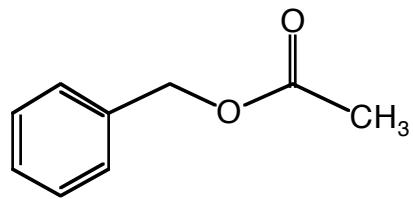

Answers to Problem 73, Chemistry 301X - 2006

First of all, the IR tells you that there is a C=O, probably an unconjugated ester (strong peak at $\sim 1740 \text{ cm}^{-1}$). The C-O strong stretch is also there at about 1250 cm^{-1} .


The Mass Spectrum shows an appropriate parent peak at $m/e = 150$.

It is the proton NMR that is most useful. First of all there is a set of 5 hydrogens at $\delta 7.3$, a position diagnostic for hydrogens attached to a benzene ring. There is a 3H signal at $\delta 1.9$, surely a methyl group, and very likely one attached to a C=O. Two other hydrogens appear as a singlet at $\delta 5$; they must be highly deshielded by something.

Putting all the parts together leads to two possibilities:

A

B

It must be **B** because there is no signal low enough to be an OCH₃ (where should that come?). Why are the five aromatic hydrogens all in one signal when they should show three peaks? The machine just couldn't resolve the signals.