MULTI-input multi-output (MIMO) power converters are needed in many important and emerging applications including photovoltaic (PV) energy systems [1]–[5], microgrids with multiple sources and integrated energy storage [6]–[12], battery management system [13]–[16], electric traction [17], and data centers [18], [19]. Fig. 1 shows three examples of multiport dc-dc power conversion applications including 1) maximum power point tracking (MPPT) systems for PV arrays, 2) battery management systems, and 3) an energy router for dc power delivery in microgrids managing multiway bi-directional power flow among multiple sources and loads.

There are two ways of implementing a MIMO system: dc-coupled MIMO architecture and ac-coupled MIMO architecture. As illustrated in Fig. 2, in a dc-coupled MIMO system, each source/load unit is connected to a public dc bus capacitor through a standalone dc-dc isolated converter with an internal “dc-ac-dc” power conversion stage or a dc-dc non-isolated stage. The dc-coupled MIMO architecture is a combination of several conventional single-input single-output (SISO) dc-dc converters. Due to the existence of the dc bus capacitor, each port can be independently controlled and the power flow is decoupled. In an ac-coupled MIMO architecture, each source/load is connected to a multi-winding transformer through a dc-ac converter, which has only one “dc-ac” power conversion stage. The ac-coupled MIMO architecture uses one magnetic component to perform multiple functions, including voltage conversion and galvanic isolation. It offers reduced stress and higher efficiency, but requires precise magnetic modeling and sophisticated power flow control.

Many ac-coupled MIMO topologies have been previously explored [7]–[19]. Most of them are straight forward extensions of the well-known dual-active-bridge (DAB) or multi-active-bridge (MAB) family [20], [21]. Fig. 3 shows the
The key contributions of this paper include: 1) a multicell reconfigurable 12-winding MIMO converter with high performance across a wide range; 2) a hybrid time-sharing and phase-shift control strategy; and 3) a systematic method of designing multi-winding PCB transformers. The MR-MIMO architecture allows one power converter being used for multiple purposes. We show that it is possible to gain significantly design flexibility in a multicell reconfigurable architecture without sacrificing the efficiency or power density, opening the potential of future software defined power electronics.

The MR-MIMO architecture is particularly applicable to energy systems with a large number of modular cells, such as differential power processing systems for server racks [19], solar panels [22], battery cells [23], and modular multilevel converters [24]. These modular cells usually have identical voltage and current ratings. The dc-ac cells can be duplicated to interconnect large numbers of modular targets. A MR-MIMO converter is also applicable to power management systems in dc microgrids, hybrid electric vehicles or more electric airplanes, where a multiport power converter may interface with many sources and loads. The dc-ac cells can be connected in series/parallel according to the targeting voltage and current rating, and can be reconfigured to cover a wide operation range without sacrificing the performance.

The remainder of this paper is organized as follows: Section II introduces the operation principles of the MR-MIMO architecture. Section III presents the modeling and analysis of the MIMO power flow. Section IV describes the power flow control strategies with a matrix reduction method to simplify the control complexity. Section V presents the design methods for the multi-winding magnetics. Experimental results of a 500 W 12-winding four-port MR-MIMO converter are summarized in Section VI. Finally, Section VII concludes this paper.
II. MULTICELL RECONFIGURABLE MIMO ARCHITECTURE

As illustrated in Fig. 4, a MR-MIMO architecture comprises many dc-ac cells connected with a linking impedance (Z), a multi-winding magnetic core, and a few connection links which can be used to implement series-parallel connections. The dc-ac cells can be implemented as half/full-bridge, Class-D, or other typical dc-ac conversion circuits. The dc-ac cells can interface with the multi-winding transformer with series resonant, parallel resonant, LLC, or other related principles. The voltage and current rating of each port can be linearly extended by connecting multiple cells in series or parallel as illustrated by the multicell concepts in [25]–[27].

Fig. 5 shows the schematic of a MR-MIMO architecture with 12 modular cells. Two types of modular cells are implemented as examples: four high-voltage (HV) cells and eight low-voltage (LV) cells. The HV cells can be stacked in series to interface with high voltage ports (e.g. the 400 V dc bus in a PFC), and the LV cells can be connected in parallel to interface with high current ports (e.g. a 12 V, 20 A port as needed for low voltage loads). For all the dc-ac cells in the same port, the dc bus voltage and cell power are equally shared (V_H for all cells and V_L for all cells) so that the port voltage and power can be linearly extended by adding more dc-ac cells. The dc-ac cells in the same port are controlled by the same gate driver signals for “plug-and-play” extensions in the voltage rating and current rating. The MR-MIMO architecture has the following advantages:

1) Reduced switch stress. As illustrated in Fig. 6a, the switches and passive components in a wide operation range power converter must be rated for the maximum voltage (V_{max}) and maximum current (I_{max}). The total power rating of the device (the product of voltage rating and current rating) is much higher than the actual system power rating (constant power curve P_o) [28], which is usually thermal related. By dividing the system into multiple cells each rated for a fraction of the voltage rating and current rating (Fig. 6b), the device rating of the system can be much closer to the actual constant system power rating curve. This “multicell” configuration is particularly useful for universal input power factor correction circuits [29], and wide input multiport energy routers that need to operate across a wide range.

2) Reduced magnetic component size. A traditional MIMO converter usually has multiple transformers performing voltage conversion or galvanic isolation. In a MR-MIMO architecture, voltage conversion and galvanic isolation is realized by a single multi-winding transformer. The cross-sectional area of the core is determined by the maximum volt-second-per-turn of all windings of the multi-winding transformer, and is not related to the number of windings or input/output ports [19]. The total core loss of multi-winding transformer is the same as a two-winding transformer [17]. The magnetic core volume in an n port ac-coupled MIMO architecture is n times smaller than the total magnetic core volume needed by a dc-coupled MIMO architecture.

