

# Lecture 04: Risk Preferences and Expected Utility Theory

• Prof. Markus K. Brunnermeier





State by state dominance

#### Overview: Risk Preferences

| 1. | State-by-state dominance                        |          |
|----|-------------------------------------------------|----------|
| 2. | Stochastic dominance                            | [DD4]    |
| 3. | vNM expected utility theory                     |          |
|    | a) Intuition                                    | [L4]     |
|    | b) Axiomatic foundations                        | [DD3]    |
| 4. | Risk aversion coefficients and portfolio choice | [DD5,L4] |
| 5. | Prudence coefficient and precautionary savings  | [DD5]    |
| 6. | Mean-variance preferences                       | [L4.6]   |



#### State-by-state Dominance

- State-by-state dominance **O** incomplete ranking
- « riskier »

Table 2.1 Asset Payoffs (\$)

|              | t = 0       | t = 1                         |       |
|--------------|-------------|-------------------------------|-------|
|              | Cost at t=0 | Value at t=1                  |       |
|              |             | $\pi_1 = \pi_2 = \frac{1}{2}$ |       |
|              |             | s = 1                         | s = 2 |
| investment 1 | - 1000      | 1050                          | 1200  |
| investment 2 | - 1000      | 500                           | 1600  |
| investment 3 | - 1000      | 1050                          | 1600  |

- investment 3 state by state dominates 1.



# State-by-state Dominance (ctd.)

Table 2.2 State Contingent ROR (r)

|              | State Contingent ROR (r) |     |       |       |
|--------------|--------------------------|-----|-------|-------|
|              | s = 1                    | s=2 | Er    | ٥     |
| Investment 1 | 5%                       | 20% | 12.5% | 7.5%  |
| Investment 2 | -50%                     | 60% | 5%    | 55%   |
| Investment 3 | 5%                       | 60% | 32.5% | 27.5% |

- Investment 1 mean-variance dominates 2
- BUT investment 3 does not m-v dominate 1!



# State-by-state Dominance (ctd.)

Table 2.3 State Contingent Rates of Return

|              | State Contingent Rates of Return      |                               |  |
|--------------|---------------------------------------|-------------------------------|--|
|              | s = 1                                 | s = 2                         |  |
| investment 4 | 3%                                    | 5%                            |  |
| investment 5 | 3%                                    | 8%                            |  |
|              |                                       | $\pi_1 = \pi_2 = \frac{1}{2}$ |  |
|              | $E[r_4] = 4\%;  \sigma_4 = 1\%$       |                               |  |
|              | $E[r_5] = 5.5\%$ ; $\sigma_5 = 2.5\%$ |                               |  |

- What is the trade-off between risk and expected return?
- Investment 4 has a higher Sharpe ratio  $(E[r]-r^f)/\sigma$  than investment 5 for  $r^f = 0$ .





State by state dominance

#### Overview: Risk Preferences

| 1. | Si | ate-by-state dominance                        |          |
|----|----|-----------------------------------------------|----------|
| 2. | St | ochastic dominance                            | [DD4]    |
| 3. | vľ | VM expected utility theory                    |          |
|    | a) | Intuition                                     | [L4]     |
|    | b) | Axiomatic foundations                         | [DD3]    |
|    | c) | Risk aversion coefficients                    | [DD4,L4] |
| 4. | Ri | sk aversion coefficients and portfolio choice | [DD5,L4] |
| 5. | Pr | udence coefficient and precautionary savings  | [DD5]    |
| 6. | M  | ean-variance preferences                      | [L4.6]   |



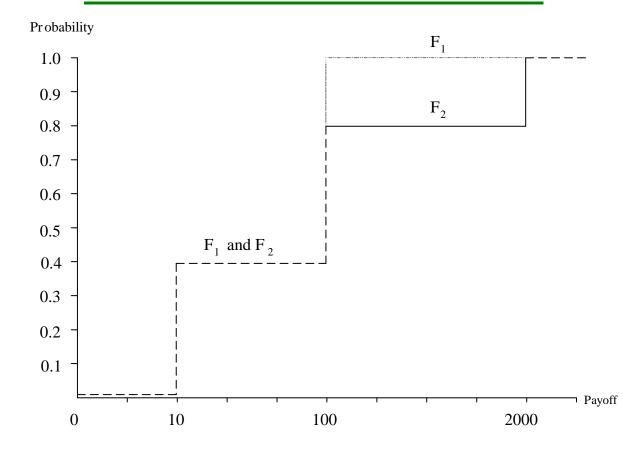
#### Stochastic Dominance

- Still incomplete ordering
  - "More complete" than state-by-state ordering
  - State-by-state dominance ⇒ stochastic dominance
  - Risk preference not needed for ranking!
    - independently of the specific trade-offs (between return, risk and other characteristics of probability distributions) represented by an agent's utility function. ("risk-preference-free")
- Next Section:
  - Complete preference ordering and utility representations

Homework: Provide an example which can be ranked according to FSD, but not according to state dominance.

Fin 501: Asset Pricing

| States of nature     | 1                                  | 2   | 3    |  |
|----------------------|------------------------------------|-----|------|--|
| Payoffs              | 10                                 | 100 | 2000 |  |
| Proba Z <sub>1</sub> | .4                                 | .6  | 0    |  |
| Proba Z <sub>2</sub> | .4                                 | .4  | .2   |  |
|                      | $EZ_1 = 64, \ \sigma_{z_1} = 44$   |     |      |  |
|                      | $EZ_2 = 444, \ \sigma_{z_2} = 779$ |     |      |  |





#### First Order Stochastic Dominance

■ Definition 3.1: Let  $F_A(x)$  and  $F_B(x)$ , respectively, represent the cumulative distribution functions of two random variables (cash payoffs) that, without loss of generality assume values in the interval [a,b]. We say that  $F_A(x)$  first order stochastically dominates (FSD)  $F_B(x)$  if and only if for all  $x \in [a,b]$ 

$$F_A(x) \le F_B(x)$$

Homework: Provide an example which can be ranked according to FSD, but not according to state dominance.



