How many people do you know?:

Efficiently estimating personal network size *

Tyler H. McCormick ${ }^{\dagger \ddagger}$ Matthew J. Salganik ${ }^{\S \ddagger}$
Tian Zheng ${ }^{\dagger \ddagger}$
${ }^{\dagger}$ Department of Statistics, Columbia University, New York, New York, 10027
§ Department of Sociology and Office of Population Research,
Princeton University, Princeton, New Jersey, 08544
\ddagger These authors contributed equally to this work.

June 3, 2009

Abstract

In this paper we develop a method to estimate both individual social network size (i.e., degree) and the distribution of network sizes in a population by asking respondents how many people they know in specific subpopulations (e.g., people named Michael). Building on the scale-up

[^0]method of Killworth et al. (1998b) and other previous attempts to estimate individual network size, we propose a latent non-random mixing model which resolves three known problems with previous approaches. As a byproduct, our method also provides estimates of the rate of social mixing between population groups. We demonstrate the model using a sample of 1,370 adults originally collected by McCarty et al. (2001). Based on insights developed during the statistical modeling, we conclude by offering practical guidelines for the design of future surveys to estimate social network size. Most importantly, we show that if the first names asked about are chosen properly, the estimates from the simple scale-up model enjoy the same bias-reduction as the estimates from our more complex latent non-random mixing model.

Keywords: Social Networks; Survey Design; Personal Network Size; Negative Binomial Distribution; Latent Non-random Mixing Model

1 Introduction

Social networks have become an increasingly common framework for understanding and explaining social phenomena. Yet, despite an abundance of sophisticated models, social network research has yet to realize its full potential, in part because of the difficulty of collecting social network data. In this paper we add to the toolkit of researchers interested in network phenomena by developing methodology to address two fundamental challenges posed in the seminal paper of Pool and Kochen (1978): first, for an individual, we would like to know how many other people she knows (i.e. her degree, d_{i}); and second, for a population, we would like to know the distribution of acquaintance volume (i.e. the degree distribution, p_{d}).

Recently, the second question, that of degree distribution, has received the
most attention because of interest in so-called "scale-free" networks (Barabási, 2003). This interest was sparked by the empirical finding that some networks, particularly technological networks, appear to have power-law degree distributions (i.e., $p(d) \sim d^{-\alpha}$ for some constant α), as well as a number of mathematical and computational studies have found that this extremely skewed degree distribution may affect the dynamics of processes happening on the network such as the spread of diseases and the evolution of group behavior (Pastor-Satorras and Vespignani, 2001; Santos et al., 2006). However, the degree distribution of the acquaintanceship network is not known, and it has become so central to some researchers that Killworth et al. (2006) declared that estimating the degree distribution is "one of the grails of social network theory."

While estimating the degree distribution is certainly important, we suspect that the ability to quickly estimate the personal network size of an individual may be of greater importance to social science. Currently, the dominant framework for empirical social science is the sample survey which has been astutely described by Barton (1968) as a "meatgrinder" that completely removes people from their social contexts. Having a survey instrument which allows for the collection of social content would allow researchers to address a range of questions. For example, to understand differences in status attainment between siblings Conley (2004) wanted to know whether siblings who knew more people tended to be more successful. Because of difficulty in measuring personal network size, his analysis was ultimately inconclusive.

This paper develops a method to estimate both individual network size and degree distribution in a population using a battery of questions that can be easily embedded into existing surveys. We begin with a review of previous attempts to measure personal network size, focusing on the scale-up method
of Killworth et al. (1998b) which is promising, but known to suffer from three shortcomings: transmission errors, barrier effects and recall error. In Section 3 we propose a latent non-random mixing model which resolves these problems, and as a byproduct allows for the estimation of social mixing patterns in the acquaintanceship network. We then fit the model to 1,370 survey responses from McCarty et al. (2001), a nationally representative telephone sample of Americans. In Section 5, we draw on insights developed during the statistical modeling to offer practical guidelines for the design of future surveys.

2 Previous research

The most straightforward method for estimating the personal network size of a respondent would be to simply ask them how many people they "know." We suspect that this would work poorly, however, because of the well-documented problems with self-reported social network data (Killworth and Bernard, 1976; Bernard et al., 1984; Brewer, 2000; Butts, 2003). A number of more clever attempts have been made to measure personal network size including: the reverse small-world method (Killworth and Bernard, 1978; Killworth et al., 1984; Bernard et al., 1990), the summation method (McCarty et al., 2001), the diary method (Gurevich, 1961; Pool and Kochen, 1978; Fu, 2007; Mossong et al., 2008), the phonebook method (Pool and Kochen, 1978; Freeman and Thompson, 1989; Killworth et al., 1990), and finally the scale-up method (Killworth et al., 1998b).

We believe the scale-up method holds the greatest potential for getting accurate estimates quickly with reasonable measures of uncertainty. The scaleup method, however, is known to suffer from three distinct problems: barrier effects, transmission effects, and recall error (Killworth et al., 2003, 2006).

In Section 2.1 we will describe the scale-up method and these three issues in detail. Section 2.2 presents an earlier model by Zheng et al. (2006) that partially addresses some of these issues.

2.1 The scale-up method and three problems

Consider a population of size N. We can store the information about the social network connecting the population in an adjacency matrix $\Delta=\left[\delta_{i j}\right]_{N \times N}$ such that $\delta_{i j}=1$ if person i knows person j. Though our method does not depend on the definition of know, throughout this paper we will assume the McCarty et al. (2001) definition of know: "that you know them and they know you by sight or by name, that you could contact them, that they live within the United States, and that there has been some contact (either in person, by telephone or mail) in the past 2 years." The personal network size or degree of person i is then $d_{i}=\sum_{j} \delta_{i j}$.

One straightforward way to estimate the degree of person i would be to ask if she knows each of n randomly chosen members of the population. Inference could then be based on the fact that the responses would follow a binomial distribution with n trials and probability d_{i} / N. In large population, however, this method is extremely inefficient because the probability of a relationship between any two people is very low. For example, if one assumes an average personal network size of 750 (as estimated by Zheng et al. (2006)), then the probability of two randomly chosen Americans knowing each other is only about 0.0000025 meaning that a respondent would need to be asked about millions of people to produce a decent estimate.