3) Better heat distribution. The MR-MIMO architecture inherits the advantages of distributed (granular) power processing. By dividing the power conversion stress among multiple modules with evenly shared voltage rating and current rating, the heat is uniformly generated on a few low voltage rating (current rating) devices, instead of concentrating on a few heavy rated bulky devices. Better heat distribution translates to smaller heat sinks, smaller volume, and lower cost. Moreover, lower voltage rating devices can usually offer better devices characteristics (lower on resistance per die area) than high voltage rating devices (i.e. “Baliga Figure-of-Merit” [28], [30], [31]).

Fig. 7 shows an example implementation of a modular dc-ac converter as the basic cell, comprising one full-bridge circuit with isolated gate drivers and an isolated auxiliary power supply, a dc decoupling capacitor C_{dc}, a branch inductor, a dc blocking capacitor, and a PCB winding. All PCB windings are coupled to a single magnetic core. All dc-ac cells are controlled by phase-shift modulation using a common clock signal as the reference. A leading phase-shift from the common clock will allow the cell to feed power into the magnetic core, and a lagging phase-shift from the common clock will allow the cell to extract power from the magnetic core.

Fig. 8 shows the “group-control” diagram of the MR-MIMO
architecture. An input/output port may include an arbitrary number of dc-ac cells controlled by one set of gate driver signals. This configuration enables “plug-and-play” function for the MR-MIMO architecture. The controller of each port only senses the port voltage and/or port current for making local switching actions. Without loss of generality, no effort is made to balance the dc bus voltage of series-stacked dc-ac cells or equalize the output current of each parallel-connected dc-ac cells. As long as strong coupling of the magnetic core is guaranteed, and the system is designed with high symmetry, voltage balancing and current balancing are maintained.

III. MODELING AND ANALYSIS OF MIMO POWER FLOW

One key challenge of the MR-MIMO design is to control the sophisticated power flow in the multi-winding transformer. Conceptually, controlling the power flow in the multi-winding transformer of a multiport ac-coupled converter is similar to controlling the power flow in a traditional 60 Hz ac grid, except that the system frequency is much higher [32], [33]. The power flow in a multiport ac-coupled converter can be controlled by time domain multiplexing (time-sharing), frequency domain multiplexing, or phase-shift [7]–[10], [17], depending on the specific implementation of the dc-ac cells. All the control methods require precise model of the multiport converter with the multi-winding transformer.

A. MIMO Cantilever Model and Multiway Power Flow

The dc-ac cells are modeled as square wave voltage sources $V_{#1} - V_{#n}$ which drive the multi-winding transformer in Fig. 9. The ac voltage of each dc-ac cell is the summation of external inductor voltage and winding voltage:

$$
\begin{bmatrix}
V_{#1} \\
\vdots \\
V_{#n}
\end{bmatrix} = j \omega \begin{bmatrix}
L_{11} + L_1 & \cdots & M_{1n} \\
\vdots & \ddots & \vdots \\
M_{n1} & \cdots & L_{nn} + L_n
\end{bmatrix} \begin{bmatrix}
I_{W1} \\
\vdots \\
I_{Wn}
\end{bmatrix}, \tag{1}
$$

where I_{Wi} is the winding current, L_i is the external inductor, L_{ii} is the self-inductance of Winding-i, and $M_{ij} = M_{ji}$ is the mutual-inductance between Winding-i and Winding-j. The impedance matrix (M_Z) in (1) includes the external inductors and the impedance of multi-winding transformer.

As illustrated in Fig. 9, the interconnect of the multiple windings can be also represented by a network of equivalent inductance L_{Gi}. The equivalent inductance L_{ij} is related to the admittance matrix (M_Y) of the ac voltages of cells and the winding currents, which is the inverse of the impedance matrix M_Z:

$$M_Y = \frac{1}{j \omega} \begin{bmatrix}
Y_{11} & \cdots & Y_{1n} \\
\vdots & \ddots & \vdots \\
Y_{n1} & \cdots & Y_{nn}
\end{bmatrix} = M_Z^{-1}. \tag{2}
$$

The equivalent inductance L_{ij} and L_{Gi} are:

$$L_{ij} = -\frac{1}{N_i N_j Y_{ij}}, \quad L_{Gi} = \left(Y_{ii} + \frac{1}{N_i} \sum_{j \neq i} N_j Y_{ij} \right)^{-1}. \tag{3}
$$

Here N_i, N_j are the turns numbers of the transformer windings. Following the derivations in [1], [32], the average power delivered to Cell-i from the transformer is:

$$P_i = \frac{1}{2 \pi^2 f_s} \frac{V_i}{N_i} \sum_{j \neq i} \frac{V_j}{N_j} \left(\Phi_i - \Phi_j \right) \frac{\left| \pi - \left(\Phi_i - \Phi_j \right) \right|}{L_{ij}}. \tag{4}
$$

Here Φ_i and Φ_j are the phase-shift angles of cell-i and cell-j; f_s is the switching frequency.
B. Voltage Balancing and Current Sharing

Eq. (4) indicates that the power flow among the dc-ac cells can be controlled by their phase-shift angles. Based on the group-control concept, the cells in the same port are controlled by the same phase-shift angle no matter how they are connected. No active balancing control is applied to the single dc-ac cell. Equally distributed cell power can ensure voltage balancing for the series-connected cells and current balancing for the parallel-connected cells. Eq. (4) represents the general MIMO power flow with arbitrary dc bus voltage, turns number and phase-shift angles. In the MR-MIMO architecture, the power flow equation can be expressed as the summation of power from all other ports:

\[P_{X,i} = P_{X-i} + P_{Y-i} + P_{Z-i} + \cdots . \]