#### First Order Stochastic Dominance

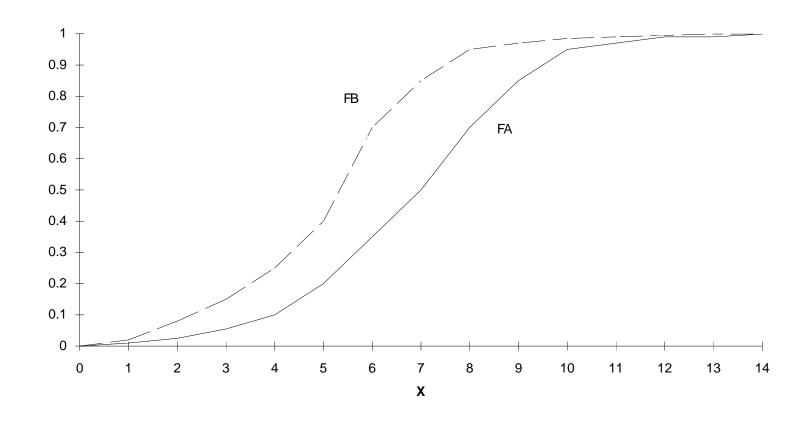


Table 3-2 Two Independent Investments

| Investment 3 |       | Investment 4 |       |
|--------------|-------|--------------|-------|
| Payoff       | Prob. | Payoff       | Prob. |
| 4            | 0.25  | 1            | 0.33  |
| 5            | 0.50  | 6            | 0.33  |
| 12           | 0.25  | 8            | 0.33  |

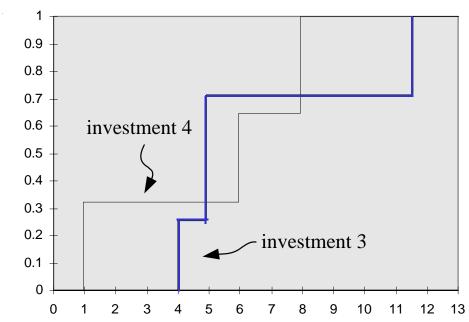


Figure 3-6 Second Order Stochastic Dominance Illustrated



#### Second Order Stochastic Dominance

■ Definition 3.2: Let  $F_A(\tilde{x})$ ,  $F_B(\tilde{x})$ , be two cumulative probability distribution for random payoffs in [a,b]. We say that  $F_A(\tilde{x})$  second order stochastically dominates (SSD)  $F_B(\tilde{x})$  if and only if for any x:

$$\int_{-\infty}^{x} \left[ F_{B}(t) - F_{A}(t) \right] dt \ge 0$$

(with strict inequality for some meaningful interval of values of t).

# Mean Preserving Spread

 $x_B = x_A + z$  (3.8) where z is independent of  $x_A$  and has zero mean

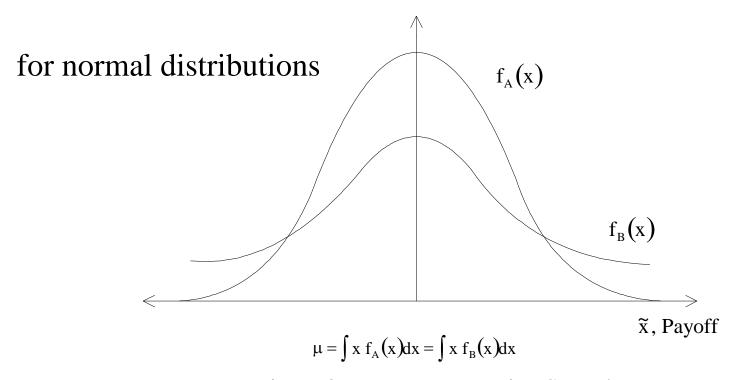


Figure 3-7 Mean Preserving Spread



# Mean Preserving Spread & SSD

- Theorem 3.4: Let  $F_A(\bullet)$  and  $F_B(\bullet)$  be two distribution functions defined on the same state space with identical means. Then the follow statements are equivalent:
  - $F_A(\widetilde{x})$  SSD  $F_B(\widetilde{x})$
  - $F_B(\tilde{x})$  is a mean preserving spread of  $F_A(\tilde{x})$  in the sense of Equation (3.8) above.





#### Overview: Risk Preferences

State-by-state dominance 2. Stochastic dominance [DD4] 3. vNM expected utility theory Intuition [L4] b) Axiomatic foundations [DD3] 4. Risk aversion coefficients and portfolio choice [DD4,5,L4] 5. Prudence coefficient and precautionary savings [DD5] 6. Mean-variance preferences

[L4.6]



# A Hypothetical Gamble

- Suppose someone offers you this gamble:
  - "I have a fair coin here. I'll flip it, and if it's tail I pay you \$1 and the gamble is over. If it's head, I'll flip again. If it's tail then, I pay you \$2, if not I'll flip again. With every round, I double the amount I will pay to you if it's tail."
- Sounds like a good deal. After all, you can't loose. So here's the question:
  - How much are you willing to pay to take this gamble?



# Proposal 1: Expected Value

- With probability 1/2 you get \$1.
- $\left(\frac{1}{2}\right)^1$  times  $2^0$
- With probability 1/4 you get \$2.
- $\left(\frac{1}{2}\right)^2$  times  $2^1$

■ With probability 1/8 you get \$4.

 $\left(\frac{1}{2}\right)^3$  times  $2^2$ 

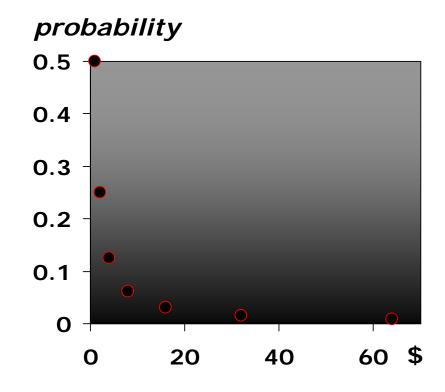
- etc.
  - 7 The expected payoff is the sum of these payoffs, weighted with their probabilities,

SO 
$$\sum_{t=1}^{\infty} \left(\frac{1}{2}\right)^{t} \cdot 2^{t-1} = \sum_{t=1}^{\infty} \frac{1}{2} = \infty$$



#### An Infinitely Valuable Gamble?

- You should pay everything you own and more to purchase the right to take this gamble!
- Yet, in practice, no one is prepared to pay such a high price. Why?
- Even though the expected payoff is infinite, the distribution of payoffs is not attractive...



With 93% probability we get \$8 or less, with 99% probability we get \$64 or less.



#### What Should We Do?

- How can we decide in a rational fashion about such gambles (or investments)?
- Proposal 2: Bernoulli suggests that large gains should be weighted less. He suggests to use the natural logarithm.
   [Cremer another great mathematician of the time suggests the square root.]

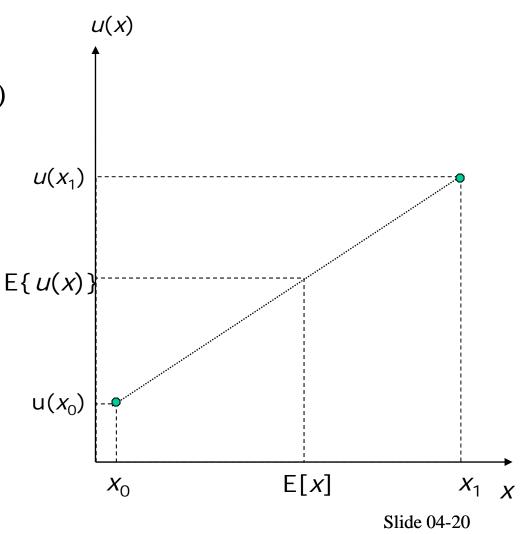
$$\sum_{t=1}^{\infty} \left(\frac{1}{2}\right)^{t} \cdot \ln(2^{t-1}) = \ln(2) = \frac{\text{expected utility}}{\text{of gamble}} < \infty$$

Bernoulli would have paid at most  $e^{\ln(2)} = \$2$  to participate in this gamble.



