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Solutions of Schr€odinger’s equation for Rydberg states of hydrogen are shown to display patterns

that can be understood semi-classically within the framework of Bohr-Sommerfeld planetary orbits

and de Broglie’s concept of matter waves. Using n¼ 10 and n¼ 100 quantum levels we show how

de Broglie-wave-analyzed Kepler orbits can be matched to excited-state wavefunctions and charge

distributions. Making the connection between the old and new quantum theories can help

beginning students develop an intuition about quantum mechanics and allow them to develop an

appreciation of how Schr€odinger’s wave mechanics was stimulated by the theories of his

predecessors. VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. CIRCULAR ORBITS AND “CIRCULAR STATES”

Niels Bohr’s 1913 paper described an analytical method
that built upon Ernest Rutherford’s concept of an atom as a
positively charged nucleus surrounded by a system of nega-
tively charged electrons.1 An early success of Bohr’s atomic
theory was its ability to derive and explain the empirical for-
mula of Johannes Rydberg for the frequencies of spectral
lines of atomic hydrogen.2 Bohr analyzed the hydrogen atom
as a single electron orbiting an infinitely massive positive
nucleus (that is, a single proton). He simplified the problem
by assuming further that the electron orbit was circular. Bohr
used non-relativistic classical mechanics as the foundation
for his analysis, but he also drew upon the work of Max
Planck to understand radiation associated with an orbiting
electron. Planck earlier had proposed the concept of the
energy-quanta to explain blackbody radiation.3 In Bohr’s
model, rather than an orbiting electron radiating energy con-
tinuously, he suggested that radiation from excited hydrogen
occurred in distinctly separated emissions (described today
as jumps) between stationary states. Stationary states of
hydrogen were those that satisfied an integer condition con-
nected with Planck’s idea of quantized action.

Bohr designated the integer factor in his analysis with s—
we will instead use n, which is known commonly as the prin-
cipal quantum number. Bohr showed that the energy of the
stationary states is proportional to �1=n2, and the angular
momentum of the stationary states is nh=2p, where h is
Planck’s constant. Bohr identified a most tightly bound state
(the ground state) corresponding to the smallest possible pos-
itive integer, n¼ 1. The radius of the circular orbits accord-
ing to Bohr’s model is n2a0, where a0 is the Bohr radius. The
model also shows that the electron velocity in an orbit is
v=c ¼ ð1=nÞð2pe2=ð4pe0hcÞÞ. (Here, e0 is the permittivity of
free space.4) The numerical factor in the velocity relation-
ship is Sommerfeld’s fine structure constant, a ¼ 2pe2=
ð4pe0hcÞ � 1=137. The velocity scales as 1=n. The energy of
stationary states of the electron according to the Bohr model
is �ðhc R1Þ=n2, where R1 is the Rydberg constant and c is
the speed of light. Bohr’s derived formulas for both a0 and
R1 were given in terms of fundamental constants: the elec-
tron mass, m0; the electron charge, e; and Planck’s constant,

h. Bohr’s value for R1 based on fundamental constants is
very close to Rydberg’s experimentally determined value.

The notion of a moving electron as a wave is often invoked
in modern explanations of Bohr’s quantum theory, but the
concept did not emerge until about 10 years after Bohr’s land-
mark paper. Bohr only introduced a stability condition. Louis
de Broglie, drawing on the works of Maupertuis (principle of
least action) and Fermat (principle of least time), reasoned
that particles following a trajectory have a wave nature. In a
paper published in 1925, de Broglie noted the connection
between the concept of a particle wave and Bohr’s stability
condition:5 “Propagation is, therefore, analogue to a liquid
wave in a channel closed on itself but of variable depth. It is
physically obvious, that to have a stable regime, the length of
the channel must be resonant with the wave; …The resonance
condition is L ¼ nk if the wavelength is constant …” [L is de
Broglie’s value for the length of the channel and n is an inte-
ger.] Then he continued in a later paragraph, “In the particular
case of closed circular Bohr orbits in an atom, one gets:
m0

Þ
vdL ¼ 2pR m0v ¼ nh, where v ¼ Rx, when x is angular

velocity, m0x R2 ¼ nh= 2p. This is exactly Bohr’s fundamen-
tal formula.” Since the circumference of the Bohr circle is
2pR, the wavelength extracted from Bohr’s formula is
k ¼ h=m0v, that is, de Broglie’s well known relationship. We
see that the circular Bohr orbit contains n electron wave-
lengths, and the electron phase is a multiple of 2p at n points
equally spaced along the orbit.

