-vector, and

d is a scalar.

Note that the left-hand side is only well-defined if $(\mathbf{I}-2\boldsymbol{\Sigma}\mathbf{A})$ is positive definite.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Informatior

Info Efficiency

Noisy REE

Information Acquisition

Demand for a Risky Asset

2 assets
assetpayoffendowmentbond (numeraire)R e_0^i stock $v \sim \mathcal{N}(E[v|\cdot], Var[v|\cdot])$ z^i

イロト 不得 トイヨト イヨト ヨー ろくで

- $Px^i + b^i = Pz^i + e_0^i$
 - final wealth is $W^i = b^i R + x^i v = (e_0^i + P(z^i - x^i))R + x^i v$
 - mean: $(e_0^i + P(z^i x^i))R + xE[v|\cdot],$
 - variance: $(x^i)^2 Var[v|\cdot]$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Demand for a Risky Asset

$$V(\mu_W, \sigma_W^2) = \mu_W - \frac{1}{2} \rho^i \sigma_W^2 \qquad (1)$$

イロト 不得 トイヨ トイヨ ト ・ シックション

$$= (e_0^i + Pz^i)R + x^i(E[v|\cdot] - PR) - \frac{1}{2}\rho^i Var[v|\cdot](x^i)^2$$
(2)

First order condition: $E[v|\cdot] - PR - \rho Var[v|\cdot]x^i = 0$

$$x^{i}(P) = rac{E[v|\cdot] - PR}{
ho^{i} Var[v|\cdot]}$$

Remarks

- independent of initial endowment (CARA)
- linearly increasing in investor's expected excess return
- decreasing in investors' variance of the payoff *Var*[*v*|·]
- decreasing in investors' risk aversion ρ
- for $\rho^i \to 0$ investors are risk-neutral and $x^i \to +\infty \text{ or } -\infty$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Symmetric Info - Benchmark Model setup:

- $i \in \{1, ..., I\}$ (types of) traders
- CARA utility function with risk aversion coefficient ρ^i (Let $\eta^i = \frac{1}{\rho^i}$ be trader *i*'s risk tolerance.)
- all traders have the same information $v \sim \mathcal{N}(\mu, \sigma_v^2)$
- aggregate demand $\sum_{i}^{I} \frac{E[v] PR}{\rho^{i} Var[v]} = \sum_{i}^{I} \eta^{i} \tau_{v} \{E[v] PR\}$ Let $\eta := \frac{1}{I} \sum_{i}^{I} \eta^{i} = \frac{1}{I} \sum_{i}^{I} \frac{1}{\rho^{i}}$ (harmonic mean)
- market clearing $\eta I \tau_v \{ E[v] PR \} = X^{supply}$

$$P = \frac{1}{R} \{ E[v] - \frac{X^{sup}}{I\eta\tau_v} \}$$

The expected excess payoff $Q := E[v] - PR = \frac{1}{\eta \tau_v} \frac{x^{\text{sup}}}{l}$

イロト 不得 トイヨ トイヨ ト ・ シックション

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Symmetric Info - Benchmark

• Trader i's equilibrium demand is

$$x^{i}(P) = \frac{\eta^{i}}{\eta} \frac{X^{\sup}}{I}$$

• Remarks:

•
$$\frac{\partial P}{\partial E[v]} = \frac{1}{R} > 0$$

• $\frac{\eta'}{n}$ risk sharing of aggregate endowment

$$\frac{x^{i*}}{x^{i'*}} = \frac{\eta^i}{\eta^{i'}}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

• no endowment effects

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition REE - Grossman (1976) Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient $\rho^i = \rho$ (Let $\eta^i = \frac{1}{\rho^i}$ be trader *i*'s risk tolerance.)
- information is dispersed among traders trader *i*'s signal is $S^i = v + \epsilon^i_S$, where $\epsilon^i_S \sim^{i.i.d.} \mathcal{N}(0, \sigma^2_{\epsilon})$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition REE - Grossman (1976)
Step 1: Conjecture price function

$$P = \alpha_0 + \alpha_S \bar{S}$$
, where $\bar{S} = \frac{1}{I} \sum_{i}^{I} S^i$ (sufficient statistics)