A more efficient method would be to ask the respondent about an entire set of people at once. For example, asking, "How many women do you know who gave birth in the last 12 months?" instead of asking the respondent if
she knows 3.6 million distinct people. The scale-up method uses responses to questions of this form ("How many X's do you know?") to estimate personal network size. For example, if you report knowing 3 women who gave birth, this represents about one-millionth of all women who gave birth within the last year. We could then use this information to estimate that you know about one-millionth of all Americans,

$$
\begin{equation*}
\frac{3}{3.6 \text { million }} \cdot(300 \text { million }) \approx 250 \text { people. } \tag{1}
\end{equation*}
$$

The precision of this estimate can be increased by averaging responses of many groups yielding the scale-up estimator (Killworth et al., 1998b)

$$
\begin{equation*}
\hat{d}_{i}=\frac{\sum_{k=1}^{K} y_{i k}}{\sum_{k=1}^{K} N_{k}} \cdot N \tag{2}
\end{equation*}
$$

where $y_{i k}$ is the number of people that person i knows in subpopulation k, N_{k} is the size of subpopulation k, and N is the size of the population. One important complication to note with this estimator is that asking "How many women do you know that gave birth in the last 12 months?" is not equivalent to asking about 3.6 million random people; rather the people asked about are women, probably between the ages of 18 and 45 . This creates statistical challenges that are addressed in detail in subsequent sections.

To estimate the standard error of the simple estimate, we follow the practice of Killworth et al. (1998a) by assuming

$$
\begin{equation*}
\sum_{k=1}^{K} y_{i k} \sim \operatorname{Binomial}\left(\sum_{k=1}^{K} N_{k}, \frac{d_{i}}{N}\right) \tag{3}
\end{equation*}
$$

The estimate of the probability of success, $p=d_{i} / N$, is

$$
\begin{equation*}
\hat{p}=\frac{\sum_{i=1}^{k} y_{i k}}{\sum_{k=1}^{K} N_{k}}=\frac{\hat{d}_{i}}{N} . \tag{4}
\end{equation*}
$$

with standard error (including finite population correction) (Lohr, 1999)

$$
\operatorname{SE}(\hat{p})=\sqrt{\frac{1}{\sum_{k=1}^{K} N_{k}} \hat{p}(1-\hat{p}) \frac{N-\sum_{k=1}^{K} N_{k}}{N-1}} .
$$

The scale-up estimate \hat{d}_{i} then has standard error

$$
\begin{align*}
\operatorname{SE}\left(\hat{d}_{i}\right) & =N \cdot \operatorname{SE}(\hat{p}) \\
& =N \sqrt{\frac{1}{\sum_{k=1}^{K} N_{k}} \hat{p}(1-\hat{p}) \frac{N-\sum_{k=1}^{K} N_{k}}{N-1}} \\
& \approx \sqrt{\frac{N-\sum_{k=1}^{K} N_{k}}{\sum_{k=1}^{K} N_{k}} \hat{d}_{i}}=\sqrt{\hat{d}_{i}} \cdot \sqrt{\frac{1-\frac{\sum_{k=1}^{K} N_{k}}{N}}{\frac{\sum_{k=1}^{K} N_{k}}{N}}} . \tag{5}
\end{align*}
$$

For example, if we asked respondents about the number of women they know who gave birth in the past year the approximate standard error of the degree estimate is calculated as

$$
\operatorname{SE}\left(\hat{d}_{i}\right) \approx \sqrt{\hat{d}_{i}} \cdot \sqrt{\frac{1-\frac{\sum_{k=1}^{K} N_{k}}{N}}{\frac{\sum_{k=1}^{K} N_{k}}{N}}} \approx \sqrt{750} \cdot \sqrt{\frac{1-\frac{3.6 \text { million }}{300 \text { million }}}{\frac{3.6 \text { million }}{300 \text { million }}}} \approx 250
$$

assuming a degree of 750 as estimated by Zheng et al. (2006).
If in addition, we also asked respondents the number of people they know who have a twin sibling, the number of people they know who are diabetics, and the number of people they know who are named Michael, we would have increased our aggregate subpopulation size, $\sum_{k=1}^{K} N_{k}$, from 3.6 million to approximately 18.6 million and in doing so decreased our estimated standard
error to about 100. In Figure 1, we plot $\operatorname{SE}\left(\hat{d}_{i}\right) / \sqrt{\hat{d}_{i}}$ against $\sum_{k=1}^{k} N_{k} / N$. The most drastic reduction in estimated error comes in increasing the survey fractional subpopulation size to about 20 percent (or approximately 60 million in a population of 300 million). Though the above standard error depends only on sum of the subpopulation sizes, we will show that there are other sources of bias that make the choice of the individual subpopulations important as well.

Figure 1: Standard error of the scale-up degree estimate (scaled by the square root of the true degree) plotted against the sum of the fractional subpopulation sizes. As we increase the fraction of population represented by survey subpopulations, the precision of the estimate improves, with diminishing improvements after about 20%.

The original studies using the scale-up method used 32 subpopulations including some defined by first name (e.g., Michael, Christina), occupation (e.g., postal worker, pilot, gun dealer), ethnicity (e.g., Native American), or medical condition (e.g., diabetic, on kidney dialysis); a complete list can be found in McCarty et al. (2001).

The scale-up estimator using "How many X do you know?" data, is known to suffer from three distinct problems: transmission errors, barrier effects, and
recall problems (Killworth et al., 2003, 2006). Transmission errors occur when the respondent knows someone in a specific subpopulation, but is not aware that they are actually in that subpopulation. For example, a respondent might know a woman who recently gave birth, but might not know that she had recently given birth. These transmission errors likely vary from subpopulation to subpopulation depending on the sensitivity and visibility of the information. These errors are extremely difficult to quantify because very little is known about how much information respondents have about the people they know (Laumann, 1969; Killworth et al., 2006; Shelley et al., 2006).

Barrier effects occur whenever some individuals systematically know more (or fewer) members of a specific subpopulation than would be expected under random mixing, and thus can also be called non-random mixing. For example, since people tend to know others of similar age and gender (McPherson et al., 2001), a 30-year old woman probably knows more women who have recently given birth than would be predicted just based on her personal network size and the number of women who have recently given birth. Similarly, an 80-year old man probably knows fewer than would be expected under random mixing. Therefore, estimating personal network size by asking only "How many women do you know who have recently given birth?" - the estimator presented above in Equation (1)—will tend to overestimate the degree of women in their 30's and underestimate the degree of men in their 80 's. Because these barrier effects can introduce a bias of unknown size, they have prevented previous researchers from using the scale-up method to estimate the degree of any particular individual.

A final source of error is that responses to these questions are prone to recall error. For example, people seem to under-recall the number of people they know in large subpopulations (e.g., people named Michael) and over-recall the
number in small subpopulations (e.g., people who committed suicide) (Killworth et al., 2003; Zheng et al., 2006).

2.2 The Zheng et al. (2006) model with overdispersion

Before presenting our model for estimating personal network size using "How many X's do you know?" data, it is important to review the multilevel overdispersed Poisson model of Zheng et al. (2006) which, rather than treating nonrandom mixing (i.e., barrier effects) as an impediment to network size estimation, treated it as something important to estimate for its own sake. Zheng et al. (2006) began by noting that under simple random mixing the responses to the "How many X's do you know?" questions, $y_{i k}$'s, would follow a Poisson distribution with rate parameter determined by the degree of person i, d_{i}, and the network prevalence of group k, b_{k}. Here b_{k} is the proportion of ties that involve individuals in subpopulation k in the entire social network. If we can assume that individuals in the group being asked about (e.g. people named Michael), on average, as popular as the rest of the population, then $b_{k} \approx N_{k} / N$.