Now we consider the Schr€odinger wavefunction, which in
a spherical basis ðr; h;uÞ is characterized by the quantum
numbers, n; ‘, and m. We will focus on the “circular state”6 of
quantum level n, which has maximal values of both ‘ and m,
namely, ‘ ¼ n� 1 and m ¼ 6‘. Since we compare orbits to a
slice of the wavefunction, it is helpful first to consider the big-
ger picture of what the electron charge distribution looks like
for the n¼ 10 “circular state.” This is given in Fig. 1, which
shows in 3D that the distribution appears as a torus centered
on the origin. The charge density peaks at a radius somewhere
between the inner and outer radii of the torus.

The sum of the squares of the real and the imaginary parts
of the wavefunction is used to compute the probability den-
sity in Fig. 1. Figure 2 is a 2D contour plot of the real part of
the wavefunction in the x – y plane. Red contours are for
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positive real values. Blue dashed contours are for negative
real values. Black lines indicate where the real part of the
wavefunction is zero.

The imaginary part of the wavefunction in the x – y plane
has the same pattern as the real part shown in Fig. 2 but is

rotated about the z-axis by þ10� (CCW) for the m ¼ þ9 state
and by �10� (CW) for the m ¼ – 9 state. Because the n¼ 10
“circular state” has 9-fold symmetry, a spatial rotation of 40�

(that is, 360�=9) in either the CCW or CW direction about z
will leave the complex wavefunction unchanged. The 610�

relative rotation between real and imaginary parts means that
the azimuthal pattern of the real and imaginary parts oscillates
and is in quadrature (that is, one quarter of the way to the sym-
metry rotation). This is fundamental.7 It allows the sum of the
squares of real and imaginary parts to be constant as a function
of the azimuthal angle /. We are interested in using orbits to
understand spatial patterns in wavefunctions. Since the patterns
of real and imaginary parts differ only by a rotation, we restrict
our comparison, without loss of generality, to the real part of
the wavefunction. All subsequent mention of the wavefunc-
tion, therefore, will be the real part only.

We now compare Schr€odinger’s wavefunction for n¼ 10
“circular states” with Bohr’s circular orbit for n¼ 9 and n¼ 10.
Why consider n¼ 9? We include the n¼ 9 orbit because
Schr€odinger and Bohr analyses differ in their values for angular
momentum. Schr€odinger’s value of angular momentum for
“circular states” of quantum level n is ðn� 1Þh=2p, whereas
the circular orbits of Bohr for quantum level n have angular
momentum nh=2p, that is, h=2p larger. The Bohr method over-
estimates angular momentum of each quantum level—this
well-known flaw of Bohr’s theory8 was corrected by
Schr€odinger in 1926.9 This error leads Bohr to assume that the
angular momentum of the n¼ 1 ground state is h=2p, whereas
Schr€odinger’s ground state has angular momentum zero. So,
we will start by considering both n¼ 9 and n¼ 10 Bohr orbits
in comparison with the n¼ 10 “circular state.” Plotted in Fig. 2
are contours of the Schr€odinger wavefunction in the x – y plane
as compared with these two Bohr orbits.

We see that while the n¼ 10 Bohr orbit does a good job at
matching the anti-node peaks of the real part of the wavefunc-
tion, the red dots in that orbit miss the wavefunction phase
(that is, the oscillations)—whereas the red dots of the n¼ 9
Bohr orbit do a good job at matching the phase – they do this
because the angular momentum for the n¼ 9 Bohr case
matches the angular momentum (and the symmetry) of the
n¼ 10 circular Schr€odinger case. Our approach then for com-
paring Schr€odinger n¼ 10 results to the Bohr model is to use
the n¼ 9 orbit but scaling it up in physical dimension by the
factor, 100/81. Now both the size of the orbit and the phase
will line up as shown in Fig. 4(a). For comparisons with states
of higher values of n, for example, n¼ 100, as considered in
Sec. III of this paper, the scaling is not necessary because the
scale factor, ðn2Þ=ðn� 1Þ2, approaches 1 when n is very
large, but we still will use a quantum number for Bohr orbits
that is one less than that of the Schr€odinger state.