Step 2: Derive posterior distribution

$$E[v|S^{i}, P] = E[v|\overline{S}] = \lambda E[v] + (1-\lambda)\overline{S} = \lambda E[v] + (1-\lambda)\frac{P - \alpha_{0}}{\alpha_{S}}$$
$$Var[v|S^{i}, P] = Var[v|\overline{S}] = \lambda Var[v]$$

where
$$\lambda := \frac{Var[\epsilon]}{IVar[v] + Var[\epsilon]}$$

Step 3: Derive individual demand

$$x^{i,*}(P) = \frac{E[v|S^i, P] - P(1+r)}{\rho^i Var[v|S^i, P]}$$

Step 4: Impose market clearing

$$\sum_{i,*}^{I} x^{i,*}(P) = X_{a,a}^{\text{supply}} \xrightarrow{i \to a,a} x^{i,*}(P) \xrightarrow{i \to a,a} x^{i,*}($$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

•	Empirical Literature	
	Form	Price reflects
	strong	all private and public information
	semi strong	all public information
	weak	only (past) price information
•	Theoretical Literature Form	Price aggregates/reveals
	fully revealing	all private signals
	informational efficient	sufficient statistic of signals
	partially revealing	a noisy signal of pooled private info
	privately revealing	with one signal reveals suff. stat.

イロト イポト イモト イモト 二年

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Informational (Market) Efficiency

- $\overline{\mathbf{S}}$ sufficient statistic for all individual info sets $\{\mathcal{S}^1, ..., \mathcal{S}'\}$.
- Illustration: If one can view price function as

$$P(\cdot): \{\mathcal{S}^1, ..., \mathcal{S}'\} \stackrel{g(\cdot)}{\to} \overline{\mathbf{S}} \stackrel{f(\cdot)}{\to} P$$

- if $f(\overline{\mathbf{S}})$ is invertible, then price is informationally efficient
- if $f(\cdot)$ and $g(\cdot)$ are invertible, then price is fully revealing

・ロト ・ 「 ・ ・ モ ト ・ モ ・ うらぐ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Remarks & Paradoxa

- Grossman (1976) solved it via "full communication equilibria" (Radner 1979's terminology)
- 'unique' info efficient equilibrium (DeMarzo & Skiadas 1998)
- As $I \to \infty$ (risk-bearing capacity), $P \to \frac{1}{R}E[v]$
- Grossman Paradox:

Individual demand does not depend on individual signal S^i s. How can all information be reflected in the price?

• Grossman-Stiglitz Paradox:

Nobody has an incentive to collect information?

- individual demand is independent of wealth (CARA)
- in equilibrium individual demand is independent of price

イロト 不得 トイヨ トイヨ ト ・ シックション

• equilibrium is not implementable

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig 1980 Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient $\rho^i = \rho$ (Let $\eta^i = \frac{1}{\rho^i}$ be trader *i*'s risk tolerance.)
- information is dispersed among traders trader i's signal is $S^i = v + \epsilon^i_S$, where $\epsilon^i_S \sim^{ind} \mathcal{N}(0, (\sigma^i_\epsilon)^2)$

- noisy asset supply $X^{\text{Supply}} = u$
- Let $\Delta S^i = S^i E[S^i]$, $\Delta u = u E[u]$ etc.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Noisy REE - Hellwig (1980) Step 1: Conjecture price function

$$P = \alpha_0 + \sum_i^I \alpha_S^i \Delta S^i + \alpha_u \Delta u$$

Step 2: Derive posterior distribution let's do it only half way through

$$E[v|S^{i}, P] = E[v] + \beta_{S}^{i}(\alpha)\Delta S^{i} + \beta_{P}(\alpha)\Delta P$$

 $Var[v|S^{i}, P] = \frac{1}{ au^{i}_{[v|S^{i}, P]}}$ (independent of signal realization)

Step 3: Derive individual demand

$$x^{i,*}(P) = \eta^i \tau^i_{[v|S^i,P]} \{ E[v|S^i,P] - P(1+r) \}$$

イロト 不同 トイヨト イヨト 一日 うらつ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980) **Step 4: Impose market clearing** Total demand = total supply (let r = 0)

 $\sum_{i} \eta^{i} \tau^{i}_{[v|S^{i},P]}(\alpha) \{ E[v] + \beta^{i}_{S}(\alpha) \Delta S^{i} - \alpha_{0} \beta^{i}_{P}(\alpha) + [\beta^{i}_{P}(\alpha) - 1]P \} = u$

$$P\left(S^{1},...,S^{\prime},u
ight)=$$

. . .

