Optimal control of the electric susceptibility of a molecular gas
by designed nonresonant laser pulses of limited amplitude
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We present a theoretical study on optimal control of the electric susceptibility change of a
homogeneous molecular gas resulting from orientational anisotropy induced by

nonresonant lasers with limited intensity. It is assumed that the molecular gas is initially in
thermal equilibrium. Two types of optimal control objectives have been considered:

terminal control and temporal profile control (i.e., trajectory control). A step function is
introduced into the cost functionals which successfully helps to realize the restriction on the
magnitude of the field amplitude in numerical optimization, as demonstrated by the
examples. Calculations are carried out for CS, which has a small rotational constant (B
=0.1091 cm™!) and a quite large polarizability anisotropy (Az=9.6 A%). For terminal con-
trol of a maximal susceptibility change at a target time T, it is found that the optimal control
field is composed of a series of rectangular pulses with identical amplitudes equal to a preas-
signed bound value. All of the optimal fields for terminal control are functions of (7 —t)
over the time interval [0,7] with characteristic time 1/8 B and period 1/2 B. For temporal
profile control, the degree of control is strongly dependent on the length of time interval over
which a target profile is defined. Usually, if a time interval is shorter than 1/8B and a target
profile is a smooth and non-negative function with a reasonable maximal value, the control
can be achieved perfectly. In other cases the detailed assignment of the weight function in the
cost functional plays an important role in determining how to make an optimally controlled
susceptibility change profile approach the target profile. Furthermore, we have also examined
the temperature effects on optimal control in this paper. It can be shown that the general
optimal control properties observed by CS, will also be valid for other linear molecular gases

with small rotational constants.

I. INTRODUCTION

Recently, there has been increasing interest in the con-
trol of molecular dynamics by appropriately designed elec-
tromagnetic pulses. A wide variety of physical objectives
are currently under extensive study including magnetic res-
onance selective excitations,'? crystal lattice vibrations,’
population inversion* and population transfer,’ molecular
rotational,® vibrational,”'? and selective chemical reac-
tions.'*'7 Much useful information about controlled dy-
namics has been provided, and the work also has indicated
why previous attempts, with only monochromatic or sim-
ple laser fields, did not give very encouraging results. A
basic conclusion is the necessity to design optimal fields to
achieve efficient control.

A number of theoretical treatments have suggested in-
telligently designing laser fields to enhance control effi-
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ciency. For example, for selective dissociation of a mole-
cule, Rice and Tannor'* proposed a simple pump-and-
dump scheme with two ultrashort laser pulses. The
numerical results show that the selectivity of product for-
mation can be enhanced by carefully selecting the time
delay between the pump and dump pulses. On the other
hand, Shapiro and Brumer'® suggested a two coherent path
scheme to control the relative product yield by adjusting
the relative phase of two coherent excitation laser pulses.
Recently, Gordon’s experiment for HCl multiphoton ion-
ization indicated that this scheme may work for some fa-
vorable systems.18 .

A more systematic method within the framework of
optimal control theory has been successfully applied in var-
ious theoretical control studies of quantum dynamical sys-
tems.5"!>! For the given physical objectives and penalties,
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such as energy fluence, an appropriate cost functional is
formulated. The optimal field is designed to minimize this
functional. The optimal control studies so far have focused
on terminal control, i.e., achievement of a physical observ-
able at a target time T. The controlled evolution profile of
a physical observable (i.e., trajectory control) has not yet
been explored. From a control point of view, control of the
observable along a trajectory is more difficult since it re-
quires the observable to track a given function of time.
Physically, it is important to study this type of control
because of its potential applications to a wide range of
physical systems, e.g., controlling molecular orientation for
collision dynamics'® as well as for optical gate studies,?®
etc. Furthermore, control of this type should lead to a
better understanding of the dynamical capabilities of a
molecule. Therefore, there is strong motivation to explore
microsystem optimal control of a physical observable
tracking a temporal functional form.

In this paper, we present theoretical studies on the
optimal control of the electric susceptibility change of a
molecular gas resulting from orientational anisotropy in-
duced by nonresonant laser pulses with limited amplitude.
The main purpose is to seek for the possibility of molecular
control using existing laser and pulse shaping technology.
The optimal control of the electric susceptibility change of
a molecular gas is potentially demonstrable in the labora-
tory with currently available experimental techniques.
First, a nonresonant laser can induce a rotational anisot-
ropy through interaction with the induced molecular di-
pole moments. The advantage of using a laser, instead of a
microwave source, to control molecular rotations is that
laser fields can possess higher intensity and can be precisely
shaped and of ultrashort duration.?® The typical fre-
quency band width required for most molecular rotational
transitions at room temperature, such as for CS,, is less
than a few hundred wave numbers. Laser pulses with du-
rations in the range of 30-100 fs, with frequency band-
widths from ~ 100-350 cm™!, are available from various
laser systems.?® Using special nonlinear pulse compression
techniques, optical pulses as short as 6 fs, with bandwidths
approaching 2000 cm ™', have also been generated.>* Thus
laser pulses can provide sufficient bandwidths to drive mo-
lecular rotations and ultimately vibrations. Second, precise
techniques for femtosecond pulse shaping and wave form
synthesis, which could be used to create the actual laser
wave forms required for optimal control experiments, have
been demonstrated.?'"?? Typically pulse shaping experi-
ments have been performed with pulses 75-100 fs in dura-
tion or longer, but recently shaping of laser pulses as short
as 20 fs has also been achieved.?’ Thirdly, high quality
Hamiltonians for molecular rotation and radiative interac-
tion coeflicients are available, since rotational constants
and molecular polarizabilities in the ground electronic and
vibrational states are accurately known for many mole-
cules. Finally, for a linear or symmetric-top molecular gas,
the electric susceptibility change can be probed by birefrin-
gence measurements. The temporal birefringence change of
CS, gas was observed by Heritage and co-workers.2¢ In
their experiment, a single ultrashort (~0.8 ps) nonreso-

