Fin 501: Asset Pricing Pricing Models and Derivatives

Problem Set 2

Gustav Sigurdsson

Due date: October 11, 2004

1.1 Problem (20 points)

Utility function: Under certainty, any increasing monotone transformation of a utility function is also a utility function representing the same preferences. Under uncertainty, we must restrict this statement to linear transformations if we are to keep the same preference representation. Give a mathematical as well as an economic interpretation for this.

Check it with this example. Assume an initial utility function attributes the following values to 3 outcomes:

$$B \quad u(B) = 100$$

 $M \quad u(M) = 10$
 $P \quad u(P) = 50$

- a) Check that with this initial utility function, the lottery L = (B, M, 0.50) > P.
- b) The proposed transformations are $f(x) = a + bx, a \ge 0, b > 0$, and $g(x) = \ln(x)$. Check that under f, L > P, but that under g, P > L.

1.2 Problem (20 points)

Inter-temporal consumption: Consider a two-date (one-period) economy and an agent with utility function over consumption:

$$U\left(c\right) = \frac{c^{1-\gamma}}{1-\gamma}$$

at each period. Define the inter-temporal utility function as $V(c_1, c_2) = U(c_1) + U(c_2)$. Show (try it mathematically) that the agent will always prefer a smooth consumption stream to a more variable one with the same mean, that is,

$$U(\bar{c}) + U(\bar{c}) > U(c_1) + U(c_2)$$

if $\bar{c} = \frac{c_1 + c_2}{2}, c_1 \neq c_2$.

1.3 Problem (20 points)

Risk aversion: Consider the following utility functions (defined over wealth Y):

$$(1) U(Y) = -\frac{1}{Y}$$

$$(2) U(Y) = \ln(Y)$$

$$(3) U(Y) = -Y^{-\gamma}$$

$$(4) U(Y) = -\exp(-\gamma Y)$$

$$(5) U(Y) = \frac{Y^{\gamma}}{\gamma}$$

$$(6) U(Y) = \alpha Y - \beta Y^{2}$$

- a) Check that they are well behaved (U'>0,U''<0) or state restrictions on the parameters so that they are (utility functions (1)-(5)). For utility function (6), take positive α and β , and give the range of wealth over which the utility function is well behaved.
- b) Compute the absolute and relative risk aversion coefficients.
- c) What is the effect of the parameter γ (when relevant)?
- d) Classify the functions as increasing/decreasing risk aversion utility functions (both absolute and relative).

1.4 Problem (20 points)

Certainty equivalent:

$$(1) U(Y) = -\frac{1}{Y}$$

$$(2) U(Y) = \ln(Y)$$

$$(3) U(Y) = \frac{Y^{\gamma}}{\gamma}$$

Consider the lottery $L_1=(50,000;10,000;0.50)$. Determine the lottery $L_2=(x;0;1)$ that makes an agent indifferent to lottery L_1 with utility functions (1),(2), and (3) as defined. For utility function (3), use $\gamma=\{0.25,0.75\}$. What is the effect of changing the value of γ ? Comment on your results using the notions of risk aversion and certainty equivalent.

1.5 Problem (20 points)

Risk premium: A businesswoman runs a firm worth \$ 100,000. She faces some risk of having a fire that would reduce her net worth according to the following three states, i = 1, 2, 3, each with probability $\pi(i)$ (Scenario A).

$$\begin{array}{ccccc} State & Worth & \pi \left(i \right) \\ 1 & 1 & 0.01 \\ 2 & 50,000 & 0.04 \\ 3 & 100,000 & 0.95 \end{array}$$

Of course, in state 3, nothing detrimental happens, and her business retains its value of \$ 100,000.

- a) What is the maximum amount she will pay for insurance if she has a logarithmic utility function over final wealth? (Note: The insurance pays \$ 99,999 in the first case; \$ 50,000 in the second; and nothing in the third.)
- b) Do the calculations with the following alternative probabilities:

	$Scenario\ B$	$Scenario\ C$
$\pi(1)$	0.01	0.02
$\pi(2)$	0.05	0.04
$\pi(3)$	0.94	0.94

Is the outcome (the comparative change in the premium) a surprise? Why?

1.6 Problem (20 points)

Risk aversion and portfolio choice: Consider an economy with two types of financial assets: one risk-free and one risky asset. The rate of return offered by the risk-free asset is r_f . The rate of return of the risky asset is \tilde{r} . Note that the expected rate of return $E(\tilde{r}) > r_f$.

Agents are risk-averse. Let Y_0 be the initial wealth. The purpose of this exercise is to determine the optimal amount a to be invested in the risky asset as a function of the Arrow-Pratt measure of absolute risk aversion.

The objective of the agents is to maximize the expected utility of terminal wealth:

$$\max_{\alpha} E\left(U\left(Y\right)\right)$$

where E is the expectation operator, $U(\cdot)$ is the utility function with U'>0 and U''<0, Y is the wealth at the end of the periond, and a is the amount being invested in the risky asset.

- a) Determine the final wealth as a function of a, r_f , and \tilde{r} .
- b) Compute the f.o.c. (first order condition). Is this a maximum or a minimum?
- c) We are interested in determining the sign of da^*/dY_0 . Calculate first the total differential of the f.o.c. as a function of a and Y_0 . Write the expression for da^*/dY_0 . Show that the sign of this expression depends on the sign of its numerator.
- d) You know that R_A , the absolute risk aversion coefficient, is equal to $-U''(\cdot)/U'(\cdot)$. What does it mean if $R'_A = dR_A/dY < 0$?
- e) Assuming $R'_A < 0$, compare $R_A(Y)$ and $R_A(Y_0(1+r_f))$: Is $R_A(Y) > R_A(Y_0(1+r_f))$ or vice-versa? Don't forget there are two possible cases: $\tilde{r} \geq r_f$ and $\tilde{r} < r_f$.
- f) Show that $U''(Y_0(1+r_f)+a(\tilde{r}-r_f))(\tilde{r}-r_f) \ge -R_A(Y_0(1+r_f)) \times U'(Y_0(1+r_f)+a(\tilde{r}-r_f))(\tilde{r}-r_f)$ for both cases in part e).

g) Finally, compute the expectation of $U''(Y)(\tilde{r}-r_f)$. Using the f.o.c., determine its sign. What can you conclude about the sign of da^*/dY_0 ? What was the key assumption for the demonstration?