$$\frac{\sum_{i} \left(\eta^{i} \tau^{i}_{[v|S^{i},P]} \left(\alpha \right) \right) \left[E\left[v \right] - \alpha_{0} \beta^{i}_{P} \left(\alpha \right) + \beta^{i}_{S} \left(\alpha \right) \Delta S^{i} \right] - E\left[u \right] - \Delta u}{\sum_{i} \left(1 - \beta^{i}_{P} \left(\alpha \right) \right) \eta^{i} \tau^{i}_{[v|S^{i},P]} \left(\alpha \right)}$$

イロト 不得 トイヨ トイヨ ト ・ シックション

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980) Step 5: Impose rationality

$$\begin{split} \alpha_{0} &= \frac{\sum\limits_{i} \left(\eta^{i} \tau^{i}_{[\nu|S^{i},P]} \left(\alpha \right) \right) \left[E\left[\nu \right] - \alpha_{0} \beta^{i}_{P} \left(\alpha \right) \right] - E\left[u \right]}{\sum\limits_{i} \left(1 - \beta^{i}_{P} \left(\alpha \right) \right) \eta^{i} \tau^{i}_{[\nu|S^{i},P]} \left(\alpha \right)} \\ \alpha^{i}_{S} &= \frac{\sum\limits_{i} \left(\eta^{i} \tau^{i}_{[\nu|S^{i},P]} \left(\alpha \right) \right)}{\sum\limits_{i} \left(1 - \beta^{i}_{P} \left(\alpha \right) \right) \eta^{i} \tau^{i}_{[\nu|S^{i},P]} \left(\alpha \right)} \beta^{i}_{S} \left(\alpha \right) \\ \alpha^{i}_{u} &= \frac{-1}{\sum\limits_{i} \left(1 - \beta^{i}_{P} \left(\alpha \right) \right) \eta^{i} \tau^{i}_{[\nu|S^{i},P]} \left(\alpha \right)} \end{split}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

Solve for root α^* of the problem $\alpha = G(\alpha)$.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig 1980 Simplify model setup:

- All traders have identical risk aversion coefficient $ho=1/\eta$
- Error of all traders' signals ϵ_{S}^{i} are i.i.d.

Step 1: Conjecture price function simplifies to

$$\Delta P = \alpha_{S} \sum_{i}^{l} \frac{1}{l} \Delta S^{i} + \alpha_{u} \Delta u$$

Step 2: Derive posterior distribution

$$E[v|S^{i}, P] = E[v] + \beta_{S}(\alpha)\Delta S^{i} + \beta_{P}(\alpha)\Delta P$$
$$Var[v|S^{i}, P] = \frac{1}{\tau} \quad (\text{independent of signal realization})$$
where β 's are projection coefficients.

イロト 不得 トイヨ トイヨ ト ・ シックション

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Noisy REE - Hellwig (1980) previous fixed point system simplifies to

$$\alpha_{S} = \frac{1}{\sum_{i} (1 - \beta_{P}(\alpha))} \beta_{S}(\alpha)$$
$$\alpha_{u} = \frac{-1}{\eta \tau(\alpha) \sum_{i} (1 - \beta_{P}(\alpha))}$$

To determine $\beta_{\mathcal{S}}$ and $\beta_{\mathcal{P}},$ invert Co-variance matrix

$$\Sigma\left(S^{i},P\right) = \begin{pmatrix} \sigma_{v}^{2} + \sigma_{\varepsilon}^{2} & \alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) \\ \alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) & \alpha_{S}^{2}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) + \alpha_{u}^{2}\sigma_{u}^{2} \end{pmatrix}$$

$$\Sigma^{-1}\left(S^{i},P\right) = \frac{1}{D} \begin{pmatrix} \alpha_{S}^{2}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) + \alpha_{u}^{2}\sigma_{u}^{2} & -\alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) \\ -\alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) & \sigma_{v}^{2} + \sigma_{\varepsilon}^{2} \end{pmatrix}$$
$$D = \alpha_{S}^{2}\frac{I-1}{I}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right)\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\left(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2}\right)$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)
Since
$$Cov[v, P] = \alpha_S \sigma_v^2$$
 and $Cov[v, S^i] = \sigma_v^2$ leads us to

$$\beta_{P} = \frac{1}{D} \alpha_{S} \frac{I-1}{I} \sigma_{v}^{2} \sigma_{\epsilon}^{2}$$
$$\beta_{S} = \frac{1}{D} \alpha_{u}^{2} \sigma_{u}^{2} \sigma_{v}^{2}$$