#### Risk-Aversion and Concavity

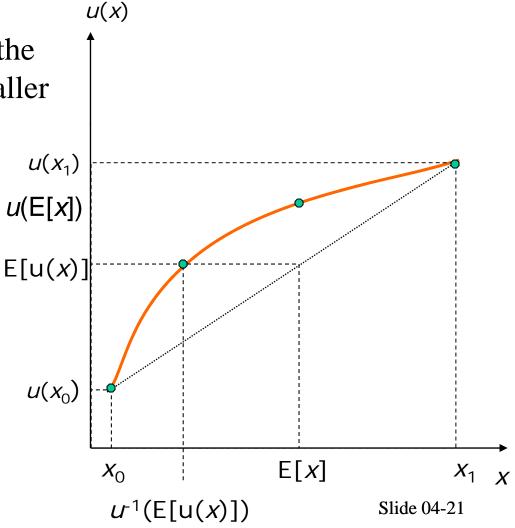
- The shape of the von Neumann Morgenstern (NM) utility function contains a lot of information.
- Consider a fifty-fifty lottery with final wealth of  $x_0$  or  $x_1$





# Risk-aversion and concavity

- Risk-aversion means that the certainty equivalent is smaller than the expected prize.
  - We conclude that a risk-averse vNM utility function must be concave.





# Jensen's Inequality

#### **Theorem 3.1 (Jensen's Inequality):**

 Let g() be a concave function on the interval [a,b], and be a random variable such that

Prob 
$$(x \in [a,b]) = 1$$

Suppose the expectations E(x) and E[g(x)] exist;
 then

$$E[g(\widetilde{x})] \le g[E(\widetilde{x})]$$

Furthermore, if  $g(\bullet)$  is strictly concave, then the inequality is strict.



#### Representation of Preferences

A preference ordering is (i) complete, (ii) transitive, (iii) continuous and [(iv) relatively stable] can be represented by a utility function, i.e.

$$(c_0,c_1,...,c_S) \succ (c'_0,c'_1,...,c'_S)$$
  
 $\Leftrightarrow U(c_0,c_1,...,c_S) > U(c'_0,c'_1,...,c'_S)$ 

(preference ordering *over lotteries* – (S+1)-dimensional space)



#### Preferences over Prob. Distributions

- Consider  $c_0$  fixed,  $c_1$  is a random variable
- Preference ordering over probability distributions
- Let
  - P be a set of probability distributions with a finite support over a set X,
  - $\blacksquare$   $\succ$  a (strict) preference ordering over P, and
  - Define  $\succeq$  by  $p \succeq q$  if  $q \not\succ p$



- S states of the world
- Set of all possible lotteries

$$P = \{ p \in \mathbb{R}^S | p(c) \ge 0, \sum p(c) = 1 \}$$

- Space with S dimensions
- Can we simplify the utility representation of preferences over lotteries?
- Space with *one* dimension income
- We need to assume further axioms



# **Expected Utility Theory**

 A binary relation that satisfies the following three axioms if and only if there exists a function u(•) such that

$$p \succ q \Leftrightarrow \sum u(c) p(c) > \sum u(c) q(c)$$

i.e. preferences correspond to expected utility.



# vNM Expected Utility Theory

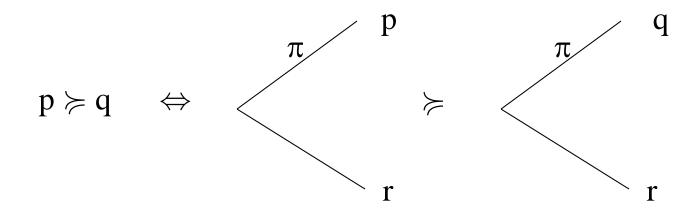
- Axiom 1 (Completeness and Transitivity):
  - Agents have preference relation over P (repeated)
- Axiom 2 (Substitution/Independence)
  - For all lotteries  $p,q,r \in P$  and  $\alpha \in (0,1]$ ,  $p \succcurlyeq q$  iff  $\alpha p + (1-\alpha) r \succcurlyeq \alpha q + (1-\alpha) r$  (see next slide)
- Axiom 3 (Archimedian/Continuity)
  - For all lotteries p,q,r ∈ P, if p  $\succ$  q  $\succ$  r, then there exists a α , β ∈ (0,1) such that α p + (1-α) r  $\succ$  q  $\succ$  β p + (1 β) r.

Problem: p you get \$100 for sure, q you get \$10 for sure, r you are killed



#### Independence Axiom

• Independence of irrelevant alternatives:



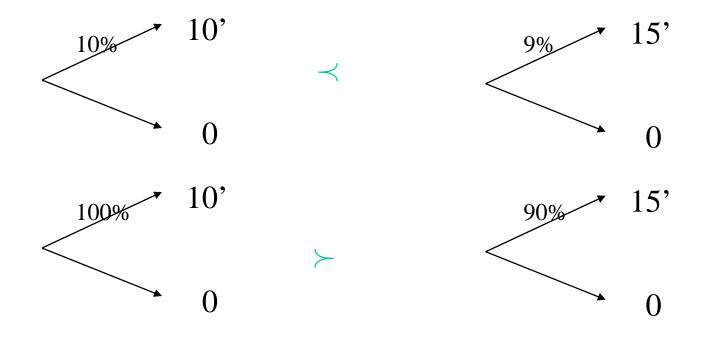


# Allais Paradox – Violation of Independence Axiom



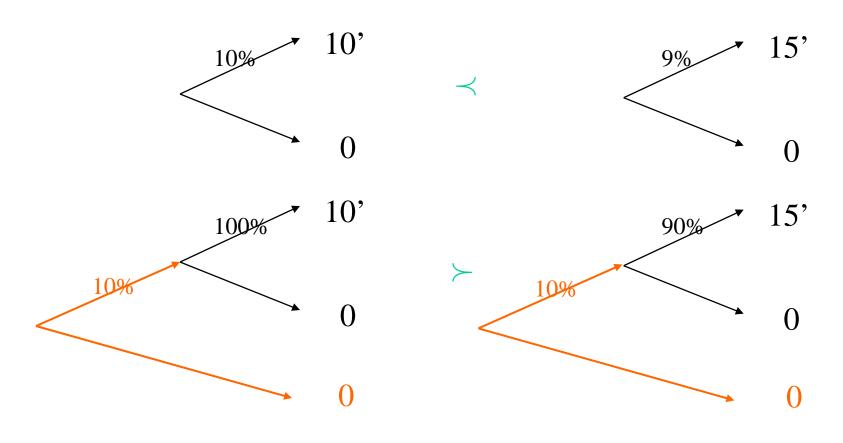


# Allais Paradox – Violation of Independence Axiom





# Allais Paradox – Violation of Independence Axiom



#### vNM EU Theorem

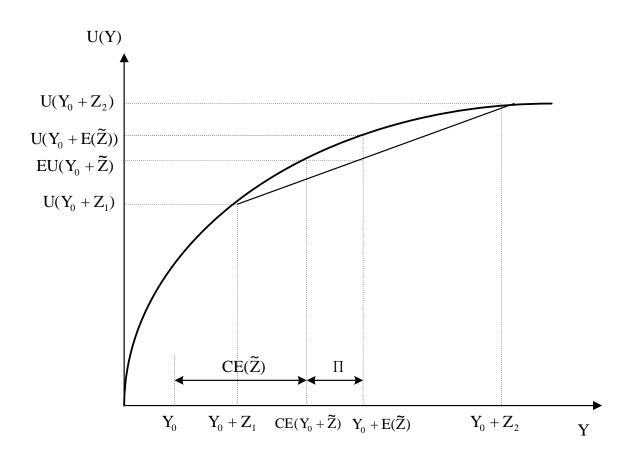
■ A binary relation that satisfies the axioms 1-3 if and only if there exists a function u(•) such that

$$p \succ q \Leftrightarrow \sum u(c) p(c) > \sum u(c) q(c)$$

i.e. preferences correspond to expected utility.



# **Expected Utility Theory**





#### Expected Utility & Stochastic Dominance

■ Theorem 3. 2: Let  $F_A(\widetilde{x})$ ,  $F_B(\widetilde{x})$ , be two cumulative probability distribution for random payoffs  $\widetilde{x} \in [a,b]$ . Then  $F_A(\widetilde{x})$  FSD  $F_B(\widetilde{x})$  if and only if for all non decreasing utility functions  $U(\bullet)$ .

$$E_A U(\widetilde{x}) \ge E_B U(\widetilde{x})$$



#### Expected Utility & Stochastic Dominance

Theorem 3. 3: Let  $F_A(\widetilde{x})$ ,  $F_B(\widetilde{x})$ , be two cumulative probability distribution for random payoffs  $\widetilde{x}$  defined on [a,b]. Then,  $F_A(\widetilde{x})$  SSD  $F_B(\widetilde{x})$  if and only if  $E_AU(\widetilde{x}) \ge E_BU(\widetilde{x})$  for all non decreasing and concave U.



#### Digression: Subjective EU Theory

- Derive perceived probability from preferences!
  - Set S of prizes/consequences
  - Set Z of states
  - Set of functions  $f(s) \in \mathcal{Z}$ , called acts (consumption plans)
- Seven SAVAGE Axioms
  - Goes beyond scope of this course.



## Digression: Ellsberg Paradox

■ 10 balls in an urn

Lottery 1: win \$100 if you draw a red ball

Lottery 2: win \$100 if you draw a blue ball

Uncertainty: Probability distribution is not known

Risk: Probability distribution is known

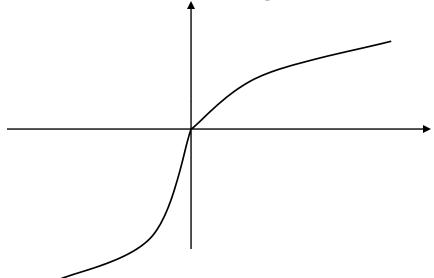
(5 balls are red, 5 balls are blue)

■ Individuals are "uncertainty/ambiguity averse" (non-additive probability approach)



## Digression: Prospect Theory

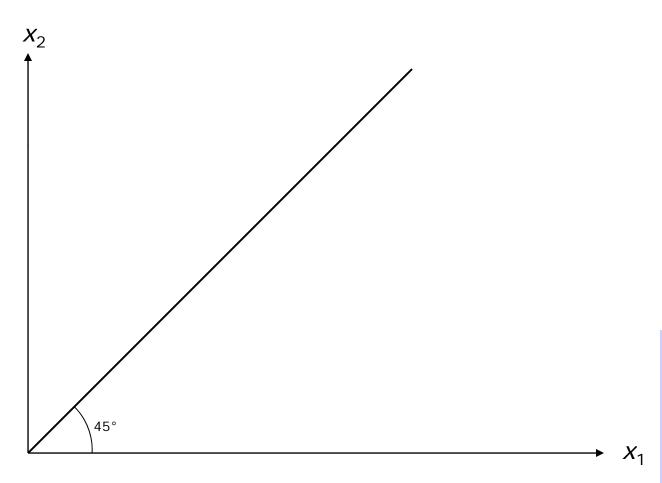
Value function (over gains and losses)



- Overweight low probability events
- Experimental evidence



#### Indifference curves



Any point in this plane is a particular lottery.

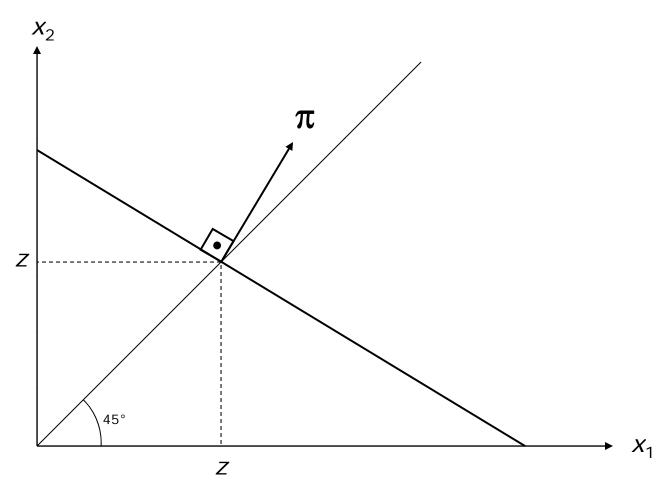
Where is the set of risk-free lotteries?

If  $x_1 = x_2$ , then the lottery contains no risk.

DIIUC UT JA



#### Indifference curves



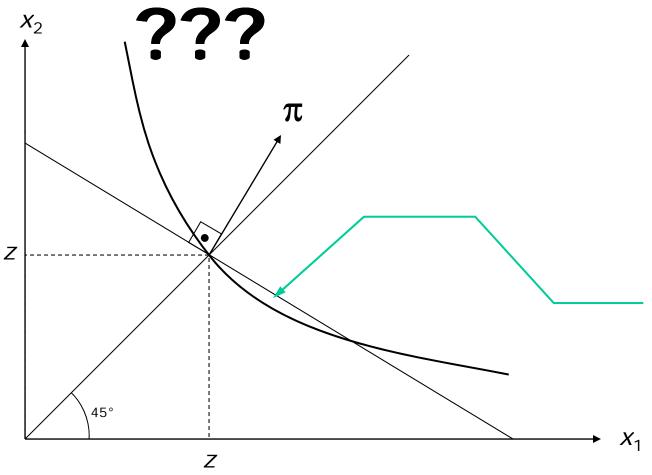
Where is the set of lotteries with expected prize E[L] = z?