(5)

\(P_{X,i} \) is the total power received by Cell-\(i \) in Port-\(X \), \(P_{X-i} \), \(P_{Y-i} \), \(P_{Z-i} \) are the power from Port-\(X-Y-Z \). Obviously \(P_{X-i} = 0 \) since there is no phase difference between cells in the same port. Assuming each port only has one type of cells (HV or LV), the power distribution among cells in one port can be analyzed in the following three cases:

1) Both Port-\(X \) and Port-\(Y \) have parallel cells. The port voltages are \(V_{p_x} \) and \(V_{p_y} \), the phase-shift angels are \(\Phi_x \) and \(\Phi_y \), the winding turns numbers are \(N_x \) and \(N_y \), respectively. The power fed into Cell-\(i \) in Port-\(X \) from Port-\(Y \) is:

\[P_{Y-i} = K \frac{V_{p_x} V_{p_y}}{N_x N_y} \sum_{j \in Y} \frac{1}{L_{ij}}, \]

\[K = \frac{\Phi_x - \Phi_y}{2\pi^2 f_s}. \]

(6)

Cell-\(j \) is one cell in Port-\(Y \). Power balancing among the cells in Port-\(X \) is guaranteed if:

\[\sum_{j \in Y} \frac{1}{L_{ij}} = \sum_{j \in Y} \frac{1}{L_{kj}} = \cdots , \{i, k, \cdots \} \in X. \]

(7)

A stronger condition for power balancing is: the inductance matrix between Port-\(X \) and Port-\(Y \) is symmetrical. For any \(L_{ij} \) between Cell-\(i \) in Port-\(X \) and Cell-\(j \) in Port-\(Y \), there is always a \(L_{kl} \) (Cell-\(k \) belongs to Port-\(X \) and Cell-\(l \) belongs to Port-\(Y \)) which equals \(L_{ij} \).

2) Port-\(X \) has all series cells and Port-\(Y \) has parallel cells. The average output currents of Cell-\(i \) and Port-\(X \) are:

\[I_x = \frac{P_{Y-i}}{V_i} = K \frac{1}{N_x N_y} \sum_{j \in Y} \frac{1}{L_{ij}}, \]

\[I_x = \frac{\sum_{i \in X} P_{Y-i}}{\sum_{i \in X} V_i} = K \frac{1}{N_x N_y} \left(\frac{\sum_{i \in X} V_i \sum_{j \in Y} \frac{1}{L_{ij}}}{\sum_{i \in X} V_i} \right). \]

(8)

As shown in Fig. 10, the average current of each series cell equals to the average output current of the port. Otherwise the charge difference will accumulate on the dc bus capacitor of each series cell and result in voltage unbalancing. Solving \(I_x = I_y \), the voltage balancing condition for series cells can be found same as (7).

Unbalanced cell voltage leads to higher current ripple (\(i_{31} \) and \(i_{32} \)) and circulating current (\(i_{12} \)) among cells in the same port. Similarly, the power of Cell-\(j \) in Port-\(Y \) from Port-\(X \) is:

\[P_{X-j} = K \frac{1}{N_x N_y} \sum_{i \in X} V_i. \]

(9)

With (7), the voltage balancing in Port-\(X \) is ensured and the power sharing in Port-\(Y \) is guaranteed.

3) Both Port-\(X \) and Port-\(Y \) have series power cells. Similar to Case 2, the average output current of Cell-\(i \) in Port-\(X \) and the average port current are:

\[I_i = K \frac{1}{N_x N_y} \sum_{j \in Y} \frac{V_j}{L_{ij}}, \]

\[I_x = K \frac{1}{N_x N_y} \left(\frac{\sum_{i \in X} V_i \sum_{j \in Y} \frac{1}{L_{ij}}}{\sum_{i \in X} V_i} \right). \]

(10)

The average output current of Cell-\(j \) in Port-\(Y \) (\(I_j \)) and the average output current of Port-\(Y \) (\(I_y \)) can be presented in the same way. Solving \(I_i = I_x \) and \(I_j = I_y \), the condition for simultaneously balancing the cell voltage in both Port-\(X \) and Port-\(Y \) is the same as (7).

A practical MR-MIMO design may comprise both series and parallel configurations. The condition to achieve voltage balancing and current balancing is given by (7). A sufficient condition for achieving automatic voltage balancing and current balancing is to ensure a symmetric inductance matrix for the multi-winding transformer. Active voltage and current control for each single dc-ac cell is not necessary with automatic balanced voltage and current across the series and/or parallel connected cells.

Fig. 10. A simplified example of power distribution in the port with all series cells: Cell-1 and Cell-2 are series-connected in Port-X and Cell-3 is the only dc-ac cell in Port-Y. Unbalanced voltage causes circulating current between cells in the same port even if they are operating in phase.
The equivalent winding current is the summation of all the voltage of all parallel connected cells:

\[I_{Py} = I_{W4} + I_{W5} + I_{W6}. \]

(14)

The equivalent winding current is the summation of all the individual winding current:

\[I_{Py} = I_{W4} + I_{W5} + I_{W6}. \]

(15)

The equivalent branch inductance is equal to the parallel inductance of all branch inductors:

\[L_{Py} = L_{W4} + L_{W5} + L_{W6}. \]

(16)

Fig. 12. A simplified cantilever model with \(m \) ports which can be used to model the large-signal and small-signal dynamic behaviors of the system.