II. ELLIPTICAL ORBITS AND SPHERICAL STATES

In 1916, Sommerfeld expanded Bohr’s approach by
including the possibility of elliptical orbits.10–12 This possi-
bility corrected a shortcoming of Bohr’s model by providing
an analysis that improved comparison with experimentally
observed level splitting due to external electric and magnetic
fields. To allow elliptical orbits, Sommerfeld postulated a
new quantum stability condition involving multiple quantum
numbers, that is, a quantum condition for each degree of
freedom for an orbit of an electron. He assumed that the orbit
was confined to a plane, and therefore, there were two quan-
tum conditions and two quantum numbers.

Fig. 1. A 3D contour plot of the electron charge probability density for the

n¼ 10 “circular state” of hydrogen. Here, ‘ ¼ 9, and m ¼ 69. The charge prob-

ability density is given by the wavefunction multiplied by its complex conjugate.

One upper quadrant of the 3D contour plot has been removed to show that the

charge density is largest near the middle of the torus. a0 is the Bohr radius.

Fig. 2. Contour plot of the real part n¼ 10, ‘ ¼ 9; m ¼ 69 “circular state”

wavefunction evaluated in the x – y plane. The imaginary part of the wave-

function has an identical pattern but is rotated about the z-axis by 610�. The

relative rotation means that the maxima of the imaginary part exactly coin-

cide with nodes of the real part and vice versa. The red-colored contour lines

correspond to the positive real value of the wavefunction, and blue-colored-

dashed lines correspond to the negative real values. Black lines indicate

where the real part of the wavefunction is zero. Shown also are Bohr’s orbits

for n¼ 9 and n¼ 10. The red dots are placed where the electron phase is a

multiple of 2p. Each arc segment of the Bohr orbit is the electron wave-

length in that orbit. There are nine electron wavelengths in the n¼ 9 orbit

and ten electron wavelengths in the n¼ 10 orbit. a0 is the Bohr radius.
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Here, we compare the Bohr–Sommerfeld planar elliptical
orbits with the solutions of atomic wavefunctions. To begin,
we restrict our attention to the x – y plane and consider only
Bohr–Sommerfeld orbits in that plane. The classical angular
momentum is perpendicular to the orbital plane. Thus, for
these orbits, the angular momentum points along the z axis.
The Sommerfeld method, like that of Bohr, overestimates
the total angular momentum by h=2p. In a state with princi-
pal quantum number n, the maximal values for the quantum
numbers ‘ and m are n – 1. So, as in Sec. I, when we com-
pare the Bohr–Sommerfeld model to the Schr€odinger equa-
tion solutions, we compare cases of the same angular
momentum with the same projection of angular momentum
along the z axis. Therefore, we match Bohr–Sommerfeld
orbits having quantum number, n – 1 (which have ‘ values
that range from 1 to n – 1) to Schr€odinger wavefunctions for
states having quantum number, n (with ‘ values that also
range from 1 to n – 1—the ‘ ¼ 0 case is not considered). We
also restrict the comparison to those m states that have the
maximum angular momentum projection along z—that is,
m ¼ 6‘, for each case.

Sommerfeld noted that Bohr’s circular orbits have only one
degree of freedom and that made it relatively easy to apply
Planck’s quantized action condition. The elliptical case for
motion in a plane involves two degrees of freedom, and, there-
fore, he postulated that the quantized action conditions for
stability should also have two conditions:

Þ
ph dh ¼ nhh andÞ

pr dr ¼ nrh, where nh þ nr ¼ n. Here, ph ¼ m0r2dh=dt is
the moment of momentum, and pr ¼ m0dr=dt is the radial
component of momentum, which is m0 times the radial veloc-
ity. Following this approach, he concluded that there are n
orbits that satisfy the stability condition for the quantum level
n: the circular orbit and n – 1 additional elliptical orbits. The
possible solutions have angular momenta ranging from nh=2p
down to h=2p. These correspond to nh ranging from n down to
1. The case nh ¼ n is Bohr’s circular orbit. Sommerfeld elimi-
nated the case of nh ¼ 0 arbitrarily, arguing that this case
would have the electron collide with the nucleus. Sommerfeld
computed the n¼ 4 case as an example. He noted that the circle
and all the ellipses share a common semi-major axis, n2a0.
Figure 3(a) is an image taken directly from Sommerfeld’s origi-
nal paper.10

