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Respondent-Driven Sampling: A New
Approach to the Study of Hidden
Populations*

DOUGLAS D. HECKATHORN, University of Connecticut

A population is “hidden” when no sampling frame exists and public acknowledgment of membership in
the population is potentially threatening. Accessing such populations is difficult because standard probability
sampling methods produce low response rates and responses that lack candor. Existing procedures for sampling
these populations, including snowball and other chain-referral samples, the key-informant approach, and
targeted sampling, introduce well-documented biases into their samples. This paper introduces a new variant
of chain-referral sampling, respondent-driven sampling, that employs a dual system of structured incentives to
overcome some of the deficiencies of such samples. A theoretic analysis, drawing on both Markov-chain theory
and the theory of biased networks, shows that this procedure can reduce the biases generally associated with
chain-referral methods. The analysis includes a proof showing that even though sampling begins with an
arbitrarily chosen set of initial subjects, as do most chain-referral samples, the composition of the ultimate
sample is wholly independent of those initial subjects. The analysis also includes a theoretic specification of the
conditions under which the procedure yields unbiased samples. Empirical results, based on surveys of 277
active drug injectors in Connecticut, support these conclusions. Finally, the conclusion discusses how respon-
dent-driven sampling can improve both network sampling and ethnographic 44investigation.

Introduction

“Hidden populations” have two characteristics: first, no sampling frame exists, so the
size and boundaries of the population are unknown; and second, there exist strong privacy
concerns, because membership involves stigmatized or illegal behavior, leading individuals to
refuse to cooperate, or give unreliable answers to protect their privacy. Traditional methods,
such as household surveys, cannot produce reliable samples, and they are inefficient, because
most hidden populations are rare. Examples include many groups at risk of contracting HIV,
incdluding active injection drug users (IDUs). Identifying these groups is crucial to the devel-
opment of effective AIDS prevention interventions, and finding valid, reliable ways of sam-
pling them is essential to evaluating interventions.

Three methods dominate studies of hidden populations: snowball sampling and other
forms of chain referral samples, key informant sampling, and targeted sampling. The best
known approach is snowball sampling (Goodman 1961): ideally, a randomly chosen sample
serves as initial contacts, though in practice ease of access virtually always determines the
initial sample; these subjects provide the names of a fixed number of other individuals who
fulfill the research criteria. The researcher approaches these persons, and asks them to par-
ticipate; and each subject who agrees is then asked to provide a fixed number of additional
names. The researcher continues this process for as many stages as desired.

* An earlier version of this paper was presented at the XI International Conference on AIDS, Vancouver, B.C., July
1996. I thank Robert Broadhead, with whom the peer-driven intervention to combat AIDS was invented, and Denise
Anthony, who conducted much of the data analysis. In addition, Dean Behrens, Robert Mills, Beth Jacobson, Boris
Sergeyev, Dayid Weakliem, Jeroen Weesie and anonymous reviewers provided helpful comments and advice. Finally, I
thank the Natienal Institute on Drug Abuse (Grant #R01 DA08014} for its support of this research.
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Erickson (1979:299) describes a number of problems afflicting snowball sampling and
other chain-referral samples. First, “inferences about individuals must rely mainly on the
initial sample, since additional individuals found by tracing chains are never found randomly
or even with known biases.” This issue is especially grave, because in the contexts where
chain-referral methods are used, the initial sample usuvally cannot be drawn randomly. Sec-
ond, chain-referral samples tend to be biased toward the more cooperative subjects who
agree to participate; this problem is aggravated when the initial subjects are volunteers, be-
cause in terms of cooperation they are outliers. Third, these samples may be biased because
of “masking,” that is, protecting friends by not referring them, an important problem when a
population has strong privacy concerns. Fourth, referrals occur through network links, so
subjects with larger personal networks will be oversampled, and relative isolates will be ex-
cluded. Because of these potential biases, snowball samples typically are seen as “conven-
ience samples” that lack any valid claim to produce unbiased and consistent samples. Still,
Erickson is optimistic about the potential for resolving these problems, concluding that: “the
problems in making inferences about individuals and about chains . . . are . . . in principle
solvable: One can build in added incentives” (1979:299). Unfortunately, she did not develop
this point.

Two additional methods have developed to overcome the difficulties afflicting snowball
samples. Key informant sampling (Deaux and Callaghan 1985) is designed 1o overcome re-
sponse biases by selecting especially knowledgeable respondents and asking them about
others’ behavior, rather than their own. For example, one might ask social workers, drug
abuse counselors, public health officials, or natural opinion leaders to report on patterns of
drug use and sexual behavior. This method reduces the tendency to exaggerate socially ac-
ceptable behavior and understate disreputable behavior, however, it adds several sources of
bias. First, when professionais are key informants, their professional orientation may bias
their responses; e.g., substance abuse counselors may exaggerate their clients’ difficulties, and
natural opinion leaders may feel obligated to present either an idealized or a disparaging view
of those whom they influence. Second, key informants may lack sufficiently detailed knowl-
edge; e.g., with the exception of sexual partners, knowledge about frequency of condom use
tends to be strictly personal. Third, key informants do not interact with a random group of
potential clients. If the key informant is a professional, the bias is a form of “institutional
bias” characteristic of samples drawn from institutionalized populations. For example, just as
imprisoned drug users are not randomly selected, neither are those who come into contact
with drug-abuse counselors or those who are part of the entourage of a natural opinion
leader. Hence the key informant approach has limitations: it introduces new sources of po-
tential response bias, it cannot be used to access highly detailed and personal information;
and the sampling may have an institutional bias.

Targeted sampling (Watters and Biernacki 1989) is a widely employed response to the
deficiencies of chain-referral models. It involves two basic steps: first, field researchers map a
target population (to the extent that they succeed in penetrating the local networks linking
potential respondents, this prevents the under-sampling that traditional approaches would
produce); and second, field researchers recruit a pre-specified number of subjects at sites
identified by the ethnographic mapping, ensuring that subjects from different areas and sub-
groups will appear in the final sample. The adequacy of targeted sampling depends on the
accuracy and comprehensiveness of the ethnographic mapping. If ethnographic mapping is
near perfect, targeted sampling reduces to a form of location sampling. For example, based
on an exhaustive ethnographic analysis, one could weight drug scenes based on their inten-
sity of use by each category of user at each time of the day, and sample accordingly. Unfortu-
nately, this is never possible because drug scenes are neither discrete nor public; while some
drug copping (i.e., selling) occurs in concentrated areas, much is dispersed, occurring in pri-
vate apartments and other nonpublic settings. Even an accomplished ethnographer requires
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months to penetrate a small subset of such settings within one urban neighborhood. Ethnog-
raphy and therefore target sampling is always limited, i.e., by the effects of the time of day
when researchers recruit, where they do their recruiting, and the recruitment strategies they
use (Watters and Biernacki 1989:424-426). For instance, if researchers recruit during normal
business hours, they will have difficulty recruiting gainfully employed subjects. If researchers
focus their activities in “obvious” locations, they introduce a subtler version of the “institu-
tional” bias targeted sampling seeks to avoid — they oversample the most visible potential
subjects, and under-sample (or miss altogether) those in less obvious niches. Researchers’
own trepidations about venturing into areas where they do not feel safe further limit the
diversity of the population sampled. Thus targeted sampling introduces biases that corre-
spond to the limits of the ethnography upon which it is based.

Increasing recognition of targeted sampling’s limitations and the absence of any funda-
mentally new sampling methods have produced renewed interest in snowball and other
chain-referral methods. These methods have great potential power, as studies of social net-
works reveal. In populations as large as the United States, every member is indirectly associ-
ated with every other member through approximately six intermediaries (Killworth and
Bernard 1978/79). This means that even the most socially isolated individuals can be
reached by the sixth wave of a referral chain beginning with any arbitrarily chosen individ-
ual. Of course, realizing even a small portion of this potential requires a highly robust re-
cruitment process, requiring, for example, that participants recruit everyone they know, and
in the case of sociometric stars, this might involve many thousands of persons.