The responses to many of the questions in the McCarty et al. (2001) data did not follow a Poisson distribution, however. In fact, most of the responses show overdispersion, that is, excess variance given the mean. For example, consider the responses to the question: "How many males do you know incarcerated in state or federal prison?" The mean of the responses to this question was 1.0, but the variance was 8.0, indicating that some people are much more likely to know someone in prison than others. To model this increased variance Zheng et al. (2006) allowed individuals to vary in their propensity to form ties to different groups. If these propensities follow a gamma distribution with a mean value of 1 and a shape parameter of $1 /\left(\omega_{k}-1\right)$ then the $y_{i k}$ can be
modeled with a negative binomial distribution,

$$
\begin{equation*}
y_{i k} \sim \operatorname{Neg}-\operatorname{Binom}\left(\text { mean }=\mu_{i k}, \text { overdispersion }=\omega_{k}\right) \tag{6}
\end{equation*}
$$

where $\mu_{i k}=d_{i} b_{k}$. Thus, the ω_{k} estimates the variation in individual propensities to form ties to people in different groups and represent one way of quantifying non-random mixing (i.e., barrier effects).

Though developed to estimate ω_{k}, the Zheng et al. model also produces personal network size estimates, d_{i}. However, these estimates are still susceptible to biases due to transmission effects and barrier effects.

Zheng et al. also noticed recall issues. They address these issues using a normalization scheme based on the rarest names (where responses are least impacted by recall issues) and gender. Though this procedure shifts the distribution back to the appropriate scale, it does not imply that individual degrees are being accurately estimated.

3 A new statistical method for degree estimation

We now develop a new statistical procedure to address the three known problems with estimating individual degree using the "How many X's do you know?" data. Transmission errors, while probably the most difficult to quantify, are also the easiest to eliminate. We will limit our analysis to the 12 subpopulations defined by first names that were asked about in McCarty et al. (2001). These 12 names, half male and half female, are presented in Figure 2. Though McCarty et al.'s definition of knowing someone does not explicitly require respondents to know individuals by name, we believe that using first
names provides the minimum imaginable bias due to transmission errors; that is, it's unlikely that you know someone, but don't know his/her first name. Even though using only first names controls transmission errors, it does not address bias from barrier effects or recall bias. In the remainder of this section, we propose a latent non-random mixing model to address these two issues.

Figure 2: Age profiles for the 12 names used in the analysis (data source: Social Security Administration). The heights of the bars represent the percent of American newborns in a given decade with a particular name. The total subpopulation size is given across the top of each graph. The male names chosen by McCarty et al. are much more popular than the female names. These age profiles are required to construct the matrix of $\frac{N_{a k}}{N_{a}}$ terms in Equation (7).

3.1 Latent non-random mixing model

We begin by considering the impact of barrier effects, or non-random mixing, on degree estimation. For example, imagine a hypothetical 30 year old male survey respondent. If we ignore non-random mixing and ask this respondent
how many Michaels he knows, we will overestimate his network size using the scale-up method because Michael tends to be a more popular name among younger males (Figure 2). If we asked how many Roses he knows, in contrast, we would underestimate the size of his network since Rose is a name that is more common with older females. In both cases, the properties of the estimates are affected by the demographic profiles of the names that are used, something not accounted for in the scale-up method.

We account for non-random mixing using a negative binomial model which explicitly estimates the propensity for a respondent in ego-group e to know members of alter group a; here we are following standard network terminology (Wasserman and Faust, 1994), referring to the respondent as ego and the people to whom he can form ties as alters. The model is then

$$
\begin{align*}
y_{i k} & \sim \text { Neg-Binom }\left(\mu_{i k e}, \omega_{k}^{\prime}\right) \\
\text { where } \mu_{i k e} & =d_{i} \sum_{a=1}^{A} m(e, a) \frac{N_{a k}}{N_{a}} \tag{7}
\end{align*}
$$

and d_{i} is the degree of person i, e is the ego group that person i belongs to, $N_{a k} / N_{a}$ is the relative size of name k within alter-group a (e.g., 4% of males between ages 21 and 40 are named Michael), and $m(e, a)$ is the mixing coefficient between ego-group e and alter-group a. That is,

$$
\begin{equation*}
m(e, a)=\mathrm{E}\left(\left.\frac{d_{i a}}{d_{i}=\sum_{a=1}^{A} d_{i a}} \right\rvert\, i \text { in ego group } e\right) \tag{8}
\end{equation*}
$$

where $d_{i a}$ is the number of person i 's acquaintances in alter group a. That is, $m(e, a)$ represents the expected fraction of the ties of someone in ego-group e that go to people in alter-group a. For any group $e, \sum_{a=1}^{A} m(e, a)=1$.

Therefore, the number of people that person i knows with name k, given that person i is in ego-group e, is based on person i 's degree $\left(d_{i}\right)$, the proportion
of people in alter-group a that have name $k,\left(N_{a k} / N_{a}\right)$, and the mixing rate between people in group e and people in group $a,(m(e, a))$. Additionally, if we do not observe non-random mixing, then $m(e, a)=N_{a} / N$ and $\mu_{i k e}$ in (7) reduces to $d_{i} b_{k}$ in (6).

In addition to $\mu_{i k e}$, the latent non-random mixing model also depends on the overdispersion, ω_{k}^{\prime}, which represents the variation in the relative propensity of respondents within an ego group to form ties with individuals in a particular subpopulation k. Using $m(e, a)$ we model the variability in relative propensities that can be explained by non-random mixing between the defined alter and ego groups. Explicitly modeling this variation should cause a reduction in overdispersion parameter ω_{k}^{\prime} when compared to ω_{k} in (6) and Zheng et al. (2006). The term ω_{k}^{\prime} is still present in the latent non-random mixing model, however, since there is still residual overdispersion based on additional ego and alter characteristics that could effect their propensity to form ties.

Fitting the model requires choosing the number of ego groups, E, and alter groups, A. In this case, we classified egos into six categories by crossing gender (2 categories) with three age categories - youth (18-24), adult (25-64) and senior (65+). We constructed eight alter groups by crossing gender with four age categories - 0-20, 21-40, 41-60, 61+. Estimating the model, therefore, required us to know the age and gender of our respondents, and, somewhat more problematically, the the relatively popularity of the name-based subpopulations in each alter group $\left(\frac{N_{a k}}{N_{a}}\right)$. We approximated this popularity using the decade-by-decade birth records made available by the Social Security Administration (SSA). Since we are using the SSA birth data as a proxy for the living population, we are assuming that several social processes-immigration, emigration, and life expectancy - are uncorrelated with an individual's first name. We are also assuming the SSA data are accurate, even for births from the early 20th
century when registration was less complete. We think these assumptions are reasonable as a first approximation and probably did not have a substantial effect on our results. Together these modeling choices resulted in a total of 48 mixing parameters, $m(e, a)$, to estimate (6 ego groups by 8 alter groups). We believe that this represents a reasonable compromise between parsimony and richness.