As with our treatment of circular orbits and “circular
states,” we compare the size and phase of elliptical orbits
with Schr€odinger’s spherical states. To find the phase, we
need to determine the electron velocity. For elliptical orbits,
the velocity is not constant in time, so we need to solve the
classical Kepler problem.13 Knowing how the velocity varies

along the orbit will allow us then to determine the locations
along the elliptical path where the phase is a multiple of 2p.
MATHEMATICA is used to solve for the Kepler orbits according
to the parametric equations

xðhÞ ¼ aðcos h� eÞ; (1)

yðhÞ ¼ b sin h; (2)

M ¼ xt ¼ h� e sin h: (3)

Here, e is the eccentricity, a is the semi-major axis of the
ellipse, b is the semi-minor axis of the ellipse, x is the orbital
frequency in radians/seconds, and M is the mean anomaly.
The equation for M is Kepler’s equation. Sommerfeld’s
model provides expressions for a; b; e, and x in terms of n

and ‘: a ¼ n2a0; b ¼ n ‘ a0; e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðb2=a2Þ

p
; and x

¼ ðm0e4Þ=ðð4pe0Þ2ðh=2pÞ3n3Þ. To solve for x(t) and y(t), we
invert Kepler’s equation to solve for hðtÞ. This cannot be
done analytically—so we invert it numerically using the
“InverseFunction” function in MATHEMATICA. Once we have
hðtÞ, we make a table of hðtÞ, x(t), and y(t). This table is

based on a time step of typically 10�4–10�6 of the orbital
period. The table entries let us solve for the electron velocity
along the elliptical path.

To figure out the points along the path where the phase
advances by a multiple of 2p, we rely on the action phase-

integral, ð
Þ

pdqÞ=h. We assume a single degree of freedom for

the electron as it moves along the ellipse. To get p at time
step tþ Dt, we use the chain rule. We differentiate Eqs. (1)
and (2) with respect to h and determine dh=dt by differentiating

Eq. (3). Then p ¼ m0ðdh=dtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½dx=dh�2 þ ½dy=dh�2Þ

q
, and

dq ¼ dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½dx=dh�2 þ ½dy=dh�2Þ

q
. We determine dh by taking

the differences in the table for hðtÞ at times tþ Dt and t. We
start at the perihelion (the point of closest separation between
the electron and the nucleus) and define the phase at that point
to be equal to zero. The phase tabulation begins at t¼ 0. The
electron moves along the elliptical path, and for each new time
step, we record the accumulated phase in an additional column
in the table. We plot the orbit using the x(t) and y(t) values in
the table and place a red dot at those points where the accumu-
lated phase reaches a multiple of 2p.

This was done for the n¼ 4 case as shown in Fig. 3(b). As
expected, when the electron is moving quickly near the peri-
helion, the electron wavelength is smaller than it is when
near the aphelion (the most distant separation between

Fig. 3. (a) Sommerfeld’s orbits for hydrogen in the n¼ 4 level. Angular momentum of the orbits is 4h=2p; 3h=2p; 2h=2p, and h=2p. This image is from

Sommerfeld’s original 1916 paper (Ref. 10); (b) Sommerfeld’s allowed orbits for hydrogen in the n¼ 4 level. Red dots indicate locations where the electron

phase is a multiple of 2p. Each arc segment is one electron wavelength. There are four electron wavelengths in the circular orbit and in each of the elliptical

orbits; (c) Sommerfeld’s allowed orbits for hydrogen in the n¼ 9 level. Angular momentum of the orbits is 9h=2p; 8h=2p; …; 2h=2p; h=2p. Red dots indicate

locations where the electron phase is a multiple of 2p. There are nine electron wavelengths in the circle and in each of the ellipses.
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electron and the nucleus). For n¼ 4, there are four electron
wavelengths in the circular orbit and in each of the ellipses.