Refinements of chain-referral sampling includes Frank and Snijders’ (1994) method for
estimating the size of hidden populations using a one-wave snowball sample. They select a
diverse set of initial subjects, each of whom then lists all members of the target population
that they know. The size of the hidden population is then estimated based on the amount of
overlap among the members listed. Similarly, Klovdahl (1989) proposes a “random walk”
approach for analyzing network structure, using a snowbail sample in which each wave con-
sists of only one subject; its results reveal structural features of the network connecting mem-
bers of the hidden population. In addition, Spreen and Zwaagstra (1994) propose a
combination of snowball and targeted sampling, termed “targeted personal network sam-
pling,” which uses ethnographic mapping to locate an initial sample, which becomes the basis
for network sampling. They used this approach to analyze the structure of cocaine users’
personal networks.

Despite the sophistication of these extensions of chain-referral sampling, some problems
remain unresolved. In particular: “The central question in the methodological discussion about
sampling and analyzing hidden populations is, basically: How to draw a random (initial) sample”
(Spreen 1992:49). This question is crucial, because it generally has been assumed that how-
ever many waves the chain-referral sampling may contain, it necessarily must reflect the
biases in the initial sample.

This paper describes a new form of chain-referral sampling termed “Respondent-Driven
Sampling” (RDS). It was developed as part of an AIDS prevention intervention, the Eastern
Connecticut Health Qutreach (ECHO) project, which targets active injection drug users for in-
terviews, AIDS prevention education, and HIV testing and counseling (Broadhead and Heck-
athorn 1994: Broadhead et al. 1995; Heckathorn and Broadhead 1996). This process requires
approximately 1 'z hours. RDS plays a dual role in the project. It is used both to recruit
subjects into the AIDS prevention intervention, and to sample the population of active injec-
tors. Based on an analysis drawing on Markov chains and the theory of biased networks, 1
show that suitable incentives can reduce the biases of chain-referral samples. Specifically,
RDS produces samples that are independent of the initial subjects from which sampling begins. As a
result, it does not matter whether the initial sample is drawn randomly. In addition, RDS
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reduces the biases resulting from voluntarism and masking, and provides means for control-
ling the biases resulting from differences in the sizes of personal networks. Thus it resolves,
or provides means for resolving, the principal problems affecting chain-referral samples.

Respondent-Driven Sampling

A principle underlying respondeni-driven sampling derives from studies of incentive sys-
tems (Heckathorn 1990, 1993, 1996). Behavioral compliance can arise from two theoreti-
cally distinguishable sources. First, it can arise from individual-sanction-based control. Here
an agent, such as a teacher, parent, neighbor, or AIDS prevention counselor, targets an indi-
vidual {for control, for example, by promising a reward for a respondent undergoing an inter-
view. The result is a dyadic relation of the sort presumed in most analyses of influence
relations, a primary incentive. Second, compliance can arise from group-mediated social control
(Heckathorn 1990). For example, respondents can be rewarded not only for their own par-
ticipation in a study, but also for participation they elicit from a peer. In these cases, control
involves a two-step process: one or more members of the actor’s group is promised a reward
or threatened with a punishment based on whether the actor complies, and members of the
group respond to that secondary incentive by controlling the actor. In this way, the agent’s
influence is amplified through the target’s group. Thus, this form of control is “group medi-
ated,” and the incentives that trigger it are “secondary incentives.”

A central conclusion from recent research on incentive systems (Heckathorn 1990,
1996) is that secondary incentives can be more efficient and effective than primary incentives
in contexts where intragroup control is cheap and effective, as when social approval is an
important sanction in peer groups. A difference between primary and secondary incentives
lies in the distribution of compliance costs. In the case of individualized rewards, compliance
costs are internal; the targeted actor either complies or refuses, thereby bearing whatever
costs are involved, and the choice is strictly personal. In contrast, in the case of secondary
incentives, compliance costs are external; the targeted actor seeks to induce others to comply,
and therefore others bear the compliance costs. It is usually easier to tell others 1o comply
than to do so oneself. This difference is crucial in the case of recruitment into a study. When
only primary incentives motivate participation, individuals make their own autonomous de-
cisions about whether to cooperate. However, if secondary rewards also motivate recruiting
others into the study, peers’ social influence is harnessed on behalf of the sampling process.

A second reason for the potential effectiveness of secondary incentives concerns moni-
toring. Agents employing primary incentives as means of control must be able to monitor
compliance. But police, teachers, and drug abuse counselors typically can observe only a
small portion of behavior, so monitoring is difficult when activities cannot be geographically
confined. In contrast, secondary incentives operate through peer influence, and peers tend
to be far more effective monitors of behavior (Heckathorn 1990). When sampling hidden
populations, help from peers is often the only way that many individuals can be located. For
example, no one knows better who a community’s IDUs are than other IDUs.

A third reason for the potential effectiveness of secondary incentives concerns differen-
tials in response to material incentives. Some individuals may not respond to material incen-
tives, e.g., affluent subjects may not need the money they would gain by being interviewed.
In sampling based on primary incentives, if the researcher’s ability to reward symbolically is
limited, he or she must rely on material rewards. Generally, social researchers have little
choice but to rely upon material rewards, because, except in the case of lengthy participant
observation studies, they cannot develop meaningful relationships with subjects. Secondary
incentives harmess peer pressure, applying non-material rewards such as peer approval to
secure compliance. In essence, secondary incentives convert material incentives into peer-
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based symbolic incentives. For example, individuals who are too affluent to care about mate-
rial rewards may defer to social pressure from less affluent or more materially-oriented peers,
such as main connections or dealers.

Like other chain-referral methods, RDS assumes that those best able to access members
of hidden populations are their own peers. It differs from traditional snowball sampling in
two respects. First, whereas snowball sampling typically involves an incentive for participa-
tion, RDS involves a dual incentive system — the reward for being interviewed (a primary
reward) plus a reward for recruiting others into the study (a secondary reward). This study
also used a mix of material (monetary) and symbolic (the opportunity to help protect oneself
and one’s peers from a deadly epidemic} rewards. These rewards fostered a robust recruit-
ment, in which a few initial subjects each produced chain-referral systems that yielded a large
number of recruits over the course of successive waves. For example, Figure 1 depicts the
largest recruitment network from Site 2, in which a single subject generated more than one
hundred recruits of diverse race, ethnicity, gender, and place of residence.
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Figure 1 o Recruitment network in a respondent-driven sample, beginning from a single “seed.”

A second difference between RDS and typical snowball sampling is that subjects are not
asked to identify their peers to the investigator, but to recruit them into the study. This
distinction is crucial when dealing with hidden populations that are subjected to considerable
repression. The Netherlands are relatively tolerant, so it is not surprising that when Frank
and Snijders (1994:62) asked heroin addicts to list other heroin addicts, the typical respon-
dent gave up more than nine names. This approach would be more problematic in the
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United States under current “war-on-drugs” conditions, where asking respondents to pro-
duce such lists is highly threatening, and violates the informal norm against “snitching.” The
RDS approach reduces masking, because it gives respondents the opportunity to allow peers
to decide for themselves whether they wish to participate. For example, a subject who would
not ieel comfortable giving a researcher the name of a peer, may nonetheless succeed in
recruiting that peer. Also, the problem of recruiting only the most cooperative subjects is
reduced by combining primary and secondary incentives. Individuals who resist field re-
searchers’ appeals may nonetheless yield to appeals from peers motivated, at least in part, by
secondary incentives. Even the least cooperative individuals are not immune to social pres-
sure. Finally, it typically is assumed that chain-referral samples are biased toward subjects
with large personal networks. However, an empirical test of this hypothesis did not find
evidence of this (Welch 1975). Similarly, in the current study, the association between per-
sonal network size, as measured by a question that asked how many injectors the respondent
knew by name or face, lacked any statistically significant association with the number of
subjects recruited into the study. This may result from the recruitment quotas built into this
study. Even those subjects with small personal networks could generally find at least a few
subjects to recruit. Recruitment quotas reduced the ability of subjects with large personal
neiworks to recruit more extensively than subjects with smaller networks.