The equivalent port winding current can be extracted by current conversion matrix \(\mathbf{Q}_C \):

\[
\begin{bmatrix}
I_{W1} \\
\vdots \\
I_{Wn}
\end{bmatrix} = \begin{bmatrix}
Q_{C11} & \cdots & Q_{C1m} \\
\vdots & \ddots & \vdots \\
Q_{Cn1} & \cdots & Q_{Cnm}
\end{bmatrix}_{n \times m}
\begin{bmatrix}
I_{P1} \\
\vdots \\
I_{Pm}
\end{bmatrix}.
\]

(18)

Each element of \(\mathbf{Q}_C \) can be identified by:
- if Cell-1 belongs to a series-connected Port-i, then \(Q_{Cij} = 1 \); Otherwise, \(Q_{Cij} = 0 \).
- if Port-i and Port-j belong to \(m \) parallel-connected Port, then \(Q_{Vij} + Q_{Vkj} + Q_{Vlj} = 1 \), and all other elements on the same row as 0.

Each element of \(\mathbf{Q}_V \) can be identified by:
- if Port-\(i \) consists series-connected cells, then \(Q_{Vij} = 1 \); Otherwise, \(Q_{Vij} = 0 \).
- if Port-i and Port-j belong to a parallel-connected Port, then \(Q_{Vij} + Q_{Vkj} + Q_{Vlj} = 1 \).

The \(m \times m \) “port-to-port” impedance matrix \(\mathbf{M}_{P2P} \) is:

\[
\mathbf{M}_{P2P} = \mathbf{Q}_V \begin{bmatrix}
L_{11} & \cdots & M_{1n} \\
\vdots & \ddots & \vdots \\
M_{n1} & \cdots & L_{nn}
\end{bmatrix} \mathbf{Q}_C.
\]

(19)

If one port has both series-connected cells and parallel-connected cells, the matrix reduction can be performed in the following two steps: 1) convert the port to several sub-ports with parallel-connected cells, 2) convert these series-connected sub-ports to one port. With the \(m \times m \) impedance matrix, the \(n \)-winding transformer can be simplified to a cantilever model with \(m \)-equivalent windings as shown in Fig. 12. \(N_{Pi} \) is the equivalent turns number, which is equal to the total turns number of series-connected cells and the identical turns number of parallel-connected cells. Similar to (1) and (2), the impedance and admittance matrices of the resulting port are:
Phase-Shift

![Phase-Shift Diagram](image)

Time-Sharing

![Time-Sharing Diagram](image)

Fig. 13. Principles of the phase-shift and time-sharing control of the MR-MIMO architecture [1].

\[M_{PZ} = M_{P2P} + \text{diag}\{L_{P1}, L_{P2}, \ldots, L_{Pm}\}, \quad (20) \]

\[M_{PY} = M_{PZ}^{-1}. \quad (21) \]

The equivalent “port-to-port” inductance \(L_{Pij} \) and magnetizing inductance \(L_{PGi} \) in Fig. 12 can be calculated in the same way as (3). Replacing \(V_i, V_j, N_i, N_j \) and \(L_{ij} \) in (4) with \(V_{P1}, V_{P2}, N_{P1}, N_{P2} \) and \(L_{Pij} \) results in the average power delivered to Port \(i \) from the other ports.

B. Hybrid Phase-Shift and Time-sharing Control

Fig. 13 shows the principles of the phase-shift control and time-sharing control. Phase-shift control regulates phase-shift angles of all ports simultaneously to route the MIMO power flow. While only single input port and single output port are activated with fixed phase-shift angle under time-sharing control. The delivered/received power of one port is regulated by the duty ratio in the time-sharing cycle. As investigated in [1], phase-shift control achieves higher efficiency at heavy load; time-sharing control achieves higher efficiency at light load; combining time-sharing control with phase-shift control can maintain high performance across a wide operation range.

Fig. 14 shows the diagram of distributed phase-shift control [1], [35]. The phase-shift angle of all dc-ac cells in the same port is adjusted by a PI controller. \(Z_x, Z_y, \ldots \) are the load impedance and \(K_{\Phi xy}, K_{\Phi yz}, \ldots \) are the small signal transfer functions from the phase-shift angle to port current [1]. The phase-shift control of each port is closely coupled and requires all the small signal transfer functions to design the PI controller. For example, in the MIMO converter with 12 dc-ac cells, the transfer functions from phase-shift angle to cell current forms a \(12 \times 12 \) matrix. With the matrix conversion, the order of the small signal transfer matrix reduces to \(4 \times 4 \) (with four input and output ports), which significantly mitigates the control complexity.

Time-sharing control offers additional control degree of freedom. Time-sharing control is completely decoupled from phase-shift control when there are only one input port and one output port working at one time. Fig. 15 shows the PI control of time-sharing duty ratio (\(D \)) for port voltage regulation. The phase-shift angles are fixed. \(K_{Dx}, K_{Dy}, \ldots \) are the small signal transfer functions from the time-sharing duty ratio to port current [1]. There exists one constraint for the time-sharing duty ratio of all output ports: \(D_x + D_y + D_z + \cdots \leq 1 \). Time-sharing control is the extension of “Burst Operation” in typical single-input single-output power converters. It helps improve the light load efficiency and can be mixed with the previously described matrix reduction method.