For conditional variance (precision) from projection theorem.

$$\begin{aligned} \text{Var}\left[\nu|S^{i},P\right] &= \frac{1}{D}\left[D\sigma_{\nu}^{2} - \left(\alpha_{u}^{2}\sigma_{u}^{2} + \alpha_{S}^{2}\frac{l-1}{l}\sigma_{\varepsilon}^{2}\right)\sigma_{\nu}^{4}\right] \\ &= \frac{1}{D}\left[\alpha_{S}^{2}\frac{l-1}{l^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\left(\sigma_{\varepsilon}^{2}\right)\sigma_{\nu}^{2} \end{aligned}$$

イロト (目) (ヨ) (ヨ) (ヨ) (の)

Hence,

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Noisy REE - Hellwig (1980)

$$\alpha_{S} = \frac{\alpha_{u}^{2}\sigma_{v}^{2}\sigma_{u}^{2}}{(D - \alpha_{s}\frac{l-1}{l}\sigma_{\varepsilon}^{2}\sigma_{v}^{2})I}$$
$$\alpha_{u} = -\rho \frac{(\alpha_{u}^{2}\sigma_{u}^{2} + \alpha_{s}^{2}\frac{l-1}{l^{2}}\sigma_{\varepsilon}^{2})\sigma_{\varepsilon}^{2}\sigma_{v}^{2}}{(D - \alpha_{s}\frac{l-1}{l}\sigma_{\varepsilon}^{2}\sigma_{v}^{2})I}$$

Trick:

Solve for $h = -\frac{\alpha_u}{\alpha_s}$. (Recall price signal can be rewritten as $\frac{P-\alpha_0}{\alpha_s} = \sum_{i=1}^{I} \frac{1}{I}S + \frac{\alpha_u}{\alpha_s}u$.) [noise signal ratio]

$$h = \frac{\rho \left(h^2 \sigma_u^2 + \frac{l^2}{l^2} \sigma_\varepsilon^2\right) \sigma_\varepsilon^2 \sigma_z^2}{h^2 \sigma_v^2 \sigma_u^2}$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980) Remember that *h* is increasing in ρ . Back to α_S $\alpha_{S} = \frac{\alpha_{u}^{2}\sigma_{c}^{2}\sigma_{u}^{2}}{D-\alpha_{c}^{L-1}\sigma_{c}^{2}\sigma_{c}^{2}}$ multiply by denominator $\alpha_{S}D = \alpha_{\mu}^{2}\sigma_{\nu}^{2}\sigma_{\mu}^{2} + \alpha_{S}^{2}\frac{I-1}{I}\sigma_{\varepsilon}^{2}\sigma_{\nu}^{2} \Leftrightarrow \alpha_{S} =$ $\frac{1}{D}\left[\alpha_{\mu}^{2}\sigma_{\nu}^{2}\sigma_{\mu}^{2}+\alpha_{S}^{2}\frac{I-1}{I}\sigma_{\varepsilon}^{2}\sigma_{\nu}^{2}\right]$ Sub in $D = \dots$ $\alpha_{S} = \frac{\frac{\alpha_{u}^{2}}{\alpha_{s}^{2}}\sigma_{v}^{2}\sigma_{u}^{2} + \frac{l-1}{l}\sigma_{\varepsilon}^{2}\sigma_{v}^{2}}{\frac{l-1}{l}(\sigma_{v}^{2} + \frac{1}{l}\sigma_{\varepsilon}^{2})\sigma_{\varepsilon}^{2} + \frac{\alpha_{u}^{2}}{\alpha_{s}^{2}}\sigma_{u}^{2}(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2})} \Rightarrow \text{unique } \alpha_{S}.$

This proves existence and uniqueness of the NREE!