It's a straight line, and the slope is given by the relative probabilities of the two states.

Slide 04-40



# Indifference curves agent is risk

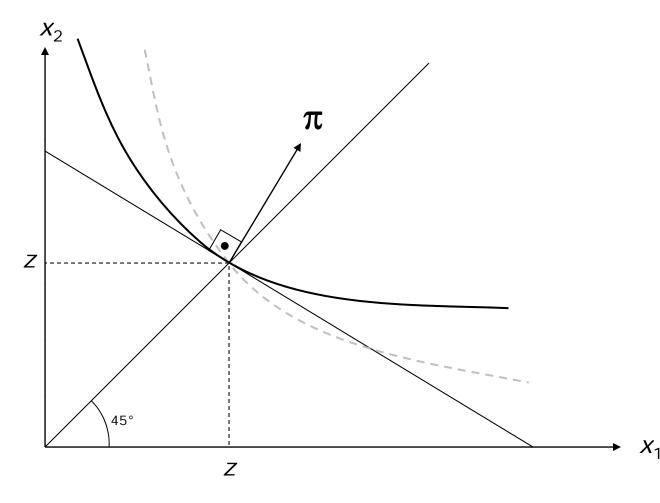


Fin 501: Asset Pricing
Suppose the agent is risk averse. Where is the set of lotteries which are indifferent to (*z*, *z*)?

That's not right! Note that there are risky lotteries with smaller expected prize and which are preferred.



#### Indifference curves



So the indifference curve must be tangent to the iso-expected-prize line.

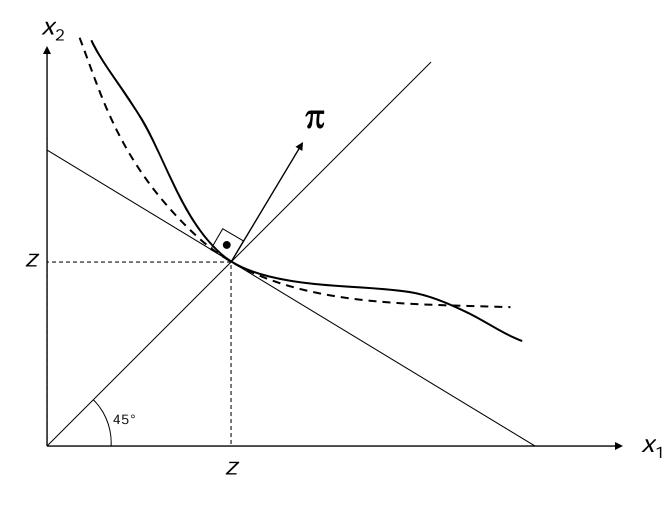
This is a direct implication of risk-aversion alone.





Fin 501: Asset Pricing

## Indifference curves

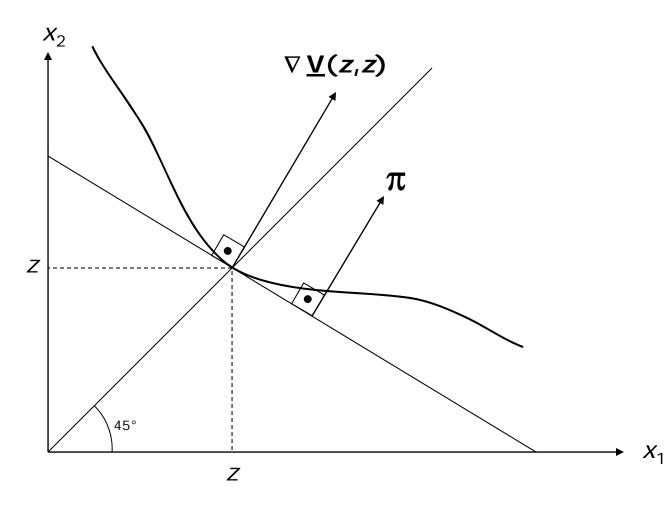


But riskaversion does not imply convexity.

This indifference curve is also compatible with risk-aversion.



#### Indifference curves



The tangency implies that the gradient of  $\underline{\mathbf{V}}$  at the point (z,z) is collinear to  $\pi$ .

Formally,  $\nabla \underline{\mathbf{V}}(z,z) = \lambda \pi$ , for some  $\lambda > 0$ .



Fin 501: Asset Pricing

## Certainty Equivalent and Risk Premium

(3.6) 
$$EU(Y + \widetilde{Z}) = U(Y + CE(Y, \widetilde{Z}))$$

$$= U(Y + E\tilde{Z} - \Pi(Y, \tilde{Z}))$$



## Certainty Equivalent and Risk Premium

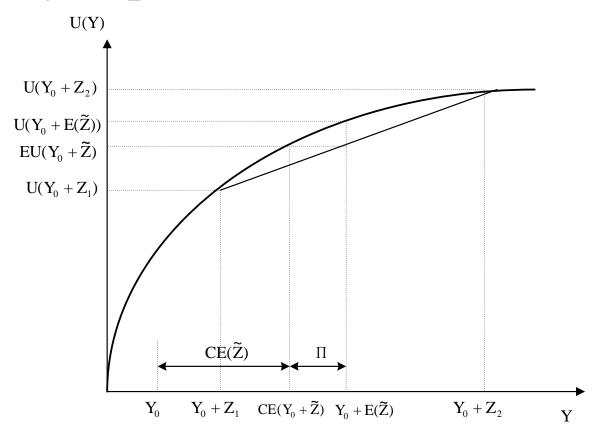


Figure 3-3 Certainty Equivalent and Risk Premium: An Illustration





## Overview: Risk Preferences

| 1. | State-by-state dominance                        |           |
|----|-------------------------------------------------|-----------|
| 2. | Stochastic dominance                            | [DD4]     |
| 3. | vNM expected utility theory                     |           |
|    | a) Intuition                                    | [L4]      |
|    | b) Axiomatic foundations                        | [DD3]     |
| 4. | Risk aversion coefficients and portfolio choice | [DD4,5,L4 |
| 5. | Prudence coefficient and precautionary savings  | [DD5]     |
| 6. | Mean-variance preferences                       | [L4.6]    |