3.2 Correction for recall error

The model in Equation (7) is a model for the actual network of the respondents assuming only random sampling error. Unfortunately, the observed data rarely yield reliable information about this network because of the systematic tendency for respondents to under-recall the number of individuals they know in large subpopulations (Killworth et al., 2003; Zheng et al., 2006). For example, assume that a respondent recalls knowing five people named Michael. Then, the estimated network size would be:

$$
\begin{equation*}
\frac{5}{4.8 \text { million } / 300 \text { million }} \approx 300 \text { people. } \tag{9}
\end{equation*}
$$

However, Michael is a common name, making it likely that there are additional Michaels in the respondent's actual network who were not counted at the time of the survey (Killworth et al., 2003; Zheng et al., 2006). We could choose to address this issue in two ways which, though ultimately equivalent, suggest two distinct modeling strategies.

First, we could assume that the respondent is inaccurately recalling the number of people named Michael she knows from her true network. Under this framework, any correction we propose should increase the numerator in Equation (9). This requires that we propose a mechanism by which respon-
dents under-report their true number known on individual questions. In our example, this would be equivalent to taking the 5 Michaels reported and applying some function to produce a corrected response (presumably some number greater than 5), which would then be used to fit the proposed model. It is difficult, however, to speculate about the nature of this function in any detail.

Another approach would be to assume that respondents are not recalling from their actual network, but rather from a recalled network which is a subset of the actual network. We speculate that the recalled network is created when respondents change their definition of "know" based on the fraction of their network made up of the population being queried such that they use a more restrictive definition of "know" when answering about common subpopulations (e.g., people named Michael) than when answering about rare subpopulations (e.g., people named Ulysses). This means that, in the context of Section 2.2, we no longer have that $b_{k} \approx N_{k} / N$. We can, however, use this information for calibration because the true subpopulation sizes, N_{k} / N, are known and can be used as a point of comparison to estimate and then correct for the amount of recall bias.

Previous empirical work (Killworth et al., 2003; Zheng et al., 2006; McCormick and Zheng, 2007) suggests that the calibration curve, $f(\cdot)$ should impose less correction for smaller subpopulations and a progressively greater correction as the popularity of the subpopulation increases. Specifically, both Killworth et al. (2003) and Zheng et al. (2006) suggested that the relation between $\beta_{k}=\log \left(b_{k}\right)$ and $\beta_{k}^{\prime}=\log \left(b_{k}^{\prime}\right)$ begins along the $y=x$ line and the slope decreases to $1 / 2$ (corresponding to a square root relation on the original scale) as the fractional subpopulation size increases.

Using these assumptions and some boundary conditions, McCormick and Zheng (2007) derived a calibration curve that gives the following relationship
between b_{k} and b_{k}^{\prime} :

$$
\begin{equation*}
b_{k}^{\prime}=b_{k}\left[\frac{c_{1}}{b_{k}} \exp \left(\frac{1}{c_{2}}\left(1-\left[\frac{c_{1}}{b_{k}}\right]^{c_{2}}\right)\right)\right]^{1 / 2} \tag{10}
\end{equation*}
$$

where $0<c_{1}<1$ and $c_{2}>0$. By fitting the curve to the names from the McCarty et al. (2001) survey, we chose $c_{1}=e^{-7}$ and $c_{2}=1$. For details on this derivation, the readers are referred to McCormick and Zheng (2007). We apply the curve to our model as follows:

$$
y_{i k} \sim \operatorname{Neg}-\operatorname{Binom}\left(\mu_{i k e}, \omega_{k}^{\prime}\right)
$$

where

$$
\begin{equation*}
\mu_{i k e}=d_{i} f\left(\sum_{a=1}^{A} m(e, a) \frac{N_{a k}}{N_{a}}\right) . \tag{11}
\end{equation*}
$$

3.3 Model fitting algorithm

We use a multilevel model and Bayesian inference to estimate $d_{i}, m(e, a)$, and ω_{k}^{\prime} in the latent non-random mixing model described in Section 3.1. We assume that $\log \left(d_{i}\right)$ follows a normal distribution with mean μ_{d} and standard deviation σ_{d}. Zheng et al. (2006) postulate that this prior should be reasonable based on previous work, specifically McCarty et al. (2001), and found that the prior worked well in their case. We estimate a value of $m(e, a)$ for all E ego groups and all A alter groups. For each ego group, e, and each alter group, a, we assume that $m(e, a)$ has a normal prior distribution with mean $\mu_{m(e, a)}$ and standard deviation $\sigma_{m(e, a)}$. For ω_{k}^{\prime}, we use independent uniform $(0,1)$ priors on the inverse scale, $p\left(1 / \omega_{k}^{\prime}\right) \propto 1$. Since ω_{k}^{\prime} is constrained to $(1, \infty)$, the inverse falls on $(0,1)$. The Jacobian for the transformation is $\omega_{k}^{\prime-2}$. Finally, we give noninformative uniform priors to the hyperparameters $\mu_{d}, \mu_{m(e, a)}, \sigma_{d}$ and
$\sigma_{m(e, a)}$. The joint posterior density can then be expressed as

$$
\begin{align*}
p\left(d, m(e, a), \omega^{\prime}, \mu_{d}, \mu_{m(e, a)}, \sigma_{d}, \sigma_{m(e, a)} \mid y\right) \propto & \prod_{k=1}^{K} \prod_{i=1}^{N}\binom{y_{i k}+\xi_{i k}-1}{\xi_{i k}-1}\left(\frac{1}{\omega_{k}^{\prime}}\right)^{\xi_{i k}}\left(\frac{\omega_{k}^{\prime}-1}{\omega_{k}^{\prime}}\right)^{y_{i k}} \\
& \times \prod_{i=1}^{N}\left(\frac{1}{\omega_{k}^{\prime}}\right)^{2} N\left(\log \left(d_{i}\right) \mid \mu_{d}, \sigma_{d}\right) \\
& \times \prod_{e=1}^{E} N\left(m(e, a) \mid \mu_{m(e, a)}, \sigma_{m(e, a)}\right) \tag{12}
\end{align*}
$$

where $\xi_{i k}=d_{i} f\left(\sum_{a=1}^{A} m(e, a) \frac{N_{a k}}{N_{a}}\right) /\left(\omega_{k}^{\prime}-1\right)$.
Adapting Zheng et al. (2006), we use a Gibbs-Metropolis algorithm in each iteration v.

