Chemistry 304B with Biological Emphasis

lect 1

1

Professor M. F. Semmelhack mfshack@princeton.edu 8-5501

Head TA: David Moffet Laboratory: Henry Gingrich

Preceptor: Anatolyi Chlenov URL: www.princeton.edu/~mfshack/304B

Check the 304B Webpage for information regarding the administration of the course.

Key points: notes are available for each lecture; need to be "filled in."

exams are "open everything"

grading will be approximately parallel with 304X

First exam: March 1st, 7:30-9:30 pm

What is meant by "biological emphasis"?

As in Chem 303, emphasis is on **reaction mechanism**.

But examples will be taken from biochemistry whenever appropriate

Biology can be understood in terms of basic organic mechanisms operating in complex systems.

New emphasis: MOLECULAR ASSOCIATION--weak interactions between organic molecules

structure of proteins, DNA

enzyme-substrate hormone-receptor lipid membranes

etc.

ionic, H-bonding, dipole-dipole, van der Waals interactions

NMR and IR spectroscopy will be important in solving problems

Reading assignment: Handout on molecular association; Jones: p 863, 820, 107-108, 236, Problem set 1.

Polarity influences many properties: mp, BP, solubility "LIKE DISSOLVES LIKE"

Extreme: Na⁺ Cl⁻ MW 58 mp 801° bp 1413° soluble in water

n-butane CH₃-CH₂-CH₂-CH₃ MW 58 mp -138° bp -0.5° insoluble in water

isopropyl alcohol CH_3 $CH_$

- 1. Ionic bonds involve full charges **STRONG** electrostatic attraction Cl⁻ Na⁺ Cl⁻ Na⁺ boiling, melting: means breaking apart the electrostatic attraction (bond).
- 2. Polar covalent bonds involve partial charges (permanent dipole),

MODERATE electrostatic attraction

DIPOLE-DIPOLE ATTRACTION (0.1-1.0 kcal/mol)

acetone:

3. Special case of dipole-dipole attraction: HYDROGEN BOND 1.0-10 kcal/mol X--H (X = strongly electronegative atom such as F, O, N) Intense dipole as pull charge from H atom

self association of isopropyl alcohol (MW 60)

4. Induced dipole: Van der Waals attraction: polarizibility of electron clouds: temporary dipole Consider series of molecules with similar MW, no highly polarized bonds, but very different boiling points/

	bp
n-heptane	98°
n-octane	126°
n-nonane	151°
2,2,4-trimethylpentane	99°
ethyl iodide	100°

van der Waals can add up:

cholesterol mp 150° large non-polar molecule with a polar functional group

Overall: FOUR ATTRACTION MECHANISMS:

- (a) ionic
- (b) dipole-dipole
- (c) hydrogen bond
- (d) van der Waals

Consider effects on <u>solubility</u>: Now must consider solvent-solvent interactions solute-solute interactions

solute-solvent interactions

How do they add up? [Like dissolves like?]

Dissolving means slipping solute molecules in between solvent molecules: remove some solvent-solvent and solute-solute interactions and replace with solute-solvent interactions.

SOLVENT EFFECTS

higher

polar molecule measured by dipole moment, due to summation of bond dipoles Note: polar **solvent** measured by dielectric constant, ability to stabilize charge

For polar effects of solvents, apply the Electrostatic Law:

E = attraction between charges

q = charges on particles Stabilizing the ions means reducing E;

 r_{12} = distance between particles

= dielectric constant

TABLE OF SOLVENT PROPERTIES

= smaller E

not strongly stabilize anions

Water is a "polar, protic" solvent High dielectric constant (78), Strong H-bonding dissolves ions by dipole/dipole interactions with ions specifically stabilizes anions by H-bond donation great for solubilizing ionic compounds

Dimethyl sulfoxide is a "polar, aprotic" solvent.

High dielectric constant (47) NO H-bond donation dissolves ions by dipole/dipole interactions, especially with cations

Hexane is a non-polar solvent: (also diethyl ether, benzene, etc)

Consider solutes:

A. Highly associated solute (eg, glucose) requires strong interactions with solvent to break up molecular association.

Highly associated (**H bonding**, **dipole-dipole**) solvent such as water must find similar strong interactions with solute to favor separating water molecules from each other

DMSO can also accept H-bonds and dissolve glucose

Polar solute requires polar solvent: Like dissolves like!

- **B.** Non-polar solvent cannot provide the molecular association necessary to separate molecules of a polar solute. Polar solute does not dissolve in non-polar solvent
- C. Non-polar solutes cannot break up polar solvents--do not dissolve

D. Non-polar solvents dissolve non-polar solutes (no special attractions to overcome)

Cholesterol is insoluble in water and hexane: mainly a non-polar molecule even though a polar group

How about CH_2Cl_2 vs CCl_4 ?