# Measuring Risk aversion

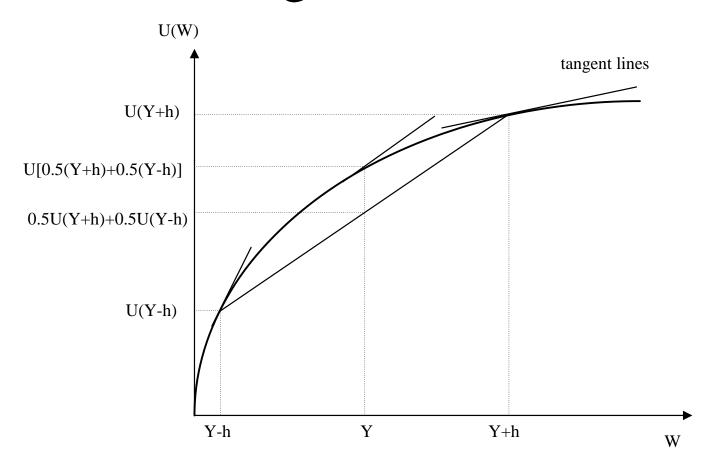


Figure 3-1 A Strictly Concave Utility Function



Fin 501: Asset Pricing

# Arrow-Pratt measures of risk aversion and their interpretations

■ absolute risk aversion 
$$= -\frac{U''(Y)}{U'(Y)} = R_A(Y)$$

■ relative risk aversion = 
$$-\frac{Y U''(Y)}{U'(Y)} \equiv R_R(Y)$$

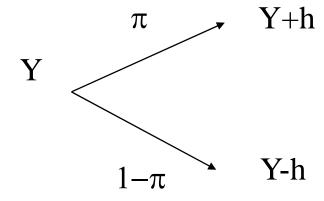
• risk tolerance 
$$= \frac{1}{R_A}$$



Fin 501: Asset Pricing

## Absolute risk aversion coefficient

$$R_A = -\frac{U''(Y)}{U'(Y)}$$



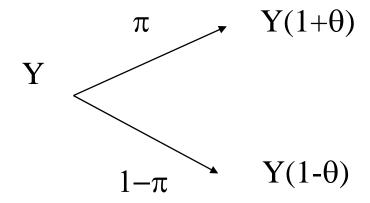
$$\pi(Y,h) = \frac{1}{2} + \frac{1}{4}hR_A(Y) + HOT$$





#### Relative risk aversion coefficient

$$R_R = -\frac{U''(Y)}{U'(Y)}Y$$



$$\pi(Y,\theta) = \frac{1}{2} + \frac{1}{4}\theta R_R(Y) + HOT$$

Homework: Derive this result.



# CARA and CRRA-utility functions

Constant Absolute RA utility function

$$U(Y) = -e^{-\rho Y}$$

Constant Relative RA utility function

$$U(Y) = \frac{Y^{1-\gamma}}{1-\gamma}$$
 for  $\gamma \neq 1$   
 $U(Y) = lnY$  for  $\gamma = 1$ 



#### Investor's Level of Relative Risk Aversion

$$\frac{(Y + CE)^{1-\gamma}}{1-\gamma} = \frac{\frac{1}{2}(Y + 50,000)^{1-\gamma}}{1-\gamma} + \frac{\frac{1}{2}(Y + 100,000)^{1-\gamma}}{1-\gamma}$$

$$\gamma = 0$$
 CE = 75,000 (risk neutrality)  
 $\gamma = 1$  CE = 70,711  
 $\gamma = 2$  CE = 66,246  
 $\gamma = 5$  CE = 58,566  
 $\gamma = 10$  CE = 53,991  
 $\gamma = 20$  CE = 51,858  
 $\gamma = 30$  CE = 51,209

$$Y=100,000$$
  $\gamma = 5$   $CE = 66,530$ 



Fin 501: Asset Pricing

## Risk aversion and Portfolio Allocation

- No savings decision (consumption occurs only at t=1)
- Asset structure
  - One risk free bond with net return  $r_f$
  - One risky asset with random net return *r* (a =quantity of risky assets)

$$\max_{a} E[U(Y_0(1+r_f)+a(r-r_f))]$$

FOC:

$$E[U'(Y_0(1+r_f)+a(r-r_f))(r-r_f)]=0$$

Slide 04-5

• Theorem 4.1: Assume U'() > 0, and U"() < 0 and let  $\hat{a}$  denote the solution to above problem. Then

$$\hat{a} > 0$$
 if and only if  $E\widetilde{r} > r_f$   $\hat{a} = 0$  if and only if  $E\widetilde{r} = r_f$   $\hat{a} < 0$  if and only if  $E\widetilde{r} < r_f$  .

• Define  $W(a) = E\{U(Y_0(1+r_f)+a(\widetilde{r}-r_f))\}$ . The FOC can then be written  $W'(a) = E[U'(Y_0(1+r_f)+a(\widetilde{r}-r_f))(\widetilde{r}-r_f)] = 0$ . By risk aversion (U''<0),  $W''(a) = E[U''(Y_0(1+r_f)+a(\widetilde{r}-r_f))(\widetilde{r}-r_f)^2]$  < 0, that is, W'(a) is everywhere decreasing. It follows that  $\widehat{a}$  will be positive if and only if  $W'(0) = U'(Y_0(1+r_f))E(\widetilde{r}-r_f) > 0$  (since then a will have to be increased from its value of 0 to achieve equality in the FOC). Since U' is always strictly positive, this implies  $\widehat{a} > 0$  if and only if  $E(\widetilde{r}-r_f) > 0$ . W'(a) The other assertion follows similarly.  $\square$ 



## Portfolio as wealth changes

- Theorem 4.4 (Arrow, 1971): Let  $\hat{a} = \hat{a}(Y_0)$  be the solution to max-problem above; then:
  - (i)  $\frac{\partial R_A}{\partial Y} < 0$  (DARA) implies  $\frac{\partial \widehat{a}}{\partial Y_0} > 0$
  - (ii)  $\frac{\partial R_A}{\partial Y} = 0$  (CARA) implies  $\frac{\partial \widehat{a}}{\partial Y_0} = 0$
  - (iii)  $\frac{\partial R_A}{\partial Y} > 0$  (IARA) implies  $\frac{\partial \widehat{a}}{\partial Y_0} < 0$



## Portfolio as wealth changes

- Theorem 4.5 (Arrow 1971): If, for all wealth levels Y,
  - (i)  $\frac{\partial R_R}{\partial Y} = 0$  (CRRA) implies  $\eta = 1$
  - (ii)  $\frac{\partial R_R}{\partial Y} <$  0 (DRRA) implies  $\eta > 1$
  - (iii)  $\frac{\partial R_R}{\partial Y} > 0$  (IRRA) implies  $\eta < 1$

where 
$$\eta = \frac{da/a}{dY/Y}$$
 (elasticity)



# Log utility & Portfolio Allocation

$$U(Y) = \ln Y$$
.

$$E\{\frac{\tilde{r}-r_f}{Y_0(1+r_f)+a(\tilde{r}-r_f)}\}=0$$

2 states, where  $r_2 > r_f > r_1$ 

$$\frac{a}{Y_0} = \frac{(1+r_f)[E[\tilde{r}]-r_f]}{-(r_1-r_f)(r_2-r_f)} > 0$$

Constant fraction of wealth is invested in risky asset!