1. For each i, update d_{i} using a Metropolis step with jumping distribution $\log \left(d_{i}^{*}\right) \sim N\left(d_{i}^{(v-1)},\left(\text { jumping scale of } d_{i}\right)^{2}\right)$.
2. For each e, update the vector $m(e, \cdot)$ using a Metropolis step. Define the proposed value using a random direction and jumping rate. Each of the A elements of $m(e, \cdot)$ has a marginal jumping distribution $m(e, a)^{*} \sim N\left(m(e, a)^{(v-1)},(\text { jumping scale of } m(e, \cdot))^{2}\right)$. Then, rescale so that the row sum is one.
3. Update $\mu_{d} \sim N\left(\hat{\mu}_{d}, \sigma_{d}^{2} / n\right)$ where $\hat{\mu}_{d}=\frac{1}{n} \sum_{i=1}^{n} d_{i}$.
4. Update $\sigma_{d}^{2} \sim \operatorname{Inv-} \chi^{2}\left(n-1, \hat{\sigma}_{d}^{2}\right)$, where $\hat{\sigma}_{d}^{2}=\frac{1}{n} \times \sum_{i=1}^{n}\left(d_{i}-\mu_{d}\right)^{2}$.
5. Update $\mu_{m(e, a)} \sim N\left(\hat{\mu}_{m(e, a)}, \sigma_{m(e, a)}^{2} / n\right)$ for each e where $\hat{\mu}_{m(e, a)}=\frac{1}{A} \Sigma_{a=1}^{a} m(e, a)$.
6. Update $\sigma_{m(e, a)}^{2} \sim \operatorname{Inv-} \chi^{2}\left(a-1, \hat{\sigma}_{m(e, a)}^{2}\right)$, for each e where $\hat{\sigma}_{m(e, a)}^{2}=\frac{1}{A} \times$ $\sum_{a=1}^{A}\left(m(e, a)-\mu_{m(e, a)}\right)^{2}$.
7. For each k, update ω_{k}^{\prime} using a Metropolis step with jumping distribution $\omega_{k}^{\prime *} \sim N\left(\omega_{k}^{\prime(v-1)},\left(\text { jumping scale of } \omega_{k}^{\prime}\right)^{2}\right)$.

4 Results

To fit the model we used data from McCarty et al. (2001) which consisted of survey responses from 1,370 adults living in the United States who were contacted via random digit dialing in survey 1 (796 respondents, January 1998) and survey 2 (574 respondents, January 1999). To correct for responses that were suspiciously large (e.g, a person claiming to know over 50 Michaels), we truncated all response at 30 , a procedure which affects only 0.25% of the data. We also inspected the data using scatterplots which revealed a respondent who was coded as knowing seven people in each subpopulation. We removed this case from the dataset.

We obtained approximate convergence of our algorithm $\left(\hat{R}_{\max }<1.1\right.$; see Gelman et al. (2003)) using three parallel chains with 2000 iterations per chain. We used the first half of each chain for burn-in and thin the chain by using every tenth iterate. All computations were performed using custom code written for the software package R (R Development Core Team, 2009), and the code is available upon request.

4.1 Personal network size estimates

We estimated a mean network size of 611 (median $=472$) and the distribution of network sizes is presented in Figure 3. The solid line in Figure 3 is a log-normal distribution with parameters determined via maximum likelihood $\left(\hat{\mu}_{m l e}=6.2\right.$ and $\left.\hat{\sigma}_{m l e}=0.68\right)$; the lognormal distribution fits the distribution quite well. This result is not an artifact of our model, as confirmed by additional simulation studies (not shown). Given the recent interest in power-laws and networks, we also explored the fit of the power-law distribution (dashed line) with parameters estimated via maximum likelihood ($\alpha_{m l e}=1.28$)
(Clauset et al., 2007). The fit is clearly poor, a result consistent with previous work showing that another social network - the sexual contact network - is also poorly approximated by the power-law distribution (Hamilton et al., 2008).

Figure 3: Estimated degree distribution from the fitted model. The median is about 470 and the mean is about 610 . The shading represents random draws from the posterior distribution to indicate inferential uncertainty in the histograms. The solid line is a log-normal distribution fit using maximum likelihood to the posterior median for each respondent. The estimated parameters are ($\hat{\mu}_{m l e}=6.2$ and $\hat{\sigma}_{m l e}=0.68$). The dashed line is a power-law density with scaling parameter estimated via maximum likelihood $\left(\hat{\alpha}_{\text {mle }}=1.28\right)$

Figure 4 compares the estimated degree from the latent non-random mixing model to estimates from the method of Zheng et al. (2006). In general, the estimates from the latent non-random mixing model tend to be slightly smaller with an estimated median degree of 472 (mean 611) compared to an estimated median degree of 610 (mean 750) in Zheng et al. (2006). Figure 4 also reveals that the differences between the estimates vary in ways that are expected given that the names of McCarty et al. are predominantly male and predominantly middle-aged (see Figure 2). The latent non-random mixing model accounts for this fact, and thus produces lower estimates for male respondents and adult
respondents than the method Zheng et al. (2006).

Figure 4: Comparison of the estimates from Zheng et al. and the latent nonrandom mixing (LNRM) model broken down by age and gender: grey points represent males and black points females. The latent non-random mixing model accounts for the fact that the McCarty et al. names are predominately male and predominantly middle aged, and therefore produces small degree estimates for respondents in these groups. Since our model has six ego groups, there are six distinct patterns in the figure.

4.2 Mixing estimates

Though we developed this procedure to obtain good estimates of personal network size, it also gives us information about the mixing rates in the population, something that is thought to affect the spread of information (Volz, 2006) and disease (Morris, 1993; Mossong et al., 2008). Though there is previous work on estimating population mixing rates (see Morris (1991), for example), we believe this is the first survey-based approach to estimate such information indirectly.

As mentioned in the previous section, the mixing matrix, $m(e, a)$, represents the proportion of the network of a person in ego group e that is made up of people in alter group a. The estimated mixing matrix presented in Figure 5 indicates plausible relationships within subgroups with the dominant pattern being that individuals tend to preferentially associate with others of similar
age and gender, a finding that is consistent with the large sociological literature on homophily - the tendency for people to form ties to those who are similar (McPherson et al., 2001). This trend is especially apparent for adult males who demonstrate a high proportion of their ties to other males. With additional information on the race/ethinicity of the different names, the latent non-random mixing model could be used to estimate the extent of social network-based segregation, an approach that could have many advantages over traditional measures of residential segregation (Echenique and Fryer, 2007).