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Characterization of NREE
Recall that
$$Var\left[v|S^{i}, P\right] = \frac{1}{D}\left[\alpha_{S}^{2}\frac{l-1}{l^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}\sigma_{v}^{2}$$

and $\alpha_{S} = \frac{1}{D}\left[\alpha_{u}^{2}\sigma_{u}^{2} + \alpha_{s}^{2}\frac{l-1}{l}\sigma_{\varepsilon}^{2}\right]\sigma_{v}^{2}$
Hence, $\alpha_{S} = Var\left[v|S^{i}, P\right]\frac{\left[\alpha_{u}^{2}\sigma_{u}^{2} + \alpha_{s}^{2}\frac{l-1}{l}\sigma_{\varepsilon}^{2}\right]}{\left[\alpha_{s}^{2}\frac{l-1}{l^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}}$ (notice l^{2} square)
 $\alpha_{S} = Var\left[v|\cdot\right]\frac{1}{\sigma_{\varepsilon}^{2}}\frac{\left[\frac{l^{2}}{l-1}h^{2}\sigma_{u}^{2} + l\sigma_{\varepsilon}^{2}\right]}{\left[\sigma_{\varepsilon}^{2} + \frac{l^{2}}{l-1}h^{2}\sigma_{u}^{2}\right]} =$
 $Var\left[v|\cdot\right]\frac{1}{\sigma_{\varepsilon}^{2}}\frac{\left[\frac{l^{2}}{l-1}h^{2}\sigma_{u}^{2} + \sigma_{\varepsilon}^{2} + (l-1)\sigma_{\varepsilon}^{2}\right]}{\left[\sigma_{\varepsilon}^{2} + \frac{l^{2}}{l-1}h^{2}\sigma_{u}^{2}\right]}$
 $\alpha_{S} = Var\left[v|S^{i}, P\right]\frac{1}{\sigma_{\varepsilon}^{2}}\left[1 + \frac{(l-1)\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \frac{l^{2}}{l-1}h^{2}\sigma_{u}^{2}}\right]$
 $= Var\left[v|S^{i}, P\right]\tau_{\varepsilon}\left[1 + (l-1)\frac{\tau_{u}}{\tau_{u} + \frac{l^{2}}{l-1}h^{2}\tau_{\varepsilon}}\right]$
 $:=\theta$

 $\alpha_{\mathcal{S}} = Var\left[v|\mathcal{S}^{i}, P\right]\tau_{\varepsilon}\left[1+\theta\right] \ \theta \text{ is decreasing in } \rho \text{ (}h \text{ is increasing)}$

・ロト ・ 「 ・ ・ モ ト ・ モ ・ うらぐ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Characterization of NREE

$$\begin{aligned} & \operatorname{Var}\left[\mathbf{v}|S^{i},P\right] = \frac{1}{D}\left[\alpha_{S}^{2}\frac{I-1}{I^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}\sigma_{v}^{2} = \\ & \frac{\left[\alpha_{S}^{2}\frac{I-1}{I^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}\sigma_{v}^{2}}{\alpha_{S}^{2}\frac{I-1}{I}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right)\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2})} = \frac{\left[\frac{I-1}{I^{2}}\sigma_{\varepsilon}^{2} + h^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}\sigma_{v}^{2}}{h^{2}\frac{I-1}{I}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right)\sigma_{\varepsilon}^{2} + h^{2}(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2})} = \dots \end{aligned}$$

"price precision"

$$\frac{1}{Var\left[v|S^{i},P\right]} = \tau_{v} + \tau_{\varepsilon} + (I-1)\,\theta\tau_{\varepsilon}$$

Interpretation

$$\begin{split} \theta &= (I-1) \frac{\tau_u}{\tau_u + \frac{l^2}{l-1} h^2 \tau_{\varepsilon}} \text{ measure of info efficiency} \\ \sigma_u^2 &\to \infty \ (\tau_u \to 0): \ \theta \to 0 \text{ price is uninformative (Walrasian equ.)} \\ \sigma_u^2 &\to 0 \ (\tau_u \to \infty): \ \theta \to 1 \text{ price is informationally efficient} \end{split}$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Remarks to Hellwig (1980)

- Since $\alpha_u^2 \neq 0$, $\beta_S \neq 0$, i.e. agents condition on their signal
- as risk aversion of trader increases the informativeness of price θ declines
- price informativeness increases in precision of signal τ_ε and declines in the amount of noise trading σ_u^2
- negative supply shock leads to a larger price increase compared to a Walrasian equilibrium, since traders wrongly partially attribute it to a good realization of v.
- Diamond and Verrecchia (1981) is similar except that endowment shocks of traders serve as asymmetric information.