In Fig. 3(c), we have done this also for the n¼ 9 case.
Here, there are nine electron wavelengths in the circular orbit
and in each of the eight additional ellipses. This family of
orbits will be used to compare with the n¼ 10 Schr€odinger
wavefunctions.

Now we overlay the scaled n¼ 9 Bohr–Sommerfeld orbits
on the n¼ 10 Schr€odinger wavefunctions. We do this for
each of the possible ‘ values (leaving out ‘ ¼ 0—so
‘ ¼ 9; 8;…; 2; 1). The comparisons are for equal values of ‘
and only for the sub-levels that have a maximum projection
of angular momentum on the z axis. Thus, if we are making
comparisons for the ‘ ¼ 9 state, we choose m ¼ 69. If we
are comparing the ‘ ¼ 8 state, we choose m ¼ 68 for com-
parison, and so on. In Fig. 4, n¼ 9 Bohr–Sommerfeld orbits
are overlayed on n¼ 10 Schr€odinger wavefunctions for four
cases.

Figure 4(a) is the circular state, n ¼ 10; ‘ ¼ 9;m ¼ 69,
compared to the n¼ 9 Bohr and Sommerfeld model solution.
The state n ¼ 10; ‘ ¼ 8;m ¼ 68, shown in Fig. 4(b), dis-
plays several interesting features. It has 8-fold symmetry,
one less than the n ¼ 10; ‘ ¼ 9;m ¼ 69 state. Along the
radial direction, a second ring of anti-nodes appears. Recall
Sommerfeld’s suggestion of two quantum numbers, nh and
nr—so the reduction of the circumferential symmetry by 1
and the increase in the radial rings by 1 is consistent with

Sommerfeld’s idea that nh þ nr ¼ n. As we will see for
lower ‘ states, as the circumferential symmetry drops by 1,
the ring of radial anti-nodes will increase by 1. Next, we see
that the perihelion of the elliptical orbit aligns with the loca-
tion of the inner ring. This trend will continue with lower ‘
states. Each time a new inner ring is added by decreasing ‘,
the location of the inner-most ring of anti-nodes will match
the location of the perihelion of the elliptical orbit. We see
also that there is rough correspondence with the location of
the positive circumferential anti-nodes with the red dots
along the ellipse.

Note that the overall size of the Schr€odinger n ¼ 10;
‘ ¼ 8;m ¼ 68 wavefunction appears larger than the
n ¼ 10; ‘ ¼ 9;m ¼ 69 wavefunction. This can be seen as
the result of sweeping the ellipse about the nucleus—recall
that the semi-major axis of all of the ellipses and the circle
is n2a0. According to Bethe and Salpeter,14 the average
value of the radius for a Schr€odinger state of angular
momentum ‘ is ð1=2Þð3n2 � ‘ð‘þ 1ÞÞa0. That is, the smaller
‘, the larger the average size of the state—only when ‘ is n –
1 does the size of the state approach the classical value of
n2a0. So according to this relationship, the average radius of
Schr€odinger’s n ¼ 10; ‘ ¼ 9 state is 105a0 (as compared to
100a0), and the radius of the n ¼ 10; ‘ ¼ 8 state is 114a0 (a
larger value than 105a0). The expected average radius of the
n ¼ 10; ‘ ¼ 1 state should be 149a0 (that is, 50% larger than
100a0).

Fig. 4. Sommerfeld orbits for n¼ 9 (scaled by 100/81) overlayed on contour plots of the Schr€odinger wavefunction for n¼ 10; (a) ‘ ¼ 9; m ¼ 69; (b)

‘ ¼ 8; m ¼ 68; (c) ‘ ¼ 7; m ¼ 67; (d) ‘ ¼ 6; m ¼ 66. Note that as the ‘ value decreases, the circumferential symmetry decreases, and the number in radial

rings increases. Note also that the perihelions of the orbits align with the innermost rings of the Schr€odinger wavefunctions. a0 is the Bohr radius.
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The next two wavefunctions in the n¼ 10 sequence are
‘ ¼ 7;m ¼ 67, and ‘ ¼ 6;m ¼ 66, shown in Figs. 4(c) and
4(d). These states also match up with the de Broglie-wave-ana-
lyzed orbits. The lower ‘ states ð‘ ¼ 4; 3; 2; and 1) continue to
follow these trends—as the ‘ value decreases, the circumferen-
tial symmetry decreases, and the number of radial rings
increases. All this is consistent with Sommerfeld’s hypothesis
that nh þ nr ¼ n.