V. MULTI-WINDING TRANSFORMER DESIGN

A. Magnetic Core and Winding Loss

The transformer used in existing multi-active-bridge converters are usually limited to three or four windings. The MR-MIMO architecture requires a multiport transformer with a large number of windings (i.e., >10), placing new opportunities and challenges in magnets design. Fig. 16 shows a prototype MR-MIMO converter including eight modular dc-ac boards, one UU-type magnetic core, one motherboard (bottom), and one controller board. A modular dc-ac board comprises one high voltage (HV) dc-ac cell or two low voltage (LV) dc-ac cells. There are 4 HV cells and 8 LV cells in this prototype. The dc-ac boards are coupled together with the magnetic core. The motherboard connects the cells in series or in parallel as input or output ports. The motherboard can be made reconfigurable with relays or MOSFETs, and can be replaced for different voltage conversion ratios. The key parameters of the MR-MIMO converter are listed in Table 1.

There are many ways of placing the HV and LV cells around the magnetic core. Two winding placements are investigated and compared in this paper as examples. Fig. 17 shows the cross-sectional view of an interleaved winding placement and a non-interleaved winding placement. The HV cells are labeled in green and the LV cells are labeled in red. The modular PCB board comprises 4 copper layers. Each 1-turn winding of the
LV cells comprises two parallel-connected copper layers. If all HV cells are on the primary side and all LV cells are on the secondary side, the primary side current \(I_p \) and secondary side current \(I_s \) in the multiple windings of this transformer with an ungapped core with infinite permeability is:

\[
32 \times I_p = 16 \times \frac{1}{2} \times I_s.
\]

The interleaved structure can also reduce the ac winding resistance and winding loss with canceled vertical flux. Eddy current is induced on the horizontal plane by the vertical flux \(\Phi_v \) and makes the winding current accumulate at the rim of the copper trace. The horizontal flux \(\Phi_h \) induces eddy current on the vertical plane and makes winding current accumulate on the top or the bottom surface of the copper trace. The copper thickness used in this design is 70 \(\mu \)m, which is smaller than the skin depth (170 \(\mu \)m) at the switching frequency (200 kHz) and much smaller than the width of PCB trace (2.75 mm for HV winding and 6 mm for LV winding). As a result, it is more important to equally distribute current along the radius of circular PCB winding with canceled vertical flux to reduce the ac resistance. Thus, the interleaved winding structure is much better than the non-interleaved option with smaller MMF, proper flux distribution and lower ac resistance.

We use ANSYS Maxwell to verify the analysis and the key principles. The relative permeability of the core is 2500. The excitation current is 4 A on the primary side \((I_p) \) and 16 A on the secondary side \((I_s) \). The excitation frequency is 200 kHz. The horizontal flux \(\Phi_v \) is canceled by the same winding current of two adjacent HV or LV windings and the MMF at the same position is zero. However, the opposite currents of one HV cell on the left side and one LV cell on the right side enhance the vertical flux \(\Phi_v \) and the maximum MMF is \(32I_p \) at the central vertical axis of the window area. In the interleaved placement, the flux and MMF distribution are very different from those in the non-interleaved structure. The horizontal flux in the window area is enhanced while the vertical flux is canceled. The maximum MMF is only \(8I_p \). Both the magnetic field strength and the core loss are reduced with interleaved winding structure.

Fig. 17 also illustrates the magnetomotive force (MMF) in this multi-winding transformer with interleaved and non-interleaved winding placements. In the non-interleaved placement, the horizontal flux \(\Phi_v \) is canceled by the same winding current of two adjacent HV or LV windings and the MMF at the same position is zero. However, the opposite currents of one HV cell on the left side and one LV cell on the right side enhance the vertical flux \(\Phi_v \) and the maximum MMF is \(32I_p \) at the central vertical axis of the window area. In the interleaved placement, the flux and MMF distribution are very different from those in the non-interleaved structure. The horizontal flux in the window area is enhanced while the vertical flux is canceled. The maximum MMF is only \(8I_p \). Both the magnetic field strength and the core loss are reduced with interleaved winding structure.

The interleaved structure can also reduce the ac winding resistance and winding loss with canceled vertical flux. Eddy current is induced on the horizontal plane by the vertical flux \(\Phi_v \) and makes the winding current accumulate at the rim of the copper trace. The horizontal flux \(\Phi_h \) induces eddy current on the vertical plane and makes winding current accumulate on the top or the bottom surface of the copper trace. The copper thickness used in this design is 70 \(\mu \)m, which is smaller than the skin depth (170 \(\mu \)m) at the switching frequency (200 kHz) and much smaller than the width of PCB trace (2.75 mm for HV winding and 6 mm for LV winding). As a result, it is more important to equally distribute current along the radius of circular PCB winding with canceled vertical flux to reduce the ac resistance. Thus, the interleaved winding structure is much better than the non-interleaved option with smaller MMF, proper flux distribution and lower ac resistance.

We use ANSYS Maxwell to verify the analysis and the key principles. The relative permeability of the core is 2500. The excitation current is 4 A on the primary side \((I_p) \) and 16 A on the secondary side \((I_s) \). The excitation frequency is 200 kHz.
kHz. The magnetic field strength H in the window area and core flux density B are shown in Fig. 18. The magnetic field strength in the non-interleaved structure is much stronger than the field strength in the interleaved structure. The distribution of H also matches the flux distribution analysis. The flux density in the core of the interleaved structure is significantly lower than that in the non-interleaved structure, especially on the two vertical sides. Fig. 19 shows the current density in the PCB windings. The outer edge of the PCB winding in the non-interleaved structure has higher current density due to the eddy current induced by the vertical flux, which matches the theoretical analysis and the FEM simulation in Fig. 18. The simulated winding loss in the interleaved structure is only 56% of the winding loss in the non-interleaved structure. Since layer-to-layer interleaving is not feasible in a MR-MIMO configuration, one should always interleave the cells to minimize the loss induced by skin and proximity effects.