The potential bias of oversampling subjects with larger personal networks can be ad-
dressed in several ways: (a) samples can be weighted inversely with subjects’ self-reported
network size; (b) sampling can focus on saturating targeted areas and thereby capture sub-
jects with the full array of network sizes; or (c) special incentives can be employed to increase
recruitment of subjects with traits associated with small personal networks.

Respondent-driven sampling was implemented in the following way:
(1) Research staff recruit a handful of subjects who serve as “seeds.”

(2) Seeds are offered financial incentives to recruit their peers into the same interview they
have just completed. Specifically, seeds are given several recruitment coupons and told that
if they pass the coupons on to peers who come to the storefront for an interview, the
recruiter will be paid $10 for each recruited peer.

(3) All new recruits are offered the same dual incentives as were the seeds. Everyone is
rewarded both for completing the interview, and for recruiting their peers into the re-
search. Given adequate incentives, this mechanism creates an expanding system of
chain-referrals in which subjects recruit more subjects, who recruit still more subjects,
and so on from wave to wave. To ensure that a broad array of subjects have an opportu-
nity to recruit, to prevent the emergence of semi-professional recruiters, and to preclude
turf battles over recruitment rights, each subject was limited to three initial coupons.
Sets of three additional coupons were given only under two conditions, that three sub-
jects had been successfully recruited, and that they had been effectively educated about
HIV prevention issues as measured using a structured assessment test. A by-product of
this recruitment quota was to increase the number of waves of recruitment required to
saturate the population. Given the combination of incentives for recruitment and educa-
tion, the average cost per recruited subject was about $14.

{4) The trait defining membership in the population must be objectively verifiable, lest re-
spondents react to the recruitment incentives by enlisting persons who are not part of the
hidden population (e.g., noninjectors). In this study, verification was accomplished
through a seven-step screening protocol used to confirm injection drug use. For exam-
ple, the first step was 1o look for recent track marks. If marks were not found, subse-
quent steps required the subject to demonstrate detailed acquaintance with drug
preparation and injection techniques.
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(5) Subject duplication occurs when a subject seeks to participate in a study under multiple
identities, and subject impersonation occurs when a subject pretends to be another, per-
haps as a means to collect the latter’s reward for recruitment. These potential problems
were overcome using a subject identification database recording subjects’ identifying
physical characteristics, including gender, age, ethnicity, height, weight, scars, tattoos,
and some biometric measures.

(6) Targeting specific subgroups within a population can occur through the use of “steering”
incentives, that is, extra bonuses paid for recruiting specific categories of subjects. For
example, a modest ($5) bonus was offered for recruiting female injectors.

(7) Sampling can be ended either when the targeted community is saturated, or when a
minimum target sample size has been reached and the sample composition has reached a
stable composition with respect to the traits upon which the research focuses.

These procedures have inherent limitations. Like any chain-referral sampling procedure,
RDS is suitable only for sampling populations with a contact pattern; the activities that con-
stitute membership in the population must create connections among population members,
as when drug users purchase or share drugs, or when high-risk sexual activities take place.
Therefore, this method is not suitable for drawing national samples. The size of the area
within which sampling can be effective depends on the contact pattern’s geographic exten-
siveness, which in turn depend on the availability of transportation to the respondents. Nor
is RDS suitable for sampling hidden populations whose members share no ties. Second, the
trait defining membership in the population must be verified objectively, lest interview and
recruitment incentives motivate some respondents to claim falsely that they are members of
the population. This is not a problem unique to RDS; it occurs whenever interview respon-
dents are rewarded, but the recruitment incentive may aggravate the problem, requiring a
well-tested screening protocol.

The Setting

The RDS was implemented in two small cities in Connecticut with populations of 28,500
and 42,800, and substantial injection drug use and associated AIDS cases. As of July 1996,
185 cases of AIDS had been diagnosed in the first site, and 89 at the second, with another 116
cases in a nearby town of 59,500 that also fell within the sampling area. About one half of
the cases in these towns — 55%, 49% and 47% respectively — involved drug injection.
Unemployment among the IDU respondents was high, i.e., 71.7% and 78.9% atsites 1 and 2
respectively. Sampling at the two sites was sequential. It began at the first site in March
1994, continuing until March 1995. Sampling at the second site began in March 1995 and
the data reported here extend through March 1996. Therefore, I report on exactly one year
of operation at each site. Both projects operated out of storefronts located in active drug
using scenes. A program staff of three health educators scheduled appointments for inter-
views during three weekdays.

A Formal Model

When viewed analytically, a RDS creates a stochastic process in which each recruiter’s
social characteristics affect the characteristics of the recruits. In the case of race and ethnicity,
this means that recruiters of each ethmic group generate a distinct ethnic mix of recruits. For
example, from Table Ia it is apparent that in Site 1, non-Hispanic whites, on average, re-
cruited 70% whites, 19% non-Hispanic blacks, 10% Hispanics, and 2% others. Similarly,
non-Hispanic blacks recruit, on average, 28% whites, 56% blacks, 6% Hispanics, and 9%
others, so the tendency toward in-group recruitment persists. This pattern continues among
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Hispanics, whose in-group recruitment rate is 59%. Hence, recruiting occurs preponderantly
within the ethnic group, but cross-ethnic recruitment is also common.

Table I » Characteristics of Recruits, by Characteristics of Recruiter, Site 1

Table Ia « Recruitment by Ethnicity

Race/Ethnicity of Recruit

Ethnicity of Recruiter w B H o Total

Non-Hispanic White (W) 69.8% 19% 9.5% 1.6% 100%
' (63}

Non-Hispanic Black (B) : 28.1% 56.3% 6.3% 9.4% 100%
(32)

Hispanic (H) 23.5% 5.9% 58.8% 11.8% 100%
(17)

Other (O) 50% 50% 0% 0% 106%
(4)

Total Distribution of Recruits 50.9% 28.4% 15.5% 5.2% 100%

(59) (33} (18) _ (6) (116)

Equilibrinm 49% 29.7% 15.8% 5.4% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = .91% (r = .998)

Table Ib ¢ Recruitment by Gender

Gender of Recruiter Female Male Total

Female 29.7% 70.3% 100%
(37)

Male 23.9% 76.1% 100%
(88)

Total Distribution of Recruits 25.6% 74.4% 100%
(32) (93) {125)

Equilibrium 25.4% 74.6% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrivm = .2%

Table Ib reports the corresponding data for gender. No in-group recruitment pattern is
apparent in this case, because both females and males recruit between 70% and 76% males.
This may reflect the male-dominated character of injection drug scenes. However, because
rewards for recruiting females were greater than those for recruiting males, their expected
effect was to increase in-group selection among women, strengthening their incentives to
recruit one another, while reducing in-group selection among men, because their incentive
was to recruit women. This shows how steering incentives can alter tendencies toward in-
group or out-group selection.

An intermediate level of in-group selection is apparent in Table Ic’s report of recruitment
based on drug preference. Most subjects in the study report that heroin is their drug of first
choice, so drug preference was dichotomized between heroin, and an “other” category that
includes cocaine and crack, methadone, cannabis, speedballs (a combination of cocaine and
heroin), and alcohol. A tendency for subjects 1o recruit from their own group is apparent,
but it is weaker than the effects of ethnicity. Finally, Table 1d reports recruitment based on
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Table I¢ » Recruitment by Drug Preference

Drug Preference of Recruit

Drug Preference of Recruiter Heroin Other Total

Heroin 87.7% 12.3% 100%
(81)

Other 67.6% 32.4% 100%
(34)

Total Distribution of Recruits 30% 20% 100%
(94) 21) (105}

Equilibrium 84.6% 15.4% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = 2.86%

Table 1d * Recruitment by Location

Location of Recruit

In Town

Location of Recruiter (Town 1) In Area Out of Area Total
In Town 84.3% 8.4% 7.2% 100%
(Town 1} {83)
In Area 60% 10% 30% 100%
(10)
Out of Area 50% 8.8% 41.2% 100%
(34)
Total Distribution of Recruits 73.2% 8.7% 18.1% 100%
(93) {11) {23) {127)
Equilibrium 77.5% 8.6% 13.9% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = 2.86% (r = .997)

area of residence. Here the tendency toward in-group recruitment is variable: whereas resi-
dents of Site 1°s town recruit internally 84% of the time, subjects from the area (i.e., from
contiguous towns) or out of the area (ie., from more distant towns) recruit strongly both
from within and outside of town. This reflects the town'’s position as a regional drug distribu-
tion center. IDUs travel considerable distances to purchase drugs in the town, and in the
process they develop network connections both in the town and in their area of origin.