Jones: p 237-8; 149, 291, 822-826, 1086-1090, 958-963, 878-882

General terms:

Lewis acid: capable of accepting an electron pair to form a covalent bond.

prototype example: BF₃ empty orbital in valence shell

Lewis base: capable of donating an electron pair to form a covalent bond.

prototype example: :NH₃ low energy non-bonding electrons

In simplest case, non-bonding electron pair on Lewis base engages in overlap with empty atomic orbital on Lewis acid to form a "coordinate covalent bond".

Bronsted acid: capable of delivering a proton (special acid)

e.g., HCl

Bronsted base: capable of accepting a proton

e.g., NaOH and NH3

In general: How does the structure of a molecule affect its acidity/basicity?

Define: equilibrium acidity:

H-A
$$\longrightarrow$$
 H⁺ + A⁻ $K_{eq} = K_a = \frac{[H^+][A^-]}{[HA]}$

If the free energy (G) of the products is equal to the free energy of the reactants, $K_{eq} = 1$

If the products have a larger - $\,$ G, more stable, and $K_{eq}\!>\!1$

If the reactants have a larger - $\,$ G, reactants are more stable and $\,$ K $_{eq}$ < 1

Usually express acidity in terms of pKa, negative log of Ka.

What are the factors which influence the pK_a ?

Remember Hess's law?

H-A
$$\longrightarrow$$
 H• + A• (bond dissociation energy)

A• + e \longrightarrow A: electron affinity

H• \longrightarrow H⁺ + e \longrightarrow ionization potential

add up: H-A \longrightarrow H⁺ + A $^-$

more electronegative: higher electron affinity (more easily form A⁻; less easily add H⁺ to A⁻) stronger H-A bond: higher BDE and less easy to ionize

6

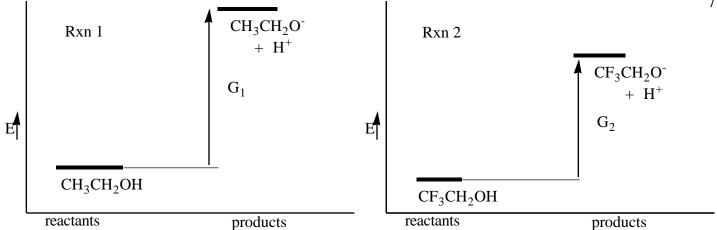
Compare acidity (ease of ionization):

	H-F	Н-ОН	H-NH ₂	H-CH ₃
pKa	3.2	15.7	ca 35	>55
EN	4.0	3.4	3.0	2.5

Electronegativity has a big effect

(bond energies are similar, except the H-F bond is unusually strong)

Bond dissociation energies can dominate:


	H-F	H-Cl	H-Br	H-I
BDE	135	103	88	71
EN	4.0	3.2	3.0	2.7
pKa	3.2	-7	-9	-9.5

Therefore: If mix NaOH with CH₃CH₂OH,

get approx. equal amounts of NaOH, NaOCH2CH3, H2O, CH3CH2OH

Consider:

acidity:
$$CF_3CH_2OH > CF_3CH_2CH_2OH > CF_3CH_2CH_2OH > CH_3CH_2OH$$

pKa 12.4 14.6 15.4 15.9
 $CH_3CH_2OH \iff CH_3CH_2O^- + H^+ ext{ pK}_a ext{ 15.9}$
 $CF_3CH_2OH \iff CF_3CH_2O^- + H^+ ext{ pK}_a ext{ 12.4}$

 $G_1 > G_2$ Therefore, $pK_a(1)$ is $> pK_a(2)$ ethyl alcohol is a weaker acid compared to 2,2,2-trifluoroethyl alcohol

$$G = 2.3RT [pK_a(1) - pK_a(2)] = (2.3) (2.0 cal mol^{-1} K^{-1}) (300^{o}K) (15.9-12.4) =$$

$$ca 5000 cal/mol or 5 kcal/mol$$

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ or } 2.0 \text{ cal mol}^{-1} \text{ K}^{-1}$ Assume room temperature, 300^{0}K

Now: Why? What is responsible for the 5 kcal/mol lower energy difference?

Approximation: the concentration of charge in the anion is a dominant factor in determining whether proton loss is more-or-less favorable.

Analyze factors which influence the product after de-protonation: inductive effects electronegativity

Focus on the ALKOXIDE ANION. (other differences are parallel-breaking O-H bond in both cases, no serious structural change, etc)

CF₃CH₂OH is more acidic than CH₃CH₂OH due to the inductive effect of the F substituent: Very electronegative F draws electrons from adjacent carbon, transmitted to second carbon, and then to O