イロト 不得 トイヨ トイヨ ト ・ シックション

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Endogenous Info Acquisition Grossman-Stiglitz (1980) Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient ρ (Let $\eta = \frac{1}{\rho}$ be traders' risk tolerance.)
- no information aggregation two groups of traders
 - informed traders who have the same signal $S = v + \epsilon_S$ with $\epsilon_S \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

イロト 不得 トイヨ トイヨ ト ・ シックション

- uninformed traders have no signal
- FOCUS on information acquisition

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz Step 1: Conjecture price function

$$P = \alpha_0 + \alpha_s \Delta S + \alpha_u \Delta u$$

Step 2: Derive posterior distribution

- for informed traders: $E[v|S, P] = E[v|S] = E[v] + \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S$ $\tau_{[v|S]} = \tau_{v} + \tau_{\varepsilon}$
- for uninformed traders: $E[v|P] = E[v] + \frac{\alpha_S \sigma_v^2}{\alpha_S^2(\sigma_v^2 + \sigma_\varepsilon^2) + \alpha_u^2 \sigma_u^2} \Delta P$ $Var[v|P] = \sigma_v^2 (1 - \frac{\alpha_S^2 \sigma_v^2}{\alpha_S^2(\sigma_v^2 + \sigma_\varepsilon^2) + \alpha_u^2 \sigma_u^2}) \text{ OR}$ $\tau_{[v|P]} = \tau_v + \underbrace{\frac{\tau_u}{\tau_u + h^2 \tau_\varepsilon}}_{:=\phi \in [0,1]} \tau_\varepsilon, \text{ where } h = -\frac{\alpha_u}{\alpha_S}$

After some algebra we get $E[v|P] = E[v] + \frac{1}{\alpha_S} \frac{\phi \tau_{\varepsilon}}{\tau_v + \phi \tau_{\varepsilon}} \Delta P$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz Step 3: Derive individual demand $x^{I}(P,S) = \eta^{I}[\tau_{v} + \tau_{\varepsilon}] \left| E[v] + \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S - P \right|$ $x^{U}(P) = \eta^{U} \left[\tau_{v} + \phi \tau_{\varepsilon} \right] \left[E\left[v \right] + \frac{1}{\alpha_{S}} \frac{\phi \tau_{\varepsilon}}{\tau_{v} + \phi \tau_{\varepsilon}} \Delta P - P \right]$ Step 4: Impose market clearing Aggregate demand, for a mass of λ^{l} informed traders and $(1 - \lambda')$ uninformed $\lambda' \eta' [\tau_v + \tau_{\varepsilon}] \left| E[v] + \frac{\tau_{\varepsilon}}{\tau_v + \tau_{\varepsilon}} \Delta S - P \right| +$ $\cdot = \nu'$ $\left(1-\lambda^{\prime}\right)\eta^{U}\left[\tau_{v}+\phi\tau_{\varepsilon}\right]\left[E\left[v\right]+\frac{1}{\alpha_{S}}\frac{\phi\tau_{\varepsilon}}{\tau_{v}+\phi\tau_{\varepsilon}}\Delta P-P\right]=u$ $:=\nu^U$

イロト 不得 トイヨト イヨト ヨー ろくで

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz $P(S, u) = \frac{(\nu^{l} + \nu^{U})E[v] + \nu^{l} \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S - \frac{1}{\alpha_{S}} \frac{\Phi \tau_{\varepsilon}}{\tau_{v} - \phi \tau_{\varepsilon}} \alpha_{0} \nu^{U} - E[u] - \Delta u}{\nu^{U} \left(1 - \frac{1}{\alpha_{S}} \frac{\Phi \tau_{\varepsilon}}{\tau_{v} - \phi \tau_{\varepsilon}}\right) + \nu^{l}}$ Hence, $h = -\frac{\alpha_{u}}{\alpha_{S}} = \left[\nu^{l} \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}}\right]^{-1} = \frac{1}{\lambda^{l} \eta^{l} \tau_{\varepsilon}}$. Hence, $\phi = \frac{\tau_{u} \tau_{\varepsilon}}{\tau_{u} \tau_{\varepsilon} + \frac{1}{(\lambda^{l} \eta^{l})^{2}}}$

Remarks:

- As $Var[u] \searrow 0, \phi \nearrow 1$
- If signal is more precise (τ_{ε} is increasing) then ϕ increases (since informed traders are more aggressive)

イロト 不得 トイヨト イヨト ヨー ろくで

• Increases in λ^I and η^I also increase ϕ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz Step 5: Impose rationality Solve for coefficients

$$\alpha_{0} = E[\nu] - \frac{1}{\nu^{\prime} + \nu^{\prime}} E[u]$$

$$\alpha_{S} = \frac{1}{\nu^{\prime} \left(1 - \frac{1}{\alpha_{S}} \frac{\phi \tau_{\varepsilon}}{\tau_{\nu} - \phi \tau_{\varepsilon}}\right) + \nu^{\prime}} \frac{\tau_{\varepsilon}}{\tau_{\nu} + \tau_{\varepsilon}} \nu^{\prime} = \frac{\lambda^{\prime} \eta^{\prime} + \lambda^{\prime} \eta^{\prime} \phi}{\nu^{\prime} + \nu^{\prime}} \tau_{\varepsilon}$$

$$\alpha_{u} = -\frac{1}{\nu^{\prime} + \nu^{\prime}} \left(1 + \frac{\lambda^{\prime} \tau^{\prime}}{\lambda^{\prime} \tau^{\prime}} \phi\right)$$

Finally let's calculate

$$\frac{\tau_{[\nu|S]}}{\tau_{[\nu|P]}} = \frac{\tau_{\nu} + \tau_{\varepsilon}}{\tau_{\nu} + \phi\tau_{\varepsilon}} = 1 + \frac{(1-\phi)\,\tau_{\varepsilon}}{\tau_{\nu} + \phi\tau_{\varepsilon}}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Information Acquisition Stage - Grossman-Stiglitz (1980)

- Aim: endogenize λ'
- Recall

 $\mathbf{x}^i = \eta^i au_{[Q|S]} E[Q|S]$, where $Q = \mathbf{v} - RP$ is excess payoff

 Final wealth is Wⁱ = ηⁱQτ_[Q|S]E[Q|S] + (Puⁱ + eⁱ₀)R (CARA ⇒ we can ignore second term) Note Wⁱ is product of two normally distributed variables Use Formula of Slide 7 or follow following steps:

Conditional on S, wealth is normally distributed.

$$E[W|S] = \eta \tau_{[Q|S]} E[Q|S]^2$$
$$\forall ar[W|S] = \eta^2 \tau_{[Q|S]} E[Q|S]^2$$

• the expected utility conditional on S

$$E[U(W)|S] = -\exp\{-\frac{1}{\eta}[\eta\tau_{[Q|S]}E[Q|S]^2 - \frac{1}{2}\eta\tau_{[Q|S]}E[Q|S]^2]\}$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Information Acquisition Stage - Grossman-Stiglitz (1980)

$$E[U(W)|S] = -\exp\{-\frac{1}{2}\tau_{[Q|S]}E[Q|S]^2\}$$

Integrate over possible S to get the ex-ante utility. W.I.o.g. we can assume that $S = Q + \epsilon$. Normal density $\phi(S) = \sqrt{\frac{\tau_S}{2\pi}} \exp\{-\frac{1}{2}\tau_S[\Delta S]^2\}$

$$E\left[U\left(W\right)\right] = -\int_{S} \sqrt{\frac{\tau_{[S]}}{2\pi}} \exp\left\{-\frac{1}{2}\left[\tau_{[Q|s]}E\left[Q|S\right]^{2} + \tau_{S}\left(\Delta S\right)^{2}\right]\right\} ds$$

Term in square bracket is $\begin{bmatrix} (\tau_Q + \tau_{\varepsilon}) \left(E\left[Q\right] + \frac{\tau_{\varepsilon}}{\tau_Q + \tau_{\varepsilon}} \Delta S \right)^2 + \frac{\tau_Q \tau_{\varepsilon}}{\tau_Q + \tau_{\varepsilon}} \left(\Delta S \right)^2 \end{bmatrix} \text{ simplifies to}$ $\tau_Q E\left[Q\right]^2 + \tau_{\varepsilon} \left(\Delta S + E\left[Q\right] \right)^2$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Information Acquisition Stage - Grossman-Stiglitz (1980)
Hence,
$$E[U(W)] =$$