Sampling as a Markov Process

RDS recruitment has two important characteristics. First, there are a limited number of
states (e.g., types of ethnicity) that subjects can assume. Second, any subject’s recruits are a
function of his or her type, such as his or her ethnicity; and not of previous events, such as
who recruited the recruiter. This requirement is satisfied in the case of Table Ia’s data be-
cause there is no significant association between the ethnicity of a recruiter’s recruits and the
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ethnicity of the recruiter’s recruiter.! Hence, recruitment is a memoryless process. For ex-
ample, white recruiters who were themselves recruited by whites, recruited about the same
mix of subjects as did white recruiters who were recruited by Hispanics or blacks. Therefore,
RDS recruitment in this case qualifies as a first-order Markov process,? and can be represented
in the form of the network depicted in Figure 2a. The recruitment process can be conceptual-
ized as a point moving from node to node in this network, each representing a distinct state
of the system. At any instant, the current location of the point indicates the most recent
recruit’s ethnicity. The arrows leaving that point to other nodes indicate the ethnicity of the
next recruit, and the number associated with each arrow indicates the probability that this
path will be taken.

Markov processes are of several basic types. Some have absorbing states, such that when
one enters that state, no exit is possible. This occurs when an ethnic group is totally isolated,
such that its members only recruit one another. Figure 2a, indicates this does not fit this
network; there is a substantial in-group selection bias, but it is less than total. Indeed, follow-
ing the arrows in Figure 2a’s network, one can reach any point in the network from any
other point. Therefore, this network is “ergodic” (Fararo 1973:280). In contrast, Figure 2b
illustrates a nonergodic network that will be discussed below, in which the rightmost two
nodes are absorbing states. Returning to Figure 2a, the network is non-cyclic, in that any
node can be reached during any time period (e.g., odd versus even time periods). Because
the Markov process is both ergodic and non-cydic, Figure 2a’s network is termed “regular.”

Two theorems regarding regular Markov processes are relevant to understanding RDS.
First, the “law of large numbers for regular Markov chains” (Kemeny and Snell 1960:73)
states that the probability that a system will be in any given state over the course of a large
number of steps is independent of its starting state. The implication for RDS recruitment is
thar:

THEOREM ONE: As the recruitment process continues from wave to wave, an equilibrium mix of
recruits will eventually be attained that is independent of the characteristics of the subject or set of
subjects from which recruitment began.

Thus, if recruitment operates until equilibrium is reached, and the resulting recruitment net-
work qualifies as a regular Markov process, it avoids the central problem for sampling hidden
populations — that the sample’s characteristics merely reflect the initial sample. Instead, a
respondent-driven sample is wholly independent of the initial set of subjects. This point is
illustrated graphically in Figures 3a and 3b, in which Table la is used as the basis for two
alternative simulations. Figure 3a draws on Table Ia’s data 1o mathematically project what
would have happened had recruitment begun with only non-Hispanic African-American
seeds. After the first wave, those subjects would have on average recruited 28.1% whites,
56.3% blacks, 6.3% Hispanics, and 9.4% others, so blacks would predominate. After the
second wave, the composition of recruits would change, because 28.1% of recruiters would
be white, and they would recruit, on average, 69.8% whites, 19% blacks, 9.5% Hispanics,
and 1.6% others (i.e, Native Americans and Asian Americans). Similarly, 6.3% of second-
wave recruiters would be Hispanic, and they would recruit on average 23.5% whites, 5.9%
blacks, 58.8% Hispanics, and 11.8% others. Combining these with the recruits of the blacks
and others, the overall composition of the second-wave recruits is 40% whites, 43.7% blacks,
9.9% Hispanics, and 9.5% others. As Figure 3a illustrates, this trend continues, from wave to

1. A series of chi-square analyses was conducted to determine whether the ethnicity of a recruiter’s recruiter
significantly affected the ethnic composition of the recruiter's recruits. For example, white recruiters were differenti-
ated based on whether they were recruited by a Hispanic, black, white, or an “other” person, and the ethnic composi-
tion of their recruits were compared. No significant differences were found, e.g., in the case of white recruiters, the
significance level was 0.44.

2. A Markov chain is formally equivalent to contingency tables that display changes in state from one period of
time to another, and as such they can be analyzed using log-linear models (see Bishop et al. 1975:257-279).
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wave, until recruitment stabilizes, so the proportion of blacks declines to approximate their
occurrence in the sample. Similarly, Figure 3b shows what would have happened had re-
cruitment begun with one or more white seeds. The initial over-sampling of whites would
decline from wave to wave, until an equilibrium recruitment pattern was attained. Note
that, consistent with Theorem One, the ultimate recruitment pattern is independent of the
ethnicity of the initial subject(s) with which recruitment began. That is, the ultimate recruit-
ment pattern is identical, whetber the initial seed(s) are black or white. The weakness of
chain-referral samples — that the ultimate sample depends on the choice of initial subjects —
is not inherent in this form of sampling. Instead, this bias arises only when sampling does not
continue through enough waves for equilibrium to be reached.

This conclusion applies generally to snowball samples, if two conditions are met. First,
the snowball process must continue to the point of equilibrium. This requires more stages
than occur in most snowball samples. Second, the recruitment process must correspond to a
regular Markov process. This constraint is less severe than may be at first apparent. For
example, a sample corresponding not to a first-order but to a higher order Markov process
does not produce severe problems. Its effect may be merely to slow the approach to equilib-
rium, so sampling may require additional waves.

The law of large numbers for regular Markov chains provides a means for computing
analytically the equilibrium sampling of groups (see Kemeny and Snell 1960:72). The equi-
librium state (E) of Table Ia’s system is found by solving the following system of equations:

1=E,+E,+E,+E (1)
Ew = .698 E,, + .281 E, + .235 By + 5 E, (2)
E, =.19 E, +.563 E, + .059 E, + S E, (3)
E, = .095 E, + .063 E, + .588 Ej, (4)

where Ey, Ep. Fp and E, are the equilibrium sample proportions for non-Hispanic whites,
non-Hispanic blacks, Hispanics, and other groups, respectively. Equation one expresses the
fact that the sum of proportional distributions of population must sum to one. The subse-
quent equations express each group’s equilibrium size as a function of the equilibrium sizes
of all members of the group, and each group’s proportional recruitment of each group. Be-
cause this is 2 system of four linear equations with four unknowns, there is a unique solu-
tion, that is, Ey = .490, E, = .297, E, = .158, and E, = .054.3

A matter of great significance in determining the practical import of the above theorem is
the rate at which the equilibrium is reached. That this convergence ultimately would occur
would not matter, if convergence were slow. Fortunately, regular Markov chains are charac-
terized by what Kemeny and Snell (1960:72) describe as “a very fast kind of convergence.”
This conclusion is based on a theorem that proves that convergence occurs geometrically.
The implication is that:

Tueorem Two: The subject pool generated by a respondent-driven sample approaches equilibrum
at a rapid (i.e., geometric) rate.

The implication, except in a special class of cases discussed below, is that convergence occurs
within a handful of recruitment waves. This conclusion is consistent with the above dis-
cussed data. For example, the mean absolute discrepancy between the actual subject compo-
sition by race/ethnicity and the computed equilibrium composition is less than 1%, showing
that equilibrium has been approximated. Similarly, recruitment based on gender, drug pref-
erence, and recruitment location (see Tables Ib to 1d) also closely approximates equilibrium,

3. A program is available from the author that computes these equilibria for systems with up to ten groups. It also
computes the composition of the sample, as it changes from wave to wave, based on any specification of initial subjects,
and indicates the number of waves required for equilibrium to be reached. For a copy. send a blank disk, along with a
stamped, self-addressed diskette mailer to the author. The program is menu driven and requires an IBM compatible
with VGA graphics.
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as reflected in mean discrepancies between the sample and equilibrium of less than 3%. This
close approximation to equilibrium is theoretically expected, in that irrespective of the initial
distribution of seeds, approximating equilibrium to within a tolerance of 2% within any of
Table I's matrices never requires more than six recruitment waves. A further implication of
the theorem is that the greater the extent to which the initial sample approximates the equi-
librium sample, the quicker will be the approach to equilibrium. Hence, choosing a diverse
sample speeds the approach to equilibrium.