B. Voltage Balancing and Current Sharing

Another challenge in the multi-winding transformer design is to maintain voltage balancing and current sharing among the series or parallel connected cells. The voltage balancing and current balancing among the cells are determined by the symmetry of the impedance matrix. A symmetric winding impedance matrix would enable automatic voltage balancing and current balancing. As a result, the geometry and the winding configuration of the magnetic structure should be carefully designed to achieve the highest level of symmetry among the cells.

Table II lists the equivalent inductance matrix of the interleaved magnetic structure in Fig. 17. The winding impedance matrix is extracted from FEM simulation and the equivalent inductance is calculated by Eq. (3). The elements labeled in gray is the equivalent magnetizing inductance L_{G1}. The equivalent inductance is related to the “magnetic distance” between two windings. Take Cell LV_1 as the example, the equivalent inductance between LV_1 and LV_2 is low and the inductance between LV_1 and LV_7 is high. Power tends to flow between windings that are physically closer to each other (the smaller equivalent inductance).

As shown in Fig. 17, the geometry position of all the HV cells is symmetrical in the interleaved winding structure. Table II also shows that four HV cells in the interleaved structure have symmetrical equivalent inductance between all the LV cells and satisfy the power balancing condition of (7):

$$L_{H1L1} = L_{H2L2} = L_{H3L3} = L_{H4L4},$$

$$L_{H1L2} = L_{H2L3} = L_{H3L7} = L_{H4L6},$$

$$L_{H1L8} = L_{H2L5} = L_{H3L1} = L_{H4L4}.\quad (23)$$

The equivalent inductances between HV cells are symmetric:

$$L_{H1H2} = L_{H3H4}, L_{H1H3} = L_{H2H4}, L_{H1H4} = L_{H2H3}.\quad (24)$$

Similarly, two groups of four LV cells are symmetrical in both geometry and equivalent inductance: 1) LV_1–LV_5–LV_4–LV_6; 2) LV_2–LV_6–LV_3–LV_7.

In the non-interleaved structure, fewer cells have the symmetrical geometry position and equivalent inductance: HV_1–HV_4, HV_2–HV_3, LV_1–LV_5, LV_2–LV_7, LV_3–LV_6, LV_4–LV_5. That means voltage and current unbalancing will occur in most port configurations of non-interleaved structure.

The dc-ac cells can be evenly distributed among several ports to ensure voltage balancing and current balancing. Fig. 20 shows three example port configurations with a fully symmetric inductance matrix between any two ports in the interleaved winding structure. Cells in the same port are color labeled and can be connected either in series or in parallel.

Table II

<table>
<thead>
<tr>
<th>HV1</th>
<th>HV2</th>
<th>HV3</th>
<th>HV4</th>
<th>LV1</th>
<th>LV2</th>
<th>LV3</th>
<th>LV4</th>
<th>LV5</th>
<th>LV6</th>
<th>LV7</th>
<th>LV8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37 mH</td>
<td>304.85 nH</td>
<td>2.22 mH</td>
<td>1.37 mH</td>
</tr>
<tr>
<td>2.22 mH</td>
<td>1.37 mH</td>
</tr>
<tr>
<td>1.37 mH</td>
<td>2.22 mH</td>
</tr>
<tr>
<td>2.22 mH</td>
<td>1.37 mH</td>
</tr>
</tbody>
</table>
A. The auxiliary power supply and isolated gate divers are mature solutions with safety voltage up to thousands of volts. The insulation considerations for the MR-MIMO architecture is very similar to those for modular multilevel converters (MMC), which have been proved effective for high voltage grid interface applications [36].

Fig. 22 is the physical photograph of the MR-MIMO prototype. Fig. 23 shows a few different ways of configuring the cells, which were tested in the experiment. Four HV cells are connected in series to interface with a 288 V dc bus. In LV port configuration 1, two LV cells (LV₃ and LV₄) are connected in parallel to support a 9 V bus with 14 A of current; LV₅ and LV₆ are series-connected as a 18 V/7 A port; LV₇–LV₈ are connected in series as a 36 V/7 A port. LV configuration 1 cannot guarantee symmetrical inductance matrix for LV ports comparing with Fig. 20, but enables the shortest connecting trace for cells in the same port. Four external capacitors are employed as the bus capacitors of each port (120 µF for the HV port, 1 mF for all the LV ports). In configuration 2, all of the LV cells are reconfigured into a high power 9 V/56 A port with a partially symmetrical inductance matrix (LV₁–LV₄–LV₅–LV₆ and LV₇–LV₈ are two sets of symmetrical cells but these two sets are asymmetric). In configuration 3, all of the LV cells are reconfigured into a high power 36 V/14 A port with a partially symmetrical impedance matrix. All the port configurations are reconfigurable with the same motherboard.

The operation range of this MR-MIMO prototype can be further extended with different port configurations. The HV port can support current up to 8 A (highest port voltage 72 V) with four HV cells in parallel. The maximum voltage of the LV port is 72 V with eight LV cells connected in series.
Fig. 24 shows the branch inductor current of four HV cells with 288 V input and 9 V, 18 V, 36 V output. The current waveforms are all in phase because all the HV cells are controlled by synchronized gate driver signals. The current of the HV cells in the interleaved winding structure are more like an ideal trapezoidal waveform than the current in non-interleaved structure (due to the structural symmetry and balanced power distribution).