Figure 5: Barplot of the mixing matrix. Each of the six stacks of bars represents the network of one ego group. Each stack describes the proportion of the given ego group's ties that are formed with all of the alter groups; thus, the total proportion within each stack is 1 . For each individual bar, a shift to the left indicates an increased propensity to know female alters. Thick lines represent \pm one standard error (estimated from the posterior) while thin lines are \pm two standard errors.

4.3 Overdispersion

Another way to assess the latent non-random mixing model is to examine the overdispersion parameter ω_{k}^{\prime} which represents the variation in propensity
to know individuals in a particular group. In the latent non-random mixing model, a portion of this variability is modeled by the ego-group dependent mean $\mu_{i k e}$. The remaining unexplained variability forms the overdispersion parameter, ω_{k}^{\prime}. In Section 3.1 we predicted that ω_{k}^{\prime} would be smaller than the overdispersion ω_{k} reported by Zheng et al. (2006) since Zheng et al. (2006) does not model non-random mixing.

This prediction turned out to be correct. With the exception of Anthony, all of the estimated overdispersion estimates from the latent non-random mixing model are lower than those presented in Zheng et al. (2006). To judge the magnitude of the difference we create a standardized difference measure, $\frac{\omega_{k}^{\prime}-\omega_{k}}{\omega_{k}-1}$. Here, the numerator, $\omega_{k}^{\prime}-\omega_{k}$ represents the reduction in overdispersion resulting from modeling non-random mixing explicitly in the latent nonrandom mixing model. In the denominator, an ω_{k} value of one corresponds to no overdispersion. The ratio for group k, therefore, is the proportion of overdispersion encountered in Zheng et al. (2006) that is explicitly modeled in the latent non-random mixing model. The standardized difference was on average 0.213 units lower for the latent non-random mixing model estimates, indicating that roughly 21 percent of the overdispersion found in Zheng et al. (2006) can be explained by non-random mixing due to age and gender. If appropriate ethnicity or other demographic information about the names were available, we expect this reduction to be even larger.

5 Designing future surveys

In the previous sections we analyzed existing data in a way that resolves three known problems with estimating personal network size from "How many X's do you know?" data. In this section, we offer survey design suggestions that
allow researchers to capitalize on the simplicity of the scale-up estimates while enjoying the same bias-reduction as in the latent non-random mixing model. The findings in this section, therefore, offer an efficient and easy-to-apply degree estimation method that is accessible to a wide range of researchers who may not wish to fit the latent non-random mixing model.

In Section 5.1, we derive the requirement for selecting first names such that the scale-up estimate is equivalent to the degree estimate derived from fitting a latent non-random mixing model using MCMC computation. The intuition behind this result is that the names asked about should be chosen so that the combined set of people asked about is a "scaled-down" version of the overall population. For example, if 20% of the general population is females under 30 then 20% of the people with the names used must also be females under 30. Section 5.2 presents practical advice for choosing such a set of names and presents a simulation study of the performance of the suggested guidelines. Finally, Section 5.3 offers guidelines on the standard errors of the estimates.

5.1 Selecting names for the scale-up estimator

Unlike the scale-up estimator (2), the latent non-random mixing model accounts for barrier effects due to some demographic factors by estimating degree differentially based on characteristics of the respondent and of the potential alter population. If, however, there were conditions where the simple scaleup estimator was expected to be equivalent to the latent non-random mixing model, then the simple estimator would enjoy the same reduction of bias from barrier effects as the more complex latent non-random mixing model estimator. In this section we derive such conditions.

The latent non-random mixing model assumes an expected number of acquaintances for an individual i in ego group e to people in group k (as in
(7)),

$$
\mu_{i k e}=\mathrm{E}\left(y_{i k e}\right)=d_{i} \sum_{a=1}^{A} m(e, a) \frac{N_{a k}}{N_{a}} .
$$

On the other hand, the scale-up estimator assumes

$$
\begin{align*}
\mathrm{E}\left(\sum_{k=1}^{K} y_{i k e}\right) & =\sum_{k=1}^{K} \mu_{i k e}=d_{i} \sum_{a=1}^{A} m(e, a)\left[\sum_{k=1}^{K} \frac{N_{a k}}{N_{a}}\right] \\
& \equiv d_{i} \frac{\sum_{k=1}^{K} \sum_{a=1}^{A} N_{a k}}{N}, \forall e \tag{13}
\end{align*}
$$

Equation (13) shows that the Killworth et al. scale-up estimator (2) is in expectation equivalent to that of the latent non-random mixing if either

$$
\begin{equation*}
m(e, a)=\frac{N_{a}}{N}, \forall a, \forall e \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\sum_{k=1}^{K} N_{a k}}{\sum_{k=1}^{K} N_{k}}=\frac{N_{a}}{N}, \forall a \tag{15}
\end{equation*}
$$

In other words, the two estimators are equivalent if there is random mixing (14) or if the combined set of names represents a "scaled-down" version of the population (15). Since random mixing is not a reasonable assumption for the acquaintances network in the United States, we need to focus on selecting the names to satisfy the scaled-down condition. That is, we should select the set of names such that, if 15% of the population is males between ages 21 and 40 $\left(\frac{N_{a}}{N}\right)$ then 15% of the people asked about must also be males between ages 21 and $40\left(\frac{\sum_{k=1}^{K} N_{a k}}{\sum_{k=1}^{K} N_{k}}\right)$.

In actually choosing a set of names to satisfy the scaled-down condition, we found it more convenient to work with a rearranged form of (15):

$$
\begin{equation*}
\frac{\sum_{k=1}^{K} N_{a k}}{N_{a}}=\frac{\sum_{k=1}^{K} N_{k}}{N}, \forall a . \tag{16}
\end{equation*}
$$

In order to find a set of names that satisfy (16) it is helpful to create Figure 6 that displays the relative popularity of many names over time. From this figure, we tried to select a set of names such that the popularity across alter categories ended up balanced. For example, consider the names: Walter, Bruce and Kyle. These names have similar popularity overall, but Walter was popular from 1910-1940, whereas Bruce was popular during the middle of the century and Kyle near the end. Thus, the popularity of the names at any one time period will be balanced by the popularity of names in the other time periods, preserving the required equality in the sum (16).

When choosing what names to use, in addition to satisfying equation (16), we recommend choosing names that compromise 0.1 to 0.2 percent of the population, as these minimize recall errors and yield average responses from 0.6-1.3. Finally, we recommend choosing names that are not commonly associated with nicknames in order to minimize transmission errors.

5.2 Simulation study

We now demonstrate the above guidelines in a simulation study. Again, we use the age and gender profiles of the names as an example. If other information were available the general approach presented here would still be applicable.

