From last time: The carbonyl group can increase the acidity of the adjacent (alpha) C-H to pKa ca 20. There is an equilibration between the ketone (aldehyde) and enol, which strongly favors the ketone (aldehyde). Each is stable in the absence of acid or base, but these agents accelerate the establishment of equilibrium.

Consequences:

Bromination of ketones

Enol stability relative to the ketone (aldehyde):

$$\bigoplus_{H} = \bigcirc$$

Enol and Enolate nucleophiles in addition to ketones and aldehydes:

In base:

$$\begin{array}{c|c} H & NaOH \\ \hline OH & OH \\ \hline \end{array}$$
 an "aldol"

In acid:

$$H \xrightarrow{H^{\oplus}}$$

These reactions are typically reversible: write the mechanism backwards.

And, as usual, the equilibrium for ketones is less favorable.

Need a trick to drive the equilibrium: fig 18.63

Soxhlet Extractor

Ketones, in acid:

Problem: Crossed Aldol reactions give mixtures

1. Make intramolecular favorable for five- and six-membered rings.

2. Crossed Aldol (intermolecular): Ideal--one ketone with no enolizable C-H another ketone with less reactive C=O

Original: Claisen-Schmidt (ketone with aldehyde)

$$R_1$$
 R_2 R_3 R_3 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_9 R_9

A,B = anything

$$R_3$$
 A B R_1 R_2 OH

Mechanism: p 914

Classics:

Very stabilized carbanion in one component: Knoevenagel Condensation

$$CH_3$$
 + MeO_2C CO_2Me MeO_2C CH_3

Reversible addition of stabilized anion most stable product favored at equilibrium

Combination condensation reactions:

Sarett's Cortisone synthesis:

Role of CN: Add to C=O; favor deprotonation of alpha H

Nature's analog of CN: Thiamine pKa 12.7