 $-\exp\left\{-\frac{\tau_Q E[Q]^2}{2}\right\} \int_S \sqrt{\frac{\tau_S}{2\pi}} \exp\left\{-\frac{1}{2} [\tau_{\varepsilon} (\Delta S + E[Q])^2]\right\} ds$
Define $y := \sqrt{\tau_{\varepsilon}} (\Delta S + E[Q])$
 $E[U(W)] = -\exp\left\{-\frac{\tau_Q E[Q]^2}{2}\right\} \sqrt{\frac{\tau_S}{\tau_{\varepsilon}}} \int_S -\sqrt{\frac{\tau_{\epsilon}}{2\pi}} \exp\left\{-\frac{1}{2}y^2\right\} ds$
Letting $k = -\exp\left\{-\frac{\tau_Q E[Q]^2}{2}\right\} \sqrt{\tau_Q}$ and noting that
 $\tau_S = \frac{\tau_Q \tau_{\varepsilon}}{\tau_Q + \tau_{\varepsilon}}$, we have
 $E[U(W)] = \frac{k}{\sqrt{\tau_[Q|S]}} = \frac{k}{\sqrt{\tau_Q + \tau_{\varepsilon}}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition Willingness to Pay for Signal General Problem (**No** Price Signal)

• Without price signal and signal S, agent's expected utility

$$E\left[U\left(W\right)\right] = \frac{k}{\sqrt{\tau_Q}}$$

- If the agent buys a signal at a price of *m_S* his expected utility is
 - $E[U(W m_S)] = E[-\exp(-\rho(W m_S))] =$ = E[-\exp(-\rho(W))\exp(\rho m_S)] = -\frac{k}{m_S}\exp(\rho m_S)
 - $= E\left[-\exp\left(-\rho\left(W\right)\right)\exp\left(\rho m_{S}\right)\right] = \frac{k}{\sqrt{\tau_{\left[Q\mid S\right]}}}\exp\left(\rho m_{S}\right)$
- Agent is indifferent when $\frac{k}{\sqrt{\tau_Q}} = \frac{k}{\sqrt{\tau_{[Q|S]}}} \exp\left(\rho m_S\right)$
- \Rightarrow willingness to pay

$$m_{S} = \eta \ln \left(\sqrt{\frac{\tau_{[Q|S]}}{\tau_{Q}}} \right)$$

Willingness to pay depends on the improvement in precision.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Information Acquisition Stage - Grossman-Stiglitz (1980)

• Every agent has to be indifferent between being informed or not.

cost of signal $c = \eta \ln \left(\sqrt{\frac{\tau_{[v|S]}}{\tau_{[v|P]}}} \right) = \eta \ln \left(\sqrt{\frac{\tau_v + \tau_{\varepsilon}}{\tau_v + \phi \tau_{\varepsilon}}} \right)$ (previous slide) This determines $\phi = \frac{\tau_u \tau_{\varepsilon}}{\tau_u \tau_{\varepsilon} + \left(\frac{1}{\lambda l_{\eta}}\right)^2}$, which in turn pins down λ^l .

- Comparative Statics (using IFT)
 - $c \nearrow \phi \searrow$ • $\eta \nearrow \Rightarrow \phi \nearrow$ (extreme case: risk-neutrality)
 - $\tau_{\varepsilon} \nearrow \phi \nearrow$
 - $\sigma_u^2 \nearrow \Rightarrow \phi \rightarrow (\text{number of informed traders })$
 - $\sigma_u^2 \searrow 0 \Rightarrow$ no investor purchases a signal

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Information Acquisition Stage

- Further extensions:
 - purchase signals with different precisions (Verrecchia 1982)
 - Optimal sale of information
 - photocopied (newsletter) or individualistic signal (Admati & Pfleiderer)

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

• indirect versus direct (Admati & Pfleiderer)

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Endogenizing Noise Trader Demand

- endowment shocks or outside opportunity shocks that are correlated with asset
- welfare analysis
 - more private information \rightarrow adverse selection
 - more public information \rightarrow Hirshleifer effect (e.g. genetic testing)

 see papers by Spiegel, Bhattacharya & Rohit, and Vives (2006)

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Information Acquisition

Tips & Tricks

risk-neutral competitive fringe observing limit order book L
 p = E[v|L(·)]

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくべ

• separates risk-sharing from informational aspects