One of the reviewers of this paper asked if the correlation
of the de Broglie phase between the Bohr and
Bohr–Sommerfeld models and the actual Schr€odinger wave-
functions is significant or merely coincidence? This is a
good question worthy of discussion.

We know that classical elliptical orbits have been used
with much success to understand quantum mechanical
behavior of hydrogen and hydrogen-like atoms. For example,
Horbatsch, Hessels, and Horbatsch in their paper entitled,
“Classical calculation of the lifetimes and branching ratios
for radiative decays of hydrogenic atoms,”15 found that they
could accurately estimate quantum mechanical radiative
decay in hydrogen using semi-classical methods for all states
having principal quantum numbers n and ‘ � 1. They
assumed that each n; ‘ state had a single well-defined eccen-
tricity that depended on the energy of the state and its angu-
lar momentum. Their agreement for lifetimes was excellent
(<100 parts per million error for ‘ � 30; < 0:1% for ‘
� 9; < 1% for ‘ � 3), and their agreement for branching
ratios was quite reasonable. Their calculation was based on
Larmor radiation of a circulating electron in orbit around the
nucleus. This same type of calculation is posed in a question
at the end of Chapter 14 of Jackson’s Classical
Electrodynamics textbook.16 In addition to the study of life-
times and branching ratios, there are other successful studies
using classical orbits to analyze quantum phenomenon in
hydrogen, and recent studies give us confidence that looking
for elliptical orbits where the eccentricity is well defined is
sensible and not likely due to coincidence.

However, perhaps the best test is whether the method
works with other sublevels. So, in response to a reviewer’s
query, we examined the wavefunctions for another group of

states, namely, m¼ 0 states having ‘ ¼ 9; 8;…; 2; 1. We
found that all of the m¼ 0 wavefunctions follow the same
patterns as the case discussed earlier, but now the patterns lie
in any plane that contains the z axis. In the m¼ 0 case, the
classical Bohr–Sommerfeld orbit used for comparison with
the quantum result will lie in the same z-axis-containing
plane. Since the angular momentum vector is perpendicular
to the orbital plane, the projection of the angular momentum
along z is also zero. Shown in Fig. 5 are two of these patterns
for the case of ‘ ¼ 5. The one on the left is the wavefunction
pattern in the x – y plane for the m ¼ 65 sublevels, and the
one on the right is the wavefunction pattern in the x – z plane
for the m¼ 0 sublevel. The two are strikingly similar. With
these additional states, we find now that 27 of the 100 suble-
vels of n¼ 10 quantum level have patterns of nodes and anti-
nodes that can be explained using these semi-classical ideas.
Observe that the charge distributions for the m¼ 0 case and
the m ¼ 65 cases are very different from one another—the
charge distribution of the m¼ 0 case is a collection of spheri-
cal rings, whereas the charge distributions of the m ¼ 65
cases are planar rings. These are shown in Fig. 6. It is evident
that the semi-classical analysis can help one understand
nodal patterns in charge distributions as well as in
wavefunctions.

III. ELLIPTICAL ORBITS AND SPHERICAL

STATES—CHARGE DISTRIBUTIONS COMPARED

RADIALLY

Using the method of separation of variables, the
Schr€odinger wavefunction for hydrogen can be factored into
two parts, Rn‘ðrÞ and Y‘mðh;uÞ. Here, Rn‘ðrÞ is the solution
to the hydrogen radial equation. Y‘mðh;uÞ are the spherical
harmonics. Because of this factorization, we can determine
the charge probability density distribution as a function of r.
The Schr€odinger radial distribution is given by r2½Rn‘ðrÞ�2.
Our objective in this section is to compare this radial distri-
bution to the radial distribution expected for de Broglie-
wave-analyzed Bohr–Sommerfeld orbits. We will be able to
do this because Sommerfeld’s stability conditions are in two

Fig. 5. Schr€odinger wavefunctions for n¼ 10 states with ‘ ¼ 5. Left is an x – y slice for the m ¼ 65 sublevels, and right is an x – z slice for the m¼ 0 sublevel.