Fig. 25 shows the thermal images of the magnetic core with the non-interleaved and interleaved winding structures. The thermal images are captured by a thermography camera (FLIR E6) after the converter running for 8 minutes with output power of 80 W and natural convection cooling. The ambient temperature is 20°C. The interleaved winding structure has lower core temperature due to the lower magnetic field strength. The hottest spot is 51.7°C in the non-interleaved structure and is 45.1°C in the interleaved structure.

Fig. 26 shows the measured efficiency of the MR-MIMO prototype with two winding structures and two control strategies: phase-shift (PS) and time-sharing (TS). The output ports are configured into 9 V, 18 V, and 36 V (Fig. 23).

The effectiveness of the reduced order approach is verified. The calculation results of both two methods match the measured port power.

Thus, the relationship of LV port power is: $P_{36V} = 2P_{9V} = 2P_{18V}$. With port configuration 1, the power of the LV cells in the same PCB is different ($P_{LV1} \neq P_{LV2}$) while the total power processed by each LV PCB is equal to each other ($P_{LV1} + P_{LV2} = P_{LV3} + P_{LV4} + \cdots$). This helps equally distribute the heat among multiple PCBs. The measured port power shown in Fig. 27 matches with this equation and verifies the theoretical analysis for the power distribution.

Similarly, the power of the cells with the same phase-shift angle in a non-interleaved winding structure (Fig. 17) are:

\begin{align}
P_{LV1} &= P_{LV4},
\nonumber
P_{LV2} &= P_{LV3},
\nonumber
P_{LV1} &\neq P_{LV2},
\end{align}

The port power P_{18V} and P_{9V} are no longer equal, but P_{36V} still equals $P_{9V} + P_{18V}$ in the non-interleaved case. The measured port power also matches this relationship. The two winding structures with the same phase-shift angle deliver different power in the two cases. This is because the non-interleaved winding structure has higher equivalent cell-to-cell

Fig. 27. Measured power delivered by the 9 V, 18 V and 36 V ports. Unbalanced power exists in the non-interleaved structure. Power is well distributed in the interleaved structure due to symmetry.

Fig. 28. Measured and calculated power of the 9 V, 18 V and 36 V ports in the interleaved structure. The port power is calculated by (4) with the 12×12 admittance matrix MY and the reduced-order 4×4 matrix MPY. The calculation results of both two methods match the measured port power.

The calculation results of both two methods match the measured port power.
Fig. 29. Measured inductor currents of the four LV cells at an output power of 300 W with interleaved winding structure. HV port is the input port. The output ports are 9 V, 18 V, and 36 V with port configuration 1.

Fig. 30. Measured efficiency of the three output port configurations with phase-shift control. The 288V HV port is the input port. LV port configuration 2 achieved the highest efficiency due to the highest symmetry.

Fig. 31. Thermal image of the MR-MIMO converter with $P_o = 500$ W. The output ports are 9 V, 18 V, and 36 V with port configuration 1. The airflow is 21.9 CFM from left to right with a 23°C ambient temperature.

increasing the quantity of the series/parallel cells as long as the magnetic winding structure is symmetric enough and the coupling coefficient is high.

Fig. 29 shows the measured inductor current waveforms of four LV cells with the three output port configurations in Fig. 23. In port configuration 1, the bus voltages of LV_1 and LV_2 are clamped to the port voltage and regulated to 9 V. There is no circulating current between them. The current waveform of i_{L2} is close to an ideal trapezoidal current. The voltage of the 18 V port and the 36 V port are regulated, but the voltage within each individual cell is not regulated. $P_{LV3} \neq P_{LV4}$ in the 18 V port and $P_{LV5} \neq P_{LV7}$ in the 36 V port. The unbalanced power leads to unbalanced voltage for series-connected cells and further results in high peak current due to the circulating current between multiple cells in the same port. In the case of port configuration 2, all the LV cells are parallel-connected and all their bus voltages are equal. There is no circulating current among them. In port configuration 3, voltage unbalancing still exists among the LV cells since none of them are individually regulated. The current ripple is also high.

Fig. 30 compares the efficiency of the three output port configurations with phase-shift control. Port configuration 2

inductance than the interleaved winding structure (verified by FEM simulations).

The port power measurement also verifies the effectiveness of the matrix reduction method introduced in Section IV. The port power can be calculated either by (4) with the original 12×12 admittance matrix M_Y or by the reduced-order 4×4 matrix M_{PY}. The calculation results of these two methods are presented together with the experiment results in Fig. 28. The calculation results from the reduced-order matrix M_{PY} matches the results from the original admittance matrix M_Y and the experiment results. The calculated port power is slightly higher than the measured power due to the circulating power loss that is not captured by the model.

The power comparison in Fig. 28 indicates that the power level of the MR-MIMO architecture is linearly extendable by
achieves the highest efficiency, especially with higher output power, because of the well-balanced port voltage and lower current amplitudes. The maximum efficiency of port configuration 2 is 96.7% with an output power of 300 W. Port configuration 3 has the lowest efficiency because all the LV inductor currents have high peak-to-peak ripple.

Fig. 31 shows the thermal image of the MR-MIMO converter when it is configured as one HV input and three LV outputs (configuration 1). The image is captured after 20 minutes operating with an output power of 500 W. A left to right 21.9 CFM air flow is applied. The temperature of the prototype is below 45°C. The hottest components are the HV external inductors and the LV DrMOS. Since power is processed in a distributed manner in the MR-MIMO architecture, heat is naturally distributed and no additional heat sink is needed, which helps to improve the power density.

To demonstrate the MIMO energy router functions, the cells are reconnected: two HV cells \((HV_3\) and \(HV_4\)) are connected in parallel as a 72 V input port. The other LV cells are connected as port configuration 1 and the 36 V port is configured as the second input port. Fig. 32 shows the measured efficiency contour of the MR-MIMO prototype across a wide operation range. The 18 V port and 9 V port are controlled by the same phase-shift angle to provide the same output power. The input power of the 72 V port and the 36 V port are controlled separately with two phase-shift angles. The efficiency remains constant while shifting the power from input to another. The maximum efficiency is over 95% and the MIMO efficiency is higher than 94% across a wide range.

Fig. 33 shows the open-loop transient response of the system to a step change of phase-shift angle in one output port. The
phase-shift step change on one output port triggers the power change on both output ports because the power flow between them is also changed. It takes about 25 ms for the open-loop system to reach to a new steady state. Fig. 34 shows the close-loop transient response of the system to a 2 A load step change. The voltages of 9 V port and 18 V port are regulated by the distributed phase-shift control as shown in Fig. 14. When any output port faces a load step change, voltage fluctuations occur simultaneously on both output ports because the power flows of all ports are coupled by the multi-winding transformer. The port voltages recover in less than 2 ms with a ripple below 0.4 V. Other control strategies with power decoupling algorithms [9], [17], [32] also provide fast dynamic response. With hybrid time-sharing and phase-shift control, the MR-MIMO architecture is capable of performing power flow modulation and voltage regulation simultaneously.

VII. CONCLUSIONS

This paper presents a MR-MIMO architecture for multiport ac-coupled dc energy routers. The key contributions of this paper include: 1) a multicell reconfigurable 12-winding multiport ac-coupled MIMO converter maintaining high performance across a wide range; 2) a hybrid time-sharing and phase-shift control strategy; and 3) a systematic method of designing multi-winding planar transformers. The MR-MIMO architecture is highly modular and is linearly extensible. It offers simple control interface, lower power conversion stress, and reconfigurable input/output capability. We performed power flow analysis on the multi-winding transformer, developed a matrix-reduction method to reduce the control complexity, and built a four-port prototype with 12 cells and a variety of configurations. The MIMO magnetic structure with a large number of coupled windings is investigated and optimized to achieve high efficiency and balanced power sharing. The prototype maintains over 95% efficiency and good current balancing across a wide operation range, and can be reconfigured and extended to cover a variety of voltage conversion ratios.

VIII. ACKNOWLEDGMENTS

This work was jointly supported by the National Science Foundation (Award #1847365), the Siebel Energy Institute, and the Princeton E-filiates Program.

REFERENCES

Yenan Chen (S’13–M’18) received his bachelor’s degree in 2010 and Ph.D. degree in 2018 from Zhejiang University, Hangzhou, China, both in Electrical Engineering. Since 2018, he has been a Postdoctoral Research Associate with the Department of Electrical Engineering, Princeton University, NJ, USA. His research interests include high frequency power converters, advanced power electronics architecture, grid-interface power electronics and renewable energy systems. He holds 3 issued Chinese patents. He received the APEC Outstanding Presentation Award in 2019, and the First Place Award from the Innovation Forum of Princeton University in 2019.

Ping Wang (S’17–) received the B.S. degree in Electrical Engineering from Shanghai Jiao Tong University, Shanghai, China, in 2017, and the M.A. degree in Electrical Engineering in 2019 from Princeton University, NJ, USA, where he is currently working towards the Ph.D. degree. His research interests include high efficiency/density power converters, multi-port dc-dc converters, and high-performance power electronics design for data center applications. He received the First Place Award of the IEEE ECCE Best Student Project Demonstration in 2019, and the First Place Award from the Innovation Forum of Princeton University in 2019.

Youssef Elasser (S’18–) received his bachelor’s of science degrees in Electrical Engineering and Computer Science with a concentration in electric power in 2018 from Rensselaer Polytechnic Institute, Troy, NY. He joined Princeton University, Princeton, NJ in 2018, where he is currently working towards his Ph.D. degree. His research interests include renewable energy storage systems, grid-interface power electronics, and novel magnetics design for switching power supplies. While at Rensselaer, he was the recipient of the Grainger Scholars Award for distinguished undergraduates studying electric power. At Princeton, he received the first place award from the 2019 Princeton Innovation Forum, and the NSF Research Graduate Fellowship in 2020.

Minjie Chen (S’10–M’15–SM’20) received the B.S. degree from Tsinghua University, Beijing, China, in 2009, and the S.M., E.E., and Ph.D. degrees from Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 2012, 2014, and 2015. He was a Postdoctoral Research Associate at MIT in 2016. He joined the Department of Electrical Engineering and Andlinger Center for Energy and the Environment at Princeton University as an Assistant Professor in 2017, where he directs the Princeton Power Electronics Research Lab. His research interests include high frequency power electronics, advanced power electronics architectures, power magnetics, and the design of high performance power electronics for emerging and important applications.

Chen was the recipient of two IEEE Transactions Prize Paper Awards, the NSF CAREER Award, the Dimitris N. Chorafas outstanding Ph.D. Thesis Award from MIT, an Outstanding Reviewer Award from IEEE Transactions on Power Electronics, two IEEE ECCE Best Demonstration Awards, a Siebel Energy Institute Research Award, and the First Place Award from the Innovation Forum of Princeton University. He was honored by the Princeton Engineering Commendation List for Outstanding Teaching. He is an Associate Editor of IEEE Transactions on Power Electronics, an Associate Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics, and an Associate Technical Program Committee Chair of IEEE Energy Conversion Congress and Exposition in 2019. He holds 5 issued US patents.