Table II * Recruitment by Area, Site 2

Table Ila ¢ Recruitment by Location, Site 2

Location of Recruit

Town Town
Location of Recruiter 2 3 Other Total
Town 2 87.8% 1.2% 11.0% 100%
(Site 2’s location) {82)
Town 3 0% 88.1% 11.9% 100%
(59)
Other 22.2% 55.6% 22.2% 100%
9)
Total Distribution of Recruirs 49.3% 38.7% 12.0% 100%
{(74) (58) {18) (150)
Equilibrium 23.7% 63.3% 13.0% 100%
Mean Discrepancy, Distribution of Recruirs and Equilibrium = 17.09% (r = .432)
Table Ilb « Recruitment by Location, with Partitioning of the “Other” Group, Site 2
Location of Recruit
Town 275 Town 3°s
Town Town Affiliated Affiliated
Location of Recruiter 2 3 area (A2) areq (A3) Total
Town 2 87.8% 1.2% 11.0% 0% 100%
(Site 2's location) (82)
Town 3 0% 88.1% 0% 11.9% 100%
(59)
Town 2's Affiliated area (A2) 50% 0% 50% 0% 100%
(4}
Town 3°s Affiliated area (A3) 0% 80% 0% 20% 100%
5
Total Distribution of Recruits 49.0% 38.4% 73% 5.3% 100%
(74) (58) (11) (8) (150)
Equilibrium 0% 87.1% 0% 12.9% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = 28.15% (r = .330)

Consider now the case of Site 2, in which a more complex theoretic analysis is required
to make sense of the data. Table Ila shows recruitment as a function of the recruiter and
recruit’s towns of origin for Site 2. Here Town Two is Site 2's location. The seeds were drawn
from this site, because an aim of the study was 1o determine how geographically extensive
recruitment would become. Hence no effort was made to specify the sampling universe in
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Table llc * Recruitment by Location, Town 2 and Vicinity

Location of Recruit

Location of Recruiter Town 2 Affiliated area (A2) Total
Town 2 88.9% 11.1% 100%
(Site 2’s location) (81)
Affiliated area (A2) 50% 50% 100%
(4)

Total Distribution of Recruits 87.1% 12.9% 100%

(74) (11) (85)
Equilibrium 81.8% 18.2% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = 5.26%

Table IId * Recruiftment by Location, Town 3 and Vicinity

Location of Recruit

Location of Recruiter Town 3 Affiliated area (A3) Total

Town 3 88.1% 11.9% 100%
(59}

Affiliated area (A3) 80% 20% 100%
(5)

Total Distribution of Recruits 87.5% 12.5% 100%
(56) (8) (64}

Equilibrium 87.5% 12.5% 100%

Mean Discrepancy, Distribution of Recruits and Equilibrium = 0%

advance. Unlike most studies, this served as a outcome variable. Town Three is a larger town
about 15 miles away, and Orker refers to a mix of locations, either in between or (in a few
cases) more distant. In-group recruitment within the two towns is very strong (i.e., 88%),
and cross-recruitment is almost nonexistent (i.e., 1.2% and 0%). Recruitment began from
Town 2 and later extended to Town 3, a process that shows the ability of RDS 1o break out of
one isolated group to penetrate another similarly isolated group. How this occurred is de-
picted in Figure 1, which shows the largest recruitment network from this site. During the
third wave, 5 /2 months into the 12 month study period, a Hispanic male subject from Town
2 recruited another Hispanic male from Town 3. From this tiny foothold grew a substantial
branch of the recruitment tree (see the bottom-right quadrant of Figure 1). That subject
directly or indirectly recruited 40 other subjects from Town 3 and the surrounding area. This
shows vividly how a sufficiently robust chain-referral system can exploit existing network
connections to expand into isolated groups.

The relative isolation of the two towns derives from transportation difficulties. Many
subjects (53.1%) report that they do not have access to a car, so hourly bus service is a
primary means of transportation. Most subjects traveling from Towns 3 to 2 began with 15
mile bus ride, and then walked an additional mile to the ECHO Project storefront. Though
they were compensated for their bus fares, this reflects a remarkable commitment to partici-
pation in the study. That subjects continued to make this trek during the Connecticut winter
is especially remarkable.

There is a sharp contrast between recruitment by area at the second and the first sites.
Whereas equilibrium was closely approximated by the sample distribution in the first site
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{mean discrepancy, D=2.86%), the divergence is large at the second site (D=17.09%). This
reflects an over-sampling in Site 2 of Town 2 (49.3% versus 23.7%), and an under-sampling
in Town 3 (38.7% versus 63.3%). It might seem that this discrepancy results merely because
the system has not as yet reached equilibrium. This might appear to explain much of the
departure from equilibrium, because at present in this on-going study, the first subject from
Town 3 appeared in the sample 5 'z months into the 12 month study period, and the tenth
wave has only just begun. Based on this incomplete movement towards equilibrium, one
could then weight the sample. For example, given that Town 2 is over-sampled by 25.6%
{i.e., 49.3%-23.7%), and Town 3 is under-sampled by 24.6% (i.e., 63.3%-38.7%), these
towns can be assigned weights of .481 (i.e., 23.7%/49.3%) and 1.64 (i.e., 63.3%/38.7%),
respectively when analyzing ethnicity, gender, and drug preference. The “Other” area had
already closely approximated equilibrium, so it is assigned a virtually neutral rate of 1.08
(i.e., 13%/12%). Such an account is theoretically plausible, but a closer examination of the
data shows that it does not fit this particular case.

As represented in Table Ila, the Other group serves as a bridge between Towns 2 and 3,
recruiting equally (22%) from both towns. Why then in Figure 1’s recruitment network did
none of the 10 subjects from the “other” area serve as bridges between the two towns, i.e.,
why were there no Town 2/Other/ Town 3 recruitments? Given the modest number of cases,
this could be a coincidence, but the same occurs in Site 2’s other recruitment networks.
However, on closer inspection, the Other category disaggregates into two mutually exclusive
groups. First, there are persons who live outside of Town 2 and have connections only to
that town and to their own locality. This may be termed the “affiliated area” of Town 2.
Second, Town 3 also has an affiliated area. Because of the considerable distance between the
towns, no subjects reside in intermediate areas with network connections to both towns.
Therefore, the appearance that the Other category can serve as a bridge between the two
towns is an illusion created by inappropriate categorization. As this case illustrates, in RDS
analysis the assignment of subjects to categories is by no means neutral. It must take into
account the structure of network connections. Specifically, if a category includes individuals
with quite disparate network structures, they should be further differentiated by category.

Table IIb shows the matrix produced when the Other category in Table IIa is divided
based on whether they are affiliated nonresidents of Towns 2 or 3. As is apparent by inspec-
tion, this does not bring the system closer to equilibrium. Indeed, the system is farther from
equilibrium than previously (D = 28.15%), and the content of the equilibrium has become
strange, because recruitment is projected to die out wholly in Town 2 and its affiliated area.
The reason for this problem is apparent from inspection of Figure 2b, which depicts Table IIb‘s
recruitment data in network form. Note that the network is nonergodic, in that every point
in the network cannot be reached directly or indirectly from every other point. This occurs
because nodes for Town 3 and iis affiliated area serve as absorbing states. This is why the
equilibrium for this system (see Table IIb) shows recruitment as ceasing in Town 2 and its
area, and continuing only in Town 3 and its area.