To facilitate comparison with the image on the left, the x – z slice is rotated 90� with the z axis horizontal. For the m¼ 0 case, a slice in any plane containing

the z axis will appear the same. The nodal patterns of these different cases are similar. Both wavefunctions roughly match the size and phases of the overlayed

n ¼ 9; ‘ ¼ 5 Bohr-Sommerfeld orbit.
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parts: one that is radial and another that is azimuthal. This
quantum-classical comparison has two aspects. One involves
matching the amplitude envelope of the quantum probability
density to a classical analysis of the radial probability density
for Kepler orbits. The other involves matching the phase.

To match the amplitude envelope, we note that the radial
probability density for a classical electron in orbit is propor-
tional to 1=½dr=dt�, which for Keplerian orbits is known to be

r=ðpa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2a2 � ðr � aÞ2Þ

q
Þ, where e is the eccentricity and a

is the size of the semi-major axis of the ellipse.17,18

Comparisons between the amplitude envelope and the classical
radial probability distribution have been noted by authors in
previous works.17,19,20

To get the de Broglie phase, we apply Sommerfeld’s

radial stability condition:
Þ
ðpr=hÞdr ¼ nr . Here, pr is

m0dr=dt. We tabulate r(t) in a Bohr–Sommerfeld orbit in a
manner similar to that in Sec. II, using rðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xðtÞ�2 þ ½yðtÞ�2

q
, where xðhðtÞÞ and yðhðtÞÞ are given in

Eqs. (1) and (2). We get dr/dt by applying the chain rule,
dr=dt ¼ ðdr=dhÞðdh=dtÞ, and dr ¼ ½ðdr=dtÞðdtÞ�. dh=dt is
determined by differentiating Eq. (3). Previously with the
phase integral along the ellipse, we noted every time the
phase advanced to a multiple of 2p, but in this case, we will
note the values of r where the phase advances to a multiple
of p because we are plotting the probability density rather
than the wavefunction. Note that the method here considers
only the radial path, r, using the differential radial phase of
ðpr=hÞdr. In contrast, in Sec. II, the method for determining
the phase was based a one-dimensional elliptical path, q,
using the differential electron phase, ðp=hÞdq.

In Fig. 7, the radial charge distribution for the n ¼ 100;
‘ ¼ 80 Schr€odinger state is compared to the classical proba-
bility distribution for the n ¼ 99; ‘ ¼ 80 Bohr–Sommerfeld
orbit. The classical distribution is the solid black line. This
figure also has red dots placed at the radii, where the phase
advances by multiples of p. The semi-classical result helps
one to understand aspects of the quantum result. One sees
that the average amplitude of the oscillatory solution
matches the classical value. One also sees that the anti-nodes
of the oscillatory solution are in reasonable correspondence
with the red dots. We are using the n¼ 99 Bohr–Sommerfeld

orbit for comparison here for the same reasons that we did in
Secs. I and II. In this case, the n¼ 99 Bohr–Sommerfeld
orbital size is very close to the n¼ 100 orbital size, so there
was no need to scale the results as we did previously.

IV. ELLIPTICAL ORBITS AND PARABOLIC

STATES

Sommerfeld used parabolic coordinates for his compari-
sons to the Stark effect. He used the Hamilton–Jacobi
method of separation of variables to develop three quantum
stability conditions according to the parabolic coordinate
variables n; g, and /. These stability conditions gave rise to
quantum numbers, n1, n2, and m. Schr€odinger’s equation can
be analyzed using parabolic coordinates and also using the
method of separation of variables. As pointed out by Bethe
and Salpeter,14 the form of the perturbation potential for the
electric field along the z axis preserves the method of separa-
tion of variables since the variable z is a linear combination
of n and g, namely, z ¼ 0:5ðn� gÞ. The other variables are
x ¼

ffiffiffiffiffi
ng
p

cos ð/Þ; y ¼
ffiffiffiffiffi
ng
p

sin ð/Þ; and / ¼ arctanðy=xÞ.

Fig. 6. 3D contour plots of the charge probability density distribution for n¼ 10, ‘ ¼ 5 states. Left is the distribution corresponding to m ¼ 65 sublevels, and

right is the distribution corresponding to the m¼ 0 sublevel.