nant laser pulse with wavelength 1.06 um was used to
pump CS, to create a coherent superposition of rotational
states, and another weak pulse with wavelength 0.53 um
was employed as the probe field. The temporal birefrin-
gence is determined by measuring the energy of the probe
laser transmitted through the analyzing polarizer as a func-
tion of the probe-pulse delay. They also showed computa-
tionally that the response of the susceptibility change of
CS, gas to various sinusoidal or Gaussian shaped pump
pulses is different.”’

In this paper, we focus on both terminal and temporal
profile control of the electric susceptibility. Additional cost
penalties are included on the laser energy fluence and field
amplitude. The molecular gas is assumed to be initially in
thermal equilibrium. The control takes place in the pico-
second range, which is much shorter than gas collision
times at STP. Accordingly, the collisionless Schrédinger
equation can be utilized to describe the evolution of gas
molecules.

The present paper is organized as follows. In Sec. II,
we describe the physical system and the electric suscepti-
bility. The cost functionals are formulated, and the work-
ing formulas are then derived for numerical calculation. In
Sec. III, as an illustrative example, CS, gas is studied and
the optimal susceptibility changes and the optimal control
fields are presented. Finally, some concluding remarks are
given in Sec. IV. Atomic units are used throughout paper,
unless stated otherwise.

Il. FORMALISM
A. The system and electric susceptibility

The system considered is a homogeneous molecular

- gas characterized as initially being in a Boltzmann distri-

bution. The molecules, treated as rigid rotors, can be lin-
ear, symmetric-tops, or asymmetric-tops. The driving laser
field is Z polarized with the form

e(t)=A(t)cos[wy t+3(N) ], 2.1)

where wj is the nonresonant carrier frequency, which is
larger than the molecular vibrational frequencies and
smaller than any accessible electronic transition frequen-
cies. 9(¢) is the phase of the field and 4(¢) is the amplitude
which is a real function. The physical observable to be
controlled is the electric susceptibility along the field direc-
tion, x(¢), which is defined as the mean value of the mo-
lecular polarizability, a,, along the field direction

k()=N,Tr[a, p(1)]

=N, Tr{(Aa cos’ 0+a, )p(n)], (2.2)
with |
a, =a,,+(azt,—oza)cos2 X (2.3)
and
Aa=a.—a, . (2.4)

Here p(t) is the density operator of the gas, Ny is the
number density of the molecular gas, «,, a,, and a, are the
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molecular polarizabilities along three principle axes 4, b,
and ¢, respectively, and 6, ¢, and y are the molecular Euler
angles.28 ‘

The interaction Hamiltonian operator for the system is

H(t) = —la, A2 (1)cos? [wet +3 (D) ].

Because of rapid oscillation of cos[wgt+8(¢)], one can av-
erage H,(¢) over a few optical cycles to obtain the effective
interaction Hamiltonian

Hy(1)=—}aA4%().

The dynamical equation for the density operator, p,(t), in
the interaction representation is

ap,(1)

(2.6)

i = H(0.p(D)] (2.7)
with

() =exp(iHot) p(t)exp( —iHot) (2.8)
and '

H,, (1) =exp(iHot) H (8)exp( —iHot), (2.9)

where H, is the field-free rotational Hamiltonian. It is as-
sumed that initially the gas is in thermal equilibrium at
temperature T ,,. Therefore, the density operator at t=0
has the form

p(0)=exp(—Ho/kT ). (2.10)

Let the density operator, p;(¢), at time ¢ be written as

pr(D=p() +pf (D) 4+, (2.11)

where p}")(t), (k=0,1,...), are defined as the kth-order
perturbation solutions in terms of the field strength. Sub-
stituting this equation into Eq. (2.7), we can obtain a set of
equivalent dynamical equations

3p% (1)

i— =0, v (2.12)
and

J (k)(t)

iplat [Ho (0,0 0(0)] for k>l (2.13)
The zero-order solution is

P2 (1) =p(0), (2.14)

and the first-order solution is

P =i | UHue).p(0) )

it o o
=Z J AZ(t:)elllol [az,p(O)]e"”"’ dr'.
0

(2