The solution to this problem is straightforward. Because the network is nonergodic, this
system does not generate a regular Markov process. Therefore, data from this site can best be
analyzed by partitioning the sample into two subsamples, one for Town 2 and its affiliates,
and one for Town 3 and affiliates. Tables Ilc and IId illustrate this process for Tabie 1Ib’s data.
Both systems reach similar equilibria, with about 87% recruitment within the town, and the
remainder from affiliated outlying areas; equilibrium is closely approximated in both systems.
In sum, whereas Site 2 initially appeared to contain a single respondent-driven sample with
anomalous properties, it turns out on closer examination to consist of two distinct samples.
This possibility should be suspected whenever, despite a substantial sample size, departures
from equilibrium are great.
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Assessing Bias in Respondent-Driven Samples

An ideal sampling procedure yields not only a sample independent of its starting point,
but also an unbiased sample of the underlying population, with a known degree of consis-
tency from which confidence intervals can be computed. However, because of the absence of
probability samples in studies of hidden populations, a more modest goal has been to devise
means for drawing samples that produce “a good cross-section of the target population,” or
“the coverage of heterogeneity in the target population” (Spreen and Zwaagstra 1994:478).
Such samples are termed “representative.” An assessment of RDS requires examining both
the extent to which it fulfills this modest goal, and whether it might provide a basis for fulfil-
ling the more stringent ideal of probability sampling. Returning again to the data from Site 1,
members of the major ethnic groups tend to recruit differentially from within their own
ranks (see Table Ia). This reflects the social structure in which these subjects are embedded:
intra-ethnic connections are more common than inter-ethnic connections. A form of net-
work analysis, “biased network theory,” has been used to analyze a variety of relationships,
including marriages and friendships (Fararo and Skvoretz 1984; Rapoport 1977). The the-
ory’s essential idea is that a structured social system’s social linkages will be non-random:
some relationships will be more probable than others, where “biases” refer to any departures
from a fully random pattern of connection. Biases may consist of either a tendency toward
in-group affiliation, as typically occurs in friendships; or a tendency toward out-group affilia-
tion, as in exogamous marriage systems.

In an unstructured group, recruitment merely reflects the prevalence of each group
within the population. Every recruiter, irrespective of group identity, recruits the same mix
of subjects. From inspection of Table I, that obviously does not fit the data. In a system
where group affiliation affects selection, the members recruited by each individual reflect
both the recruiter’s biases, and the prevalence of different types of members within the popu-
lation. Selection in such a system can be modeled as a process with two conditional steps
(Fararo and Skvoretz 1984:233). First, an inbreeding bias event for a member of group X either
occurs, with probability I, or fails to occur with probability 1-I,. If the inbreeding bias event
occurs, selection occurs from the in-group with certainty. Second, if the inbreeding event does
not occur, any individual is selected randomly from the system’s population irrespective of
group membership. Therefore, the probability of selecting a member of any group is equal to
the proportion of that group’s members in the system. In this formulation, selection of an
out-group member proves that the inbreeding event did not occur, whereas selection of an
in-group member can occur either because of the inbreeding event, or by random selection
from the system’s population. As thus conceptualized, the magnitude of inbreeding reflects a
mix of cultural and situational factors, ranging from cultural emphasis on in-group affiliation
to ease of transportation between geographically distinct groups. It can also be affected by
steering incentives, such as those used to increase recruitment of female IDUs.

This model involves a host of simplifying assumptions. For example, the occurrence of
imbreeding is treated as a dichotomous event, whereas gradations appear more empirically
plausible. However, such simplifying assumptions are not necessarily undesirable. Formal
heuristic models should never be made more complex than required to capture the funda-
mentals of the process they are intended to represent, lest they lose tractability and fail to
vield clear conclusions. Ideally, validation of the model requires an assessment of its robust-
ness. First, simplifying assumptions are replaced by more realistic assumptions. Then,
whether the model’s fundamental conclusions remain valid is assessed. The aim is to identify
the simplest robust model. However, such an assessment exceeds the scope of this paper.
What can be said at present is that the Fararo-Skvoretz model captures the two essential
features of inbreeding, i.e., that groups vary in their strength of inbreeding, and that the
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resulting selections produce the structure of in-group and out-group affiliations within the
system. Hence the model is sufficient for heurisiic purposes.

Consider the case of a system composed of N groups, A, B, C, ... N. The probability of a
member of a group X selecting from the in-group, S, is the sum of the probability of selec-
tion being controlled by inbreeding, an event with probability I,, and the probability that
inbreeding did not occur (1 - I;), weighted by the proportion of members of group X in the
population, Py, i.e.,

Six =L+ (1 = L) Py (5)
By similar principles, the probability of a member of group X selecting a member of any out-
group, Y, can be computed. The probability of selecting a member of group Y is the
probability that inbreeding did not occur (i-I;), weighted by the proportion of members of
group Y in the population, P,, i.e., _

Sey = (1 = L} Py (6)
with this set of equations, the model specifies the relationship between the underlying popu-
lation proportion (P), and selection probabilities (S) of the sort depicted in Table Ia.

Based on the above pair of equations, equilibrium sample size can be expressed as a
function of both population and inbreeding terms. To simplify the analysis, consider first the
two-subgroup case. Consistent with the law of large numbers for regular Markov chains, the
equilibrium proportion of members of each group is found by solving a system of two linear
equations:

1=E,+E (7)
E, = 5. Ei + Sy, E, (8)
which yields,
Sba
E, = ——2 (9)
1—Saa+Sba

This in turn can be expanded by substitution from equations 5 and 6 to express the equilib-
rium sample in terms of the inbreeding terms and population:
Pa(1-Iy)

E. = (10)
1—(LAP,(1-1,))+P. (1~Ty)

This simplifies to:
Pa ( Ib— 1 )
T PP 41—

This expression provides a basis for deriving conclusions, grounded in both biased-network
theory and Markov chains, regarding the conditions under which a RDS will produce an
unbiased sample, that is, a sample in which the proportion of each group in the sample
equals that group’s proportion in the population.

Given that inbreeding affects recruitment, the equilibrium group composition (E) need
not correspond to the true underlying population distribution (P}. The extent to which
members of any given group will be sampled depends on three factors: the size of the group,
its tendency toward inbreeding, and the strength of inbreeding in other groups. Partial differ-
entiation* shows that a group’s proportion in the sample increases, all else equal, as the

(11)

2

4. Partial differentiation provides a means for determining whether the relationship between two terms is consist-
ently positive, consistently negative, or mixed. The first step is to compute the first derivative of one term with respect
to the other. The direction of the relattonship is then found by determining whether, given constraints on parameter
values, the derivative is always positive, always negative, or mixed. For example, to determine the relationship be-
tween equilibrium sample size for a group, and that group’s inbreeding bias, differentiate E, with respect 1o L, i.e.,

Pa( l_Ib) ( ] ""P.'A)

a/ dl.l =
aE (Pl +PI+1,-1)2
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group’s size increases and as its inbreeding increases. Similarly, a group’s proportion de-
creases with increases in inbreeding by other groups. Thus, a small group potentially might
appear large in the respondent-driven sample if it has strong inbreeding and if members of
other groups have weak inbreeding. Conversely, a large group might appear small in the
respondent-driven sample if its inbreeding is weak, and if other groups have strong inbreed-
ing. The effectiveness of the RDS as a means for drawing unbiased samples depends on
whether these two possibilities are plausible.

The conditions under which RDS produces unbiased samples can be deduced through
analysis of equation 11 above. This can be done by identifying the conditions under which E,
equals P,. First, substitute P, for E, in equation 11 above: ‘

Pa(Ib_ 1 )

RPLE) <. (12)
PP L+1—1
then, solve for I,
L{P,—1
L (13)
P,-1

which can be simplified as follows:

L=0h (14)
When described in terms of Figure 4, this conclusion means that when inbreeding is equal,
the inflationary effects of each group’s inbreeding is exactly offset by the deflationary effects of
other groups’ inbreeding. Thus the two inbreeding terms cancel one another, leaving sample
size determined exclusively by population size. Though this proof applies to the two-group
case it extends to the three-group case, and has been confirmed by simulations in larger
systems. This theorem may be formally stated as follows:

THEOREM THREE: A respondent-driven sample draws an unbiased sample if all groups’ Inbreeding
terms are equal, i.e., for any group X, E, =P, iff L =1, for any other group Y.