Fin 501: Asset Pricing

## Portfolio of risky assets as wealth changes

Now -- many risky assets

■ Theorem 4.6 (Cass and Stiglitz,1970). Let the vector

$$\begin{bmatrix} \hat{a}_1(Y_0) \\ \cdot \\ \cdot \\ \hat{a}_J(Y_0) \end{bmatrix} \text{ denote the amount optimally invested in the } J \text{ risky assets if}$$
the wealth level is  $Y_0$ . Then 
$$\begin{bmatrix} \hat{a}_1(Y_0) \\ \cdot \\ \cdot \\ \hat{a}_J(Y_0) \end{bmatrix} = \begin{bmatrix} a_1 \\ \cdot \\ \cdot \\ a_J \end{bmatrix}$$

if and only if either

(i) 
$$U'(Y_0) = (\theta Y_0 + \kappa)^{\Delta}$$
 or   
(ii)  $U'(Y_0) = \xi e^{-\nu Y_0}$ .

• In words, it is sufficient to offer a **mutual fund**.



Fin 501: Asset Pricing

# LRT/HARA-utility functions

Linear Risk Tolerance/hyperbolic absolute risk aversion

$$-\frac{u''(c)}{u'(c)} = \frac{1}{A + Bc}$$

- Special Cases
  - B=0, A>0 CARA
  - B  $\neq$  0,  $\neq$ 1 Generalized Power
    - B=1 Log utility
    - B=-1 Quadratic Utility
    - $B \neq 1$  A=0 CRRA Utility function

$$u(c) = \frac{1}{B-1}(A + Bc)^{\frac{B-1}{B}}$$

$$u(c) = ln (A+Bc)$$

$$u(c) = -(A-c)^2$$

$$u(c) = \frac{1}{B-1} (Bc)^{\frac{B-1}{B}}$$





## Overview: Risk Preferences

- State-by-state dominance
   Stochastic dominance [DD4]
- 3. vNM expected utility theory
  - a) Intuition [L4]
  - b) Axiomatic foundations [DD3]
- 4. Risk aversion coefficients and portfolio choice [DD4,5,L4]
- 5. Prudence coefficient and precautionary savings [DD5]
- 6. Mean-variance preferences [L4.6]



# Introducing Savings

- Introduce savings decision: Consumption at t=0 and t=1
- Asset structure 1:
  - risk free bond R<sup>f</sup>
  - NO risky asset with random return
- Increase Rf:
  - **Substitution effect:** shift consumption from t=0 to t=1  $\Rightarrow$  save more
  - Income effect: agent is "effectively richer" and wants to consume some of the additional richness at *t*=0
     ⇒ save less
  - For log-utility ( $\gamma$ =1) both effects cancel each other



# Prudence and Pre-cautionary Savings

- Introduce savings decision Consumption at t=0 and t=1
- Asset structure 2:
  - NO risk free bond
  - One risky asset with random gross return R



# Prudence and Savings Behavior

- Risk aversion is about the willingness to insure ...
- ... but not about its comparative statics.
- How does the behavior of an agent change when we marginally increase his exposure to risk?
- An old hypothesis (going back at least to J.M.Keynes) is that people should save more now when they face greater uncertainty in the future.
- The idea is called *precautionary saving* and has intuitive appeal.



## Prudence and Pre-cautionary Savings

- Does not directly follow from risk aversion alone.
- Involves the third derivative of the utility function.
- Kimball (1990) defines **absolute prudence** as  $P(w) := -\mathbf{u}'''(w)/\mathbf{u}''(w)$ .
- Precautionary saving if any only if they are prudent.
- This finding is important when one does comparative statics of interest rates.
- Prudence seems uncontroversial, because it is weaker than DARA.



# Pre-cautionary Saving (extra material)

$$\max_{s} E[U(Y_0 - s) + \delta U(sR)]$$

s.t.  $s \geq 0$ 

FOC: 
$$U'(Y_0 - s) = \delta E[U'(sR)R]$$

Is saving *s* increasing/decreasing in risk of *R*?

Is RHS increasing/decreasing is riskiness of *R*?

Is U'() convex/concave?

Depends on third derivative of U()!

N.B: For  $U(c)=\ln c$ , U'(sR)R=1/s does not depend on R.



# Pre-cautionary Saving (extra material)

- 2 effects: Tomorrow consumption is more volatile
- consume more today, since it's not risky
- save more for precautionary reasons

Theorem 4.7 (Rothschild and Stiglitz,1971): Let  $\tilde{R}_A$ ,  $\tilde{R}_B$  be two return distributions with identical means such that  $\tilde{R}_B = \tilde{R}_A + e$ , (where e is white noise) and let  $s_A$  and  $s_B$  be, respectively, the savings out of  $Y_0$  corresponding to the return distributions  $\tilde{R}_A$  and  $\tilde{R}_B$ 

If 
$$R'_R(Y) \le 0$$
 and  $R_R(Y) > 1$ , then  $s_A < s_B$ ;

If 
$$R'_{R}(Y) \ge 0$$
 and  $R_{R}(Y) < 1$ , then  $s_{A} > s_{B}$ 

# Prudence & Pre-cautionary Saving

$$\mathbf{P}(\mathbf{c}) = \frac{-\mathbf{U}'''(\mathbf{c})}{\mathbf{U}''(\mathbf{c})}$$

$$\mathbf{P}(\mathbf{c})\mathbf{c} = \frac{-\mathbf{c}\mathbf{U}'''(\mathbf{c})}{\mathbf{U}''(\mathbf{c})}$$

■ Theorem 4.8: Let  $\tilde{R}_A$ ,  $\tilde{R}_B$  be two return distributions such that  $\tilde{R}_A$  SSD  $\tilde{R}_B$ , and let  $s_A$  and  $s_B$  be, respectively, the savings out of  $Y_0$  corresponding to the return distributions

$$\tilde{R}_{\Delta}$$
 and  $\tilde{R}_{R}$ . Then,

$$s_A \ge s_B$$
 iff  $c\mathbf{P}(c) \le 2$ , and conversely,

$$s_A < s_B$$
 iff  $c\mathbf{P}(c) > 2$ 





#### Overview: Risk Preferences

- State-by-state dominance
   Stochastic dominance
- 3. vNM expected utility theory
  - a) Intuition [L4]
  - b) Axiomatic foundations [DD3]
- 4. Risk aversion coefficients and portfolio choice [DD4,5,L4]
- 5. Prudence coefficient and precautionary savings [DD5]
- 6. Mean-variance preferences [L4.6]

[DD4]



## Mean-variance Preferences

- Early researchers in finance, such as Markowitz and Sharpe, used just the mean and the variance of the return rate of an asset to describe it.
- Mean-variance characterization is often easier than using an vNM utility function
- But is it compatible with vNM theory?
- The answer is yes ... approximately ... under some conditions.



# Mean-Variance: quadratic utility

Suppose utility is quadratic,  $u(y) = ay - by^2$ .

Expected utility is then

$$E[u(y)] = aE[y] - bE[y^2]$$

$$= aE[y] - b(E[y]^2 + var[y]).$$

Thus, expected utility is a function of the mean, E[y], and the variance, var[y], only



# Mean-Variance: joint normals

- Suppose all lotteries in the domain have normally distributed prized. (independence is not needed).
  - This requires an infinite state space.
- Any linear combination of normals is also normal.
- The normal distribution is completely described by its first two moments.
- Hence, expected utility can be expressed as a function of just these two numbers as well.



