

Lecture 11: Multi-period Equilibrium Models

Prof. Markus K. Brunnermeier

Time-varying R*_t (SDF)

- If one-period SDF m_t is not time-varying (i.e. distribution of m_t is i.i.d., then
 - >Expectations hypothesis holds
 - ➤ Investment opportunity set does not vary
 - Corresponding R* of single factor state-price beta model can be easily estimate (because over time one more and more observations about R*)
- If not, then m_t (or corresponding R^*_t)
 - >depends on state variable
 - > multiple factor model

R* depends on state variable

- $R^*_{t}=R^*(z_t)$, with state variable z_t
- Example:
 - $\geq z_t = 1$ or 2 with equal probability
 - ►Idea:
 - Take all periods with $z_t=1$ and figure out $R^*(1)$
 - Take all periods with $z_t=2$ and figure out $R^*(2)$
 - Can one do that?
 - No hedge across state variables
- Potential state-variables: predict future return

Intertemporal CAPM (ICAPM)

• Merton (1973)

Deriving ICAPM

ICAPM allows consumption to depend on state variable z_t, which predicts future returns,
 e.g. price-dividend ratio, risk-free rate

$$E\left[\sum_{t=0}^{\infty} \delta^t u(c_t, z_t)\right]$$

- Hence, value function V depends on both wealth
 W_t and on state variable z
- Bellman equation

$$V(W_t, z_t) = \sup_{c_t, W_t} \{ u(c_t, z_t) + \delta E_t[V(W_{t+1}, z_{t+1})] \}$$

Deriving ICAPM

$$V(W_t, z_t) = \sup_{c_t, W_t} \{ u(c_t, z_t) + \delta E_t[V(W_{t+1}, z_{t+1})] \}$$

• Recall $W_{t+1} = R^{W}_{t+1}(W_t-c_t)$. Differentiate w.r.t. c_t and W_t

$$0 = u'(c_t, z_t) - \delta E_t[V_W(W_{t+1}, z_{t+1})R_{t+1}^W]$$

$$V_W(W_t, z_t) = \delta E_t[V_W(W_{t+1}, z_{t+1})R_{t+1}^W]$$

• Therefore $u'(c_t,z_t) = V_W(W_t,z_t)$

Deriving ICAPM

Hence equation

$$\begin{split} E[R_{t+1}^i] - R^f &= -\frac{Cov_t(u'(c_{t+1}), R_{t+1}^i)}{E_t[u'(c_{t+1}]} \\ \text{becomes} E[R_{t+1}^i] - R^f &= -\frac{Cov_t(V_W(W_{t+1}, z_{t+1}), R_{t+1}^i)}{E_t[V_W(W_{t+1}, z_{t+1})]} \end{split}$$

• Using a first order approximation

$$V_W(W_{t+1}, z_{t+1}) \approx V_W(W_t, z_t) + V_{WW}(W_t, z_t) \Delta W_{t+1} + V_{Wz}(W_t, z_t) \Delta z_{t+1}$$

we obtain

$$E[R_{t+1}^i] - R^f = -\gamma Cov_t(\Delta W_{t+1}, R_{t+1}^i) + \frac{V_{Wz}}{E_t[V_W]}Cov(\Delta z_{t+1}, R_{t+1}^i)$$

- \triangleright Where γ is relative risk aversion coefficient of V
- > Second term are additional "risk factors"

Static problem = intertemporal problem

- In general ICAPM setting
 - \triangleright CRRA with γ ≠1 and changing investment opportunity sets
- Special cases
 - 1. CRRA and i.i.d. returns and constant r^f
 - SR and LR investors have the same portfolio weights.
 - Solve static problem instead of intertemporal problem
 - 2. Log utility and non-i.i.d. returns => same result

Digression: Multi-period Portfolio Choice

$$\max_{\{s_t, a_t\}_{t=0}^{T-1}} E[\sum_{t=0}^{T} \delta^t U(c_t)]$$
s.t.
$$c_T = s_{T-1}(1 + r_f) + a_{T-1}(r_T - r_f)$$

$$c_t + s_t \le s_{t-1}(1 + r_f) + a_{t-1}(r_t - r_f)$$

$$c_0 + s_0 < Y_0$$

Theorem 4.10 (Merton, 1971): Consider the above canonical multi-period consumption-saving-portfolio allocation problem. Suppose U() displays CRRA, r_f is constant and $\{r\}$ is i.i.d. Then a/s_t is time invariant.

(Dynamic) Hedging Demand

- Illustration with noise trader risk:
 - ➤ Suppose fundamental value is constant v=1, but price is noisy (due to noise traders)
 - ➤ If the asset is underpriced, e.g. p=.9, then it might be even more underpriced in the next period
 - Myopic risk-averse investor:
 buy some of the asset and push price towards 1, but not fully
 - Forward-looking risk-averse investor:

 yes, there can be intermediate losses if price declines in next period, but then **investment opportunity set** improves even more i.e. if returns are bad, then I have great opportunity (dynamic hedge)

Dynamic hedging demand

- Trade-off
 - Low return realization in next period
 - Good since opportunity going forward is high
 - > Invest more
 - ➤ Bad since marginal utility is high
 - Consume and invest less
 - ➤ High return realization in next period
- Utility
 - $\geq \gamma > (<)1$ first (second) effect dominates
 - $\gamma = 1 (log-utility)$ both effects offset each otherslide 11-11

Conditional vs. unconditional CAPM

- If β of each subperiod CAPM are timeindependent, then conditional CAPM = unconditional CAPM
- If β s are time-varying they may co-vary with R_m and hence CAPM equation does not hold for unconditional expectations.
 - Additional co-variance terms have to be considered!
 - ➤ Move from single-factor setting to multi-factor setting