A limitation of the theorem is noteworthy. When inbreeding terms are very large, reflecting
mutual isolation of the system’s groups, the approach to equilibrium slows, e.g., when the
terms exceed .99, scores of recruitment waves may be required to approximate equilibrium.
Therefore, given the practical limitations that constrain the number of recruitment waves,
equilibrium will be reached only when inbreeding is not extreme. The implication is that
when the boundaries separating groups are virtually impassible, RDS should be used to draw
samples from within such groups, and not across them, even should inbreeding terms prove to
be equal.

Equality of inbreeding terms is a quite siringent condition. Hence, the question of how
inbreeding terms are related to one another is crucial to an assessment of RDS’s ability to
avoid bias. Unfortunately, biased network theory provides no guidance regarding the rela-
tionships among inbreeding terms. However, other sociological theories provide reasons to
expect that inbreeding will be at least positively related. A venerable principle from Simmel
(1955}, is that common enemies enhance group solidarity, implying that Balkanization has
an epidemic quality, because when any single group strengthens its boundaries, that induces
other groups to do the same. More recent research shows that anything that creates a sense
of common fate is sufficient to strengthen group boundaries (Rabbie and Horowitz 1969). An
example of this occurs when opportunities for association are determined by group identity.
Thus, in a system where other groups strengthen their degree of inbreeding, a group will

The numerator of this expression is positive, because P, is positive by assumption, (1 = I} and (1 — P,} are positive
because I, < 1, and P, < 1, and the product of three positive numbers are positive. Similarly, the denominator is positive
because the square of any number is positive. Thus, 4E./dl, is positive because its numerator and denominator are both
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react by increasing its own inbreeding. Conversely, in a sysiem where inbreeding is weak,
the group will tend to avoid inbreeding. The cumulative effect of these processes creates a
positive relation among inbreeding terms. If this line of theorizing is correct, the equal-in-
breeding assumption is approximated in many social systems. Of course, this speculation
requires empirical confirmation.

It might seem that the best way of empirically assessing the bias of a RDS would be to
compare it with the population from which it was drawn. Unfortunately, in the current
research, this is not possible given the hidden nature of that population. One approach might
be 10 apply the method to a non-hidden population with known characteristics. Such a test
would be valuable, but less than definitive. Problems of masking do not arise in non-hidden
populations, so the generalizability of the results to hidden populations would remain un-
clear. A second approach applicable to some hidden populations might be to use very aggres-
sive measures to produce a saturation sample, so the total sample could then be compared
with partial samples previously derived from a standard RDS. This more aggressive recruit-
ment mechanism could involve an additional incentive, in which recruiters are rewarded not
only for their own activities, but also for those of their recruits. This would create an incen-
tive for recruiters and their recruits to cooperate by pooling their networks and social influ-
ence. One indication that such an approach might work is an innovation that spontaneousty
emerged at both sites. The male dominated drug injection scenes created difficulties for some
female recruiters, and without any prompting from staff, the same solution emerged at both
sites — some women recruited in pairs. The results were highly effective, and suggest that
the robustness of recruitment could be increased if all subjects have incentives to recruit in
pairs. This shows the capacity of an RDS to harness and constructively channel drug injec-
tors” creativity and energy.

Table III  Recruitment by Ethnicity in Towns 1, 2, and 3, and Comparisons with Population
Distributions*

Comparison of Race/Ethnicity in Sample of Recruits (S), Population Living Below Poverty Line (P).
and Tota] Pepulation (T) by Town

Race/Ethnicity
()

Non-Hispanic Black
Non-Hispanic White
Hispanic

Other

Total

Town | Town 2 Town 3
) Pr= T S Prx T &) pr* T
27.6% 23.7% I6% 11.4% 27.6% 10.9% 12.1% 9% 3.6%
543% 45.2% 69% 55.7% 61.3% 84.2% 56.9% 52% 82.8%
147% 26.7% 11.9% 31.4% 9.6% 3% 27.6% 39% 12.9%
3.4% 4.4% 3.1%  14% 1.5% 1.9% 3.4% 0% %
100% 100% 100% 100% 100% 100% 100% 100% 100%

{93} (4,310} (28,540)

(70) (2,993) (42,762)

(58) (4.342) (59,479)

Mean Discrepancy
(D)

Mean Discrepancy
Between Recruits and:
Poor Population, D =
6.5% (r =.926)

Total Population D =
7.4% (r = .957)

Mean Discrepancy
Berween Recruits and:
Poor Population, D =
10.92% (r = .804)
Total Population, D =
14.5% (r = .946)

Mean Discrepancy
Between Recruirs and:
Poor Population, D =
5.7% (r = .950)

Total Population D =
13.0% (r = .943)

Notes:
* Source, 1990 Census

** Definition of poverty - family of four eaming below $12,674 for 1989

Available data permit only rough comparisons between the sample distributions and the
hidden populations from which they are drawn. This involves comparing samples of recruits
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to the demographics of their communities, on the presumption that the hidden population
will to some extent mirror the larger community. Table III shows comparisons of racial and
ethnic composition between the sample of recruits and the racial and ethnic distribution of
the total population, and between the sample and the distribution of the population living
below the poverty line. The latter comparison is potentially more relevant, because injectors
come disproportionately from the ranks of the poor. For example, in aggregate at both sites,
more than three quarters of subjects reported sub-poverty line levels of income. This analysis
focuses only on subjects living within the sites’ three principal towns. Subjects scaitered in
surrounding and more distant communities were excluded, because too few subjects came
from any single community to provide a meaningful sample size.

Though it is important not to make too much of these tentative comparisons, several
findings are notable from inspection of Table IIL. First, as measured by mean discrepancies
between the sample and population, each sample corresponds more closely to the distribu-
tion of persons living below the poverty line than to the total population. This no doubt
reflects differential recruitment of the poor into drug injection. Second, a major discrepancy
exists in Town 2 between the proportion of Hispanics in the sample (31.4%) and in both the
total population (3%]), and the poverty population (9.6%). This may constitute a substantial
over-sampling of Hispanics of from 10.5 to 3.2 times. This discrepancy may result from any
number of sources: changes in the Town’s ethnic composition since the 1990 census, in
which case sampling is correct; special attributes of the town'’s Hispanic population that intro-
duce some unknown form of bias into the sample; or an artifact of incomplete sampling. In
any case, this form of sampling does not appear to undersample minorities. Respondent-
driven sampling continues at this site, and ethnographic field investigation has begun, so
these further investigations may resolve the issue.

Finally, in Towns 1 and 3 the comparison between the sample and poor populations is
relatively close, i.e., mean discrepancies equal only 6.5% and 5.7% respectively. Even in
Town 2, where the apparent over-sampling of Hispanics constitutes an anomaly, the compar-
ison becomes relatively close if one excludes Hispanics. Therefore, in these cases RDS ap-
pears 10 succeed in producing samples that include a broad cross section of the underlying
population, and hence is “representative” in Spreen’s and Zwaagstra’s sense.