## Mean-Variance: linear distribution classes

- Generalization of joint nomarls.
- Consider a class of distributions  $F_1, ..., F_n$  with the following property:
  - for all *i* there exists (m,s) such that  $F_i(x) = F_1(a+bx)$  for all *x*.
- This is called a linear distribution class.
- It means that any  $F_i$  can be transformed into an  $F_j$  by an appropriate shift (a) and stretch (b).
- Let  $y_i$  be a random variable drawn from  $F_i$ . Let  $\mu_i = E\{y_i\}$  and  $\sigma_i^2 = E\{(y_i \mu_i)^2\}$  denote the mean and the var of  $y_i$ .



Fin 501: Asset Pricing

## Mean-Variance: linear distribution classes

- Define then the random variable  $x = (y_i \mu_i)/\sigma_i$ . We denote the distribution of x with F.
- Note that the mean of x is 0 and the variance is 1, and F is part of the same linear distribution class.
- Moreover, the distribution of x is independent of which i we start with.
  - $\nearrow$  We want to evaluate the expected utility of  $y_i$ ,

$$\int_{-\infty}^{+\infty} v(z) dF_i(z).$$

## Mean-Variance: linear distribution classes

But 
$$y_i = \mu_i + \sigma_i x$$
, thus

$$\int_{-\infty}^{+\infty} v(z) dF_i(z) = \int_{-\infty}^{+\infty} v(\mu_i + \sigma_i z) dF(z)$$
$$=: U(\mu_i, \sigma_i).$$

The expected utility of all random variables drawn from the same linear distribution class can be expressed as functions of the mean and the standard deviation only.



#### Mean-Variance: small risks

- Justification for mean-variance for the case of small risks.
- use a second order (local) Taylor approximation of vNM U(c).
- If U(c) is concave, second order Taylor approximation is a quadratic function with a negative coefficient on the quadratic term.
- Expectation of a quadratic utility function can be evaluated with the mean and variance.



#### Mean-Variance: small risks

■ Let  $f: R \rightarrow R$  be a smooth function. The Taylor approximation is

$$f(x) \approx f(x_0) + f'(x_0) \frac{(x - x_0)^1}{1!} + f''(x_0) \frac{(x - x_0)^2}{2!} + f'''(x_0) \frac{(x - x_0)^3}{3!} + \cdots$$

• Use Taylor approximation for E[u(x)].



#### Mean-Variance: small risks

• Since  $E[u(w+x)] = u(c^{CE})$ , this simplifies to

$$w-c_{CE} \approx R_A(w) \frac{\operatorname{var}(x)}{2}.$$

- $\pi W c^{CE}$  is the risk premium.
- We see here that the risk premium is approximately a linear function of the variance of the additive risk, with the slope of the effect equal to half the coefficient of absolute risk.



Fin 501: Asset Pricing

#### Mean-Variance: small risks

- The same exercise can be done with a multiplicative risk.
- Let y = gw, where g is a positive random variable with unit mean.
- Doing the same steps as before leads to

$$1-\kappa \approx R_R(w)\frac{\operatorname{var}(g)}{2},$$

where  $\kappa$  is the certainty equivalent growth rate,  $u(\kappa w) = E[u(gw)].$ 

7 The coefficient of *relative* risk aversion is relevant for multiplicative risk, absolute risk aversion for additive risk.







#### Extra material follows!



### Joint saving-portfolio problem

- Consumption at t=0 and t=1. (savings decision)
- Asset structure
  - One risk free bond with net return r<sub>f</sub>
  - One risky asset (a = quantity of risky assets)

$$\max_{\substack{\{a,s\}\\ FOC:}} U(Y_0 - s) + \delta EU(s(1 + r_f) + a(\tilde{r} - r_f)) \tag{4.7}$$
 
$$FOC:$$
 
$$s: \qquad U'(c_t) \qquad = \delta E[U'(c_{t+1})(1 + r_f)]$$
 
$$a: \qquad E[U'(c_{t+1})(r - r_f)] = 0$$

for CRRA utility functions

s: 
$$(Y_0 - s)^{-\gamma} (-1) + \delta E([s(1 + r_f) + a(\tilde{r} - r_f)]^{-\gamma} (1 + r_f)) = 0$$

a: 
$$E[(s(1+r_f) + a(\tilde{r} - r_f))^{-\gamma}(\tilde{r} - r_f)] = 0$$

Where *s* is total saving and *a* is amount invested in risky asset.



## Multi-period Setting

Canonical framework (exponential discounting)

$$U(c) = E[\sum_{t} \beta^{t} u(c_{t})]$$

- prefers earlier uncertainty resolution if it affect action
- indifferent, if it does not affect action
- Time-inconsistent (hyperbolic discounting)
  Special case: β−δ formulation

$$U(c) = E[u(c_0) + \beta \sum \delta^t u(c_t)]$$

■ Preference for the timing of uncertainty resolution recursive utility formulation (Kreps-Porteus 1978)



### Multi-period Portfolio Choice

$$\max_{\{s_t, a_t\}_{t=0}^{T-1}} E[\sum_{t=0}^{T} \beta^t U(c_t)]$$
s.t.
$$c_T = s_{T-1}(1 + r_f) + a_{T-1}(r_T - r_f)$$

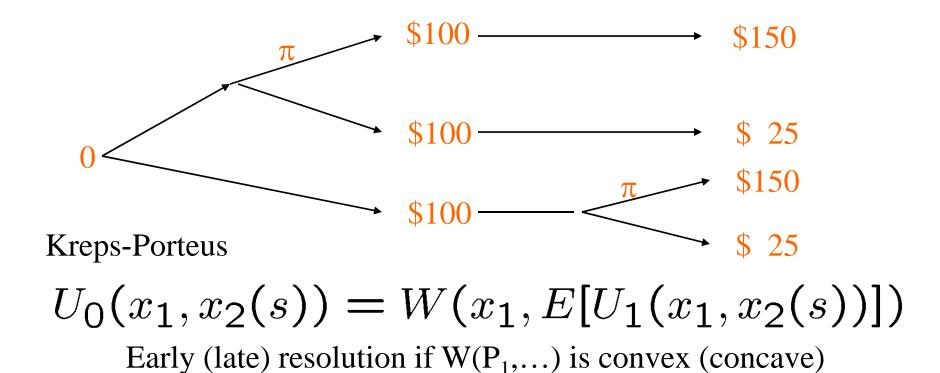
$$c_t + s_t \le s_{t-1}(1 + r_f) + a_{t-1}(r_t - r_f)$$

$$c_0 + s_0 < Y_0$$

Theorem 4.10 (Merton, 1971): Consider the above canonical multi-period consumption-saving-portfolio allocation problem. Suppose U() displays CRRA,  $r_f$  is constant and  $\{r\}$  is i.i.d. Then  $a/s_t$  is time invariant.



# Digression: Preference for the timing of uncertainty resolution



Marginal rate of temporal substitution risk aversion