Fig. 7. The blue line is the Schr€odinger radial charge distribution for quan-

tum level n ¼ 100; ‘ ¼ 80. The black line is the classical probability distri-

bution as a function of radius for an electron following an n ¼ 99; ‘ ¼ 80

Bohr-Sommerfeld orbit. The horizontal axis is in atomic units, a0. The red

dots mark the radii according to the de Broglie phase wave idea, where the

phase reaches a multiple of p. The calculation begins at the perihelion with

phase equal to zero. The red dots roughly correlate with the anti-nodes of

the radial charge density. a0 is the Bohr radius.
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Parabolic states are used often to analyze the Stark effect in
atomic hydrogen. For a state to have a linear shift in the elec-
tric field, it means that in the absence of a field, there would
be an electric dipole moment. That is true for parabolic states
but not for spherical states, which are symmetric or anti-
symmetric with respect to inversion. The energy shift of a
state with an electric dipole moment is the product of the
electric dipole moment and the external field. If the state has
an electric dipole moment in the absence of a field, then
application of an external field leads to a shift that is linear
in the field—that is what happens in excited atomic
hydrogen.

Figure 8 is a contour plot of the charge distribution of a
parabolic state for the quantum level, n¼ 10 in the x – z
plane. This state has the largest electric dipole moment of
the 100 sub-levels of n¼ 10 and the largest linear shift in an
external electric field–it also has m¼ 0. A Bohr–Sommerfeld
ellipse in the x – z plane has its angular momentum vector
along the y axis and, therefore, would also have m¼ 0. We
know from Schr€odinger’s analysis that parabolic states do
not have a well-defined angular momentum. Instead, they are
made up of a superposition of multiple angular momentum
states.19 The fractional component is determined by projec-
ting the parabolic state onto spherical states of various values
of ‘. One can develop insight about the Schr€odinger result if
we compare a collection of Bohr–Sommerfeld elliptical
orbits to an x – z slice of the Schr€odinger charge distribu-
tion—we could have also used a y – z slice, or any slice that
contains the z axis—this state has rotational symmetry about
z. In Fig. 8, four Bohr–Sommerfeld orbits having ‘ ¼ 1; 2; 3,
and 4 are overlayed on the quantum charge distribution. For
these four Bohr–Sommerfeld orbits, the angular momentum
vector points along y. The contours shown are for a slice in
the x – z plane. The red dots appear at multiples of p in phase
along the orbits. You will note that the anti-nodes of the par-
abolic state roughly line up with the red dots. We see that the
size and de Broglie phase of the classical elliptical orbit help

one to understand both the oscillations and the amplitude of
the quantum charge density.

V. CONCLUSIONS

Wavefunctions and charge densities for atomic hydrogen
display patterns that are understandable in terms of the plan-
etary models of the old quantum theories. The seemingly
complex myriad of nodes and anti-nodes of hydrogen are
recognizable in comparison with de Broglie-wave-analyzed
Bohr–Sommerfeld orbits. One need not dismiss the old quan-
tum theories so quickly when teaching or studying quantum
mechanics. Appreciation of physical ideas like the de
Broglie phase wave can help students look for features in
quantum solutions that trigger their imagination. How might
a classical orbiting electron behave? If the wavefunction or
the charge distribution is rapidly changing in space, then the
classical interpretation is that the electron is moving quickly.
Schr€odinger’s 1926 paper in the Physical Review9 reminds
us of how important classical mechanics and de Broglie’s
ideas were in his developing wave mechanics. He started off
his paper as follows: “The theory which is reported in the
following pages is based on the very interesting and funda-
mental researches of L. de Broglie on what he called ‘phase
wave’ (‘ondes de phase’) and thought to be associated with
the motion of material points, especially with the motion of
an electron or proton. The point of view taken here, which
was first published in a series of German papers, is rather
that material points consist of, or are nothing but, wave-
systems.” Schr€odinger was inspired by classical motion and
the phase waves of de Broglie. So, too, can these ideas help
the beginning student see the connections between quantum
solutions and classical ideas and help the student to develop
an understanding of why quantum wavefunctions and charge
distributions look the way they do.
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