Figure 6 shows the popularity profiles of several names with the desired level of overall popularity (between 0.1 and 0.2 percent of the population). We used this figure to select two sets of names (Table 1). The first set-the good names-were selected using the procedure described in the previous section in order to satisfy the scaled-down condition. We also selected a second set of names-the bad names-that were popular with individuals born in the first decades of the twentieth century and thus did not satisfy the scaled-down condition. For comparison, we also use the set of 12 names from the McCarty

Figure 6: Heat maps of additional male and female names based on data from the Social Security Administration. Lighter color indicates higher popularity.
et al. data.
Figure 7 provides a visual check of the scaled-down condition (14) for these three sets of names by plotting the combined demographic profiles for each set compared to that of the overall population. The figure reveals clear problems with the McCarty et al. names and the bad names. In the bad names, for example, a much larger fraction of the subpopulation of alters is made up of older individuals than in the population overall (as expected given our method of selection). Thus, we expect that scale-up estimates based on the bad names will over-estimate the degree of older respondents.

Good names		Bad names	
Male	Female	Male	Female
Walter	Rose	Walter	Alice
Bruce	Tina	Jack	Marie
Kyle	Emily	Harold	Rose
Ralph	Martha	Ralph	Joyce
Alan	Paula	Roy	Marilyn
Adam	Rachel	Carl	Gloria

Table 1: A set of names that approximately meet the scaled-down conditionthe good names - and a set of names that do not - the bad names.

Figure 7: Combined demographic profiles for three sets of names (shaded bars) and population proportion of the corresponding category (solid lines). Unlike the bad names and the McCarty et al. names, the good names approximately satisfy the scaled-down condition.

We assessed this prediction via a simulation study that fit the latent nonrandom mixing model to the McCarty et al. data and then used these estimated parameters (degree, overdispersion, mixing matrix) to generate a negative binomial sample of size 1,370 . We then fit the scale-up estimate, the latent non-random mixing model and the Zheng et al. model to this simulated data to see how these estimates could recover the known data-generating parameters.

Figure 8 presents the results of the simulation study. In each panel the difference between the estimated degree and the known data-generating degree for individual i is plotted against the age of the respondent. For the bad names (Table 1) individual degree is systematically over-estimated for older individuals and under-estimated for younger individuals in all three models, but the latent non-random mixing model showed the least age bias in estimates. This over-estimation of the degree of older respondents was expected

Figure 8: A comparison of the performance of the latent non-random mixing model, the Zheng et al. overdispersion model, and the Killworth et al. scale-up method. In each panel the difference between the estimated degree and the known data-generating degree is plotted against age. Three different sets of names were used: a set of names that do not satisfy the scaled-down condition (bad names), the names used in the McCarty et al. survey, and a set of names that satisfy the scaled-down condition (good names). With the bad names, all three procedures show some age bias in estimates, but these biases are smallest with the latent non-random mixing model. With the McCarty et al. names, the scale-up estimate and the Zheng et al. estimates show age bias, but the estimates from the latent non-random mixing model are excellent. With the good names, all three procedures perform well.
given the combined demographic profiles of the set of bad names (Figure 7). For the names from the McCarty et al. (2001) survey, the scale-up estimator and the Zheng et al. model over-estimate the degree of the younger members of the population, again as expected given the combined demographic profiles of this set of names (Figure 7). The latent non-random mixing model, however, produced estimates with no age bias. Finally, for the good names-those
selected according to the scaled-down condition-all three procedures work well, further supporting the design strategy proposed in Section 5.1.

Overall, our simulation study shows that the proposed latent non-random mixing model performed better than existing methods when names were not chosen according to the scaled-down condition, suggesting that it is the best approach from estimating personal network size with most data. However, when the names were chosen according the scaled-down condition, even the much simpler scale-up estimator works well.

5.3 Selecting the number of names

For researchers planning to use the scale-up method an important issue to consider in addition to which names to use is how many names to use. Obviously, asking about more names will produce a more precise estimate, but that precision comes at the cost of increasing the length of the survey. To help researchers understand the trade-off, we return to the approximate standard error under the binomial model presented in Section 2.1. Simulation results using 6,12 , and 18 names chosen using the guidelines suggested above agree well with the results from the binomial model in (5) (results not shown). This agreement suggests that the simple standard error may be reasonable when the names are chosen appropriately.

To put the results of (5) into a more concrete context, a researcher who uses names whose overall popularity reaches 2 million would expect a standard error of around $11.6 \times \sqrt{500}=259$ for an estimated degree of 500 whereas with $\sum N_{k}=6$ million, she would expect a standard error of $6.2 \times \sqrt{500}=139$ for the same respondent. Finally, for the good names presented in Table 1, $\sum N_{k}=4$ million so a researcher could expect a standard error of 177 for a respondent with degree 500 .

6 Discussion and conclusion

Using "How many X's do you know?" type data to produce estimates of individual degree and degree distribution holds great potential for applied researchers. These questions require limited time to answer and can easily be integrated into currently existing surveys. The usefulness of this method has previously been limited, however, by three previously documented problems. In this paper we have proposed two additional tools for researchers. First, the latent non-random mixing model in Section 3 deals with the known problems when using "How many X's do you know?" data allowing for improved personal network size estimation. In Section 5, we show that if future researchers choose the names used in their survey wisely-that is, if the set of names satisfies the scaled-down condition-then they can get improved network size estimates without fitting the latent non-random mixing model. We also provided guidelines for selection such a set of names.

Though the methods presented here have advantages, they also have somewhat more strenuous data requirements than previous methods. Fitting the latent non-random mixing model or designing a survey to satisfy the scaleddown condition requires information about the demographic profiles of the first names used, information that may not be available in some countries. If such information is not available, other subpopulations could be used (e.g., women who have given birth in the last year, men who are in the armed forces), but then transmission error becomes a potential source of concern. A further limitation to note is that even if the set of names used satisfies the scaled-down condition with respect to age and gender, the subsequent estimates could have a bias that is correlated with something that is not included, such as race/ethnicity.

A potential area for future methodological work involves improving the
calibration curve used to adjust for recall bias. Currently, the curve is fit deterministically based on the twelve names in the McCarty et al. (2001) data and the independent observations of Killworth et al. (2003). In the future, the curve could be dynamically fit for a given set of data as part of the modeling process. Another area for future methodological work is formalizing the procedure used to select names that satisfy the scaled-down condition. Our trial-and-error approached worked well here because there were only 8 alter categories, but if there were more, a more automated procedure would be preferable.

A final area for future work involves integrating the procedures developed here with efforts to estimate the size of "hidden" or "hard-to-count" populations. For example, there is tremendous uncertainly about the sizes of populations at highest risk for HIV/AIDS in most countries: injection drug users, men who have sex with men, and sex workers. This uncertainty has, unfortunately, complicated public health efforts to understand and slow the spread of the disease (UNAIDS, 2003). As was shown by Bernard et al. (1991) and Killworth et al. (1998b), estimates of personal network size can be combined with responses to questions such as "How many injection drug users do you know?" to estimate the size of hidden populations. The intuition behind this approach is that respondents' networks, should, on average, be representative of the population. Therefore, if an American respondent reported knowing 2 injection drug users and was estimated to know 300 people, then we can estimate that there are about 2 million injection drug users in the United States ($\frac{300 \text { million }}{300} \cdot 2=2$ million), and this estimate can be improved by averaging over respondents (Killworth et al., 1998b). Thus, the improved degree estimates described in this paper should lead to improved estimates of the sizes of hidden populations, but future work might be required to tailor
these methods to public health contexts.