Sensitivity Analysis

Given the importance of the equal inbreeding condition for RDS's ability to draw unbi-
ased samples, and given that however strongly related the inbreeding terms may prove to be,
they can never be expected to coincide exactly, it is useful to perform a sensitivity analysis to
determine what happens when the equal inbreeding requirement is violated. Figure 4a re-
ports the results of simulations in systems composed of four groups.®> The vertical axis repre-
sents the mean absolute discrepancy between population and equilibrium sample
distributions. This term can vary from zero, when the two distributions are identical, to a

5. The simulation experiments reported in Figure 4a involved a seven step procedure:
(1) The population distribution is set randomly. This was done by choosing four random numbers between 0 and 1, and
dividing each by the sum of the four numbers to yield four positive numbers that sum to one. These numbers represent
the size of each of the four groups, i.e, P.. Py, P, and P
(2) Each point on Figure éa’s horizontal axis corresponds to a range within which inbreeding must fall. The midpoint of
this range is chosen randomly, within the set of values consistent with the requirement that inbreeding cannot exceed
1, or be less than 0. For example, if the range chosen is .6, the midpoint of the interval must lie between points .3 and
7.
(3) Inbreeding terms (L., In L, and Iy) are selected randomly from within the above-chosen range, €.8., if the midpoint of
the range is .4. and the length is .6, four random numbers are chosen between .1 and .7.
{4) Selection probabilities are computed using equations 3 and 6.
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maximum value of .5 in a system with four groups (i.e., for a system of n = 4 groups, the
maximum is 2/n = 2/4 = .5). The horizontal axis represents the range within which inbreed-
ing terms fall. This range’s lower limit is zero, indicating that all inbreeding terms are equal.
The range’s upper limit is 1, indicating that inbreeding may vary within the full theoretically
allowable range of 0 to 1, and hence are maximally diverse. To reflect some of the resource
limitations that necessarily attend actual research, recruitment in the simulations began with
a homogeneous set of initial subjects (the worst-case possibility), and continued for 10 waves.
Each simulation was repeated 1,000 times to determine the mean absolute discrepancy be-
tween sample and population (see the bold line in Figure 4a). The area bounded by the
dotted lines represents the confidence interval for the discrepancy. When the range is zero,
and hence the inbreeding terms are all equal, discrepancies are minimized (i.e., 3.3% *
1.5%). There is not a periect association between sample and population because of the
limitation in the number of waves. It is also apparent by inspection of Figure 4a that as the
differences among inbreeding grows, sampling discrepancy increases. However, even when
inbreeding is maximally diverse, with a range equal to one, a positive association between
sample and population continues to exist, as reflected in a sampling discrepancy {i.e., 12.8%
+ 7.7%}) that is substantially less than the theoretically possible maximum. This corresponds
to a correlation between sample and population distributions of r = .57 + .114. Thus, the
results show that, even in the worst-case scenario where inbreeding is most disparate, a RDS
nonetheless produces a sample that contains a cross-section of the underlying population.

A more complete characterization of the effects of violations of the equal inbreeding
assumption concerns the effect of the magnitude of the terms. From theorem three we know
that if inbreeding is equal and the number of waves is sufficient to reach equilibrium, sam-
pling is unbiased. However, a question remains: when inbreeding is unequal, does the
strength of inbreeding affect sampling? Figure 4b depicts the results of a series of simulations
that answer this question. As before, the vertical axis represents the discrepancy between the
population and the sample. However, the horizontal axis now represents the magnitude of
inbreeding. This is operationalized by first specifying the range within which the inbreeding
terms fall. This was set at a range of .5, the mean theoretically possible value. Inbreeding
terms within this range were then allowed to vary from a minimum midpoint value of .25 (a
smaller midpoint value would not be possible because then some inbreeding would be nega-
tive ), and a maximum midpoint value of .75 (a larger midpoint value would not be possible
because then some inbreeding would exceed 1). As before, the bold line represents the dis-
crepancy between sample and population, and the dotted line represents the confidence in-
terval. RDS vyields the most biased samples when inbreeding is greatest. However, even in
this worst case scenario, the association between sample and population remains positive and
substantial, as reflected in a mean discrepancy of 12.1% +* 8%. This corresponds to a correla-
tion between sample and population distributions of r = .55. When inbreeding is weaker
(e.g., less than 1/3), RDS yields substantially less biased samples (i.e., mean discrepancies are
less than 4%).

In sum, the sensitivity analysis shows that departures from the equal inbreeding assump-
tion must be substantial before they introduce substantial biases into the sample. The form of
departure that has the most adverse effect occurs when inbreeding is very strong, and yet
even under these conditions the populations and sample distributions remain associated.

(5) Equilibrium sample distributions were estimated using the procedure described for Figure 3. To reflect the resource
limitations that exist in most studies, recruitment was assumed to continue through only ten waves, and the initial
seeds were assumed to come from the same group.

(6) The mean absolute difference between the estimated equilibrium distribution (i.e., the composition of the 10th wave
of recruits), and the population distribution was computed. '

{7) Steps 1 to 6 above were repeated 1,000 times, then the mean and standard deviation of the mean differences were
computed.
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Hence, even when the equal-inbreeding assumption is violated, RDS can be expected to pro-
duce good cross-sections of the target population.

Limitations of the above analysis should be noted. Recall Spreen and Zwaagstra’s argu-
ment that samples of hidden populations cannot expect to do more than offer broad cross-
sections of the target population. The above analysis suggests that RDS fulfills this goal, and
that more may be possible. As shown above, biases in the first step of recruitment tend to
decrease as the successive waves are recruited. Furthermore, under a broad array of circum-
stances (i.e., less than extreme and positively associated inbreeding levels}, RDS can be theo-
retically expected to produce samples with only a modest degree of bias. Potentially, if means
could be found for independently assessing inbreeding levels, samples could be weighted to
eliminate these biases. In addition, steering incentives, which provide a means for altering
inbreeding levels, could be used to either over-sample groups of special interest, or to make
inbreeding levels more nearly equal and thereby reduce the need to weight the samples.
Another major remaining task is the investigation of these samples’ consistency and the re-
sulting variability of estimators. Only then will it be possible to compute standard errors and
confidence intervals for population estimates, and thereby make RDS into a fully defensible
statistical sampling procedure.

Conclusion

This paper presented empirical results from a new approach 1o accessing and sampling
hidden populations, designed to reduce several deficiencies afflicting traditional forms of
chain-referral samples. First, it is usually assumed that inferences about individuals must rely
mainly on the initial sample, since additional individuals found by tracing chains are never
found randomly or even with known biases. However, if the sampling process is allowed to
continue through enough waves to reach equilibrium, its composition will be independent of
the initial subjects. A second problem is that chain-referral samples tend to be biased toward
more cooperative subjects. This problem can be reduced by RDS’s dual incentive system.
Individuals who resist researchers’ appeals may nonetheless vield to appeals from their peers.
A third, related problem is that chazin-referral samples are biased by “masking” (protecting
friends by not referring them). This problem can be reduced because recruitment incentives
weaken the reluctance to approach reclusive peers. Finally, chain-referral samples may be
biased toward subjects with large personal networks. There are several ways in which this
problem can be addressed: weighting samples based on network sizes, saturating targeted
areas, or using steering incentives to increase recruitment of subjects with traits associated
with small personal networks.

RDS need not be employed alone. It also can be applied in combination with other
methods. Consider first network sampling (Sudman et al 1988). This form of sampling in-
creases the amount of information obtained from each respondent by including questions
about their personal networks. Ideally, respondents are selected by a procedure that results
in each population member having a known probability of selection, but this is not possible if
the population is hidden. Yet the implication of theorems one and two is that the choice of
the initial sample need not introduce bias if a suitable procedure is followed. That is, the
sampling should first proceed through multiple waves. This permits computation of recruit-
mernt networks as depicted in Table I. This, together with knowledge of the composition of
the initial set of seeds, makes it possible to compute how many waves must be completed
before the sample approximates the equilibrium distribution, and thereby becomes in-
dependent of its starting point. Usually this will be no more than three 1o five waves. Thus,
the RDS analysis provides a principled basis for deciding how many waves must be completed
before whatever biases were present in the selection of seeds is overcome. The subjects for
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the network sample are then drawn from that or subsequent waves. In essence, respondent-
driven sampling serves as the initial stage of the sampling procedure, which leads from an
initial set of subjects with an unknown bias, to a subsequent set of subjects that are in-
dependent of that bias.

RDS may be able to play a similar initial role in ethnographic investigation. When deal-
ing with hidden populations, gaining access to a suitably diverse set of ethnographic infor-
mants is frequently a lengthy and uncertain process. RDS may provide a means both for
speeding this process, and for ensuring that different sectors of the population are adequately
represented among the informants. Thus, as in the case of RDS’s combination with network
sampling, the number of waves required to reach equilibrium should be computed, and then
ethnographic informants are drawn from that and subsequent waves, until the desired
number of informants is attained.
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