Networks and Hierarchical Processing: Object Recognition in Human and Computer Vision

Guest Lecture: Marius Cătălin Iordan
CS 131 - Computer Vision: Foundations and Applications
01 December 2014
1. Processing Pathways in the Human Visual System
 • “what” and “where” pathways
 • building features in the ventral stream

2. Hierarchical Pattern Recognition Systems
 • early stages: small scale neural network
 • injecting neuroscience knowledge into design

3. Third Age of the Neural Network: Modern Deep Nets
 • extremely large scale (data + computation)
 • sudden, huge performance boost for recognition
From Retina to Cortex

- World
- Retina (compression)
- LGN
- Visual cortex (expansion)

Processing Pathways review
The Flow of Information

Weiner & Grill-Spector (2012)
Van Essen (1991)
Specialization: “What” and “Where” Pathways

monkey lesion studies

lesion “where” pathway: difficulty in spatial reasoning
lesion “what” pathway: difficulty in object recognition

Mishkin & Ungerleider 1982
Specialization: “What” and “Where” Pathways

monkey lesion studies

lesion “where” pathway: difficulty in spatial reasoning
lesion “what” pathway: difficulty in object recognition

Mishkin & Ungerleider 1982
Object Recognition: The “What” Pathway

Processing Pathways building features in the ventral stream

DiCarlo & Cox (2007)
Object Recognition: The “What” Pathway

Object Recognition: Building Features and Invariance

visual processing is done in stages
each area performs a transformation on its inputs
invariance is built gradually across many successive steps

DiCarlo & Cox (2007)
2. Hierarchical Pattern Recognition Systems

neuroscience-inspired computer vision
Neocognitron: Neural Network

Layer 1

Cell

Layer 2

Layer 3
Neocognitron: Neural Network

Fukushima (1988)
Neocognitron: Neural Network

input layer

S-cell layer

C-cell layer

Fukushima (1988)
Neocognitron: S-Cell

C-cell layer / input layer

S-cell layer

C-cell layer

Fukushima (1988)
Neocognitron: S-Cell

figure courtesy of A. Alahi
Neocognitron: C-Cell “Pooling”

building position invariance

Fukushima (1988)
Neocognitron: Network

Fukushima (1988)
Neocognitron: Network

Fukushima (1988)
Hierarchical Computation

Neocognitron: Network

Fukushima (1988)
Neocognitron: Network

Hierarchical Computation neocognitron

Fukushima (1988)
Hierarchical Computation neocognitron

Neocognitron: Robust Results

Fukushima (1988)
Neocognitron

biologically inspired hierarchical processing pipeline invariance is built gradually across many successive steps simple neural network solves complicated non-linear problem

Fukushima (1988)
Feed-Forward Object Recognition Model

Hubel & Wiesel (1962), Riesenhuber & Poggio (1999), Serre et al. (2007)
Feed-Forward Object Recognition Model

Hubel & Wiesel (1962), Riesenhuber & Poggio (1999), Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Hierarchical Computation

Feed-Forward Object Recognition Model

biologically-inspired processing pipeline

patches — receptive fields
building invariance
hierarchical processing

major drawback?
no feedback

Serre et al. (2007)
Discussion

how closely should we aim to copy human vision?

is reverse-engineering human vision a self-imposed limitation?

perfect recognition vs. visual understanding?
3. Modern Neural Networks

extremely large scale data and computation
Deep Convolutional Neural Network

650,000 cells — 60,000,000 parameters

Krizhevsky et al. (2013)
Deep Convolutional Neural Network

650,000 cells — 60,000,000 parameters

Krizhevsky et al. (2013)
Deep Convolutional Neural Network

Want to know more about state-of-the-art neural networks?

CS 231N
http://vision.stanford.edu/cs231n/

Winter QT 2015
Fei-Fei Li & Andrej Karpathy
Object Recognition: Building Features and Invariance

visual processing is done in stages
each area performs a transformation on its inputs
invariance is built gradually across many successive steps

DiCarlo & Cox (2007)
Feed-Forward Object Recognition Model

biologically-inspired processing pipeline

patches — receptive fields
building invariance
hierarchical processing

major drawbacks?
no feedback
much less complex than human vision

Serre et al. (2007)
Deep Convolutional Neural Network

everely large scale data and computation

sudden, huge performance boost for recognition

if you want to know more, take CS 231N in Winter QT

Krizhevsky et al. (2013)
End-Quarter Feedback Forms