References

Barabási, A. L. (2003). Linked. Plume.

Barton, A. H. (1968). Bringing society back in: Survey research and macromethodology. American Behavorial Scientist, 12(2):1-9.

Bernard, H. R., Johnsen, E. C., Killworth, P., and Robinson, S. (1991). Estimating the size of an average personal network and of an event subpopulation: Some empirical results. Social Science Research, 20:109-121.

Bernard, H. R., Johnsen, E. C., Killworth, P. D., McCarty, C., Shelley, G. A., and Robinson, S. (1990). Comparing four different methods for measuring personal social networks. Social Networks, 12:179-215.

Bernard, H. R., Killworth, P., Kronenfeld, D., and Sailer, L. (1984). The problem of informant accuracy: The validity of retrospective data. Annual Review of Anthropology, 13:495-517.

Brewer, D. D. (2000). Forgetting in the recall-based elicitation of person and social networks. Social Networks, 22:29-43.

Butts, C. T. (2003). Network inference, error, and informant (in)accuracy: a Bayesian approach. Social Networks, 25:103-140.

Clauset, A., Shalizi, C., and Newman, M. (2007). Power-law distributions in empirical data. arXiv:0706.1062.

Conley, D. (2004). The Pecking Order: Which Siblings Succeed and Why. Pantheon Books, New York.

Echenique, F. and Fryer, R. G. (2007). A measure of segregation based on social interactions. Quaterly Journal of Economics, 122(2):441-485.

Freeman, L. C. and Thompson, C. R. (1989). Estimating acquaintanceship volume. In Kochen, M., editor, The Small World, pages 147-158. Ablex Publishing.

Fu, Y.-C. (2007). Contact diaries: Building archives of actual and comprehensive personal networks. Field Methods, 19(2):194-217.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis, Second Edition. Chapman \& Hall/CRC.

Gurevich, M. (1961). The Social Structure of Acquaintanceship Networks. PhD thesis, MIT.

Hamilton, D. T., Handcock, M. S., and Morris, M. (2008). Degree distributions in sexual networks: A framework for evaluating evidence. Sexually Transmitted Diseases, 35(1):30-40.

Killworth, P. D. and Bernard, H. R. (1976). Informant accuracy in social network data. Human Organization, 35(3):269-289.

Killworth, P. D. and Bernard, H. R. (1978). The reverse small-world experiment. Social Networks, 1(2):159-192.

Killworth, P. D., Bernard, H. R., and McCarty, C. (1984). Measuring patterns of acquaintanceship. Current Anthropology, 23:318-397.

Killworth, P. D., Johnsen, E. C., Bernard, H. R., Shelley, G. A., and McCarty, C. (1990). Estimating the size of personal networks. Social Networks, 12:289-312.

Killworth, P. D., Johnsen, E. C., McCarty, C., Shelly, G. A., and Bernard, H. R. (1998a). A social network approach to estimating seroprevalence in the United States. Social Networks, 20:23-50.

Killworth, P. D., McCarty, C., Bernard, H. R., Johnsen, E. C., Domini, J., and Shelly, G. A. (2003). Two interpretations of reports of knowledge of subpopulation sizes. Social Networks, 25:141-160.

Killworth, P. D., McCarty, C., Bernard, H. R., Shelly, G. A., and Johnsen, E. C. (1998b). Estimation of seroprevalence, rape, and homelessness in the U.S. using a social network approach. Evaluation Review, 22:289-308.

Killworth, P. D., McCarty, C., Johnsen, E. C., Bernard, H. R., and Shelley, G. A. (2006). Investigating the variation of personal network size under unknown error conditions. Sociological Methods \mathfrak{E} Research, 35(1):84-112.

Laumann, E. O. (1969). Friends of urban men: An assessment of accuracy in reporting their socioeconomic attributes, mutual choice, and attitude agreement. Sociometry, 32(1):54-69.

Lohr, S. (1999). Sampling: Design and Analysis. Duxbury Press.

McCarty, C., Killworth, P. D., Bernard, H. R., Johnsen, E., and Shelley, G. A. (2001). Comparing two methods for estimating network size. Human Organization, 60:28-39.

McCormick, T. H. and Zheng, T. (2007). Adjusting for recall bias in "how many X's do you know?" surveys. Joint Statistical Meetings: Salt Lake City, Utah.

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27:415-444.

Morris, M. (1991). A log-linear modeling framework for selective mixing. Mathematical Biosciences, 107(2):349-377.

Morris, M. (1993). Epidemiology and social networks: Modeling structured diffusion. Sociological Methods and Research, 22(1):99-126.

Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G. S., Wallinga, J., Heijne, J., SadkowskaTodys, M., Rosinska, M., and Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med, 5(3):e74.

Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic spreading in scalefree networks. Physical Review Letters, 86(14):3200-3203.

Pool, I. and Kochen, M. (1978). Contacts and influence. Social Networks, 1:5-51.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Santos, F. C., Pacheco, J. M., and Lenaerts, T. (2006). Evolutationary dynamics of social dilemmas in structured heterogenous populations. Proceedings of the National Academy of Sciences, USA, 103(9):3490-3494.

Shelley, G. A., Killworth, P. D., Bernard, H. R., McCarty, C., Johnsen, E. C., and Rice, R. E. (2006). Who knows your HIV status II? information propogation within social networks of seropositive people. Human Organization, 65(4):430-444.

UNAIDS (2003). Estimating the Size of Popualtions at Risk for HIV. Number 03.36E. UNAIDS, Geneva.

Volz, E. (2006). Tomography of random social networks. Working Paper.

Wasserman, S. and Faust, K. (1994). Social Network Analysis. Cambridge University Press.

Zheng, T., Salganik, M. J., and Gelman, A. (2006). How many people do you know in prison?: Using overdispersion in count data to estiamte social structure in networks. Journal of the American Statistical Association, 101:409-423.

[^0]: *The authors thank Peter Killworth, Russ Bernard, and Chris McCarty for sharing their survey data as well as Andrew Gelman, Thomas DiPrete, Delia Baldassari, David Banks, an Associate Editor, and two anonymous reviewers for their constructive comments. They also gratefully acknowledge the support of the National Science Foundation through grant number DMS-0532231 and a Graduate Research Fellowship, as well as support from the Institute for Social and Economic Research and Policy and the Applied Statistics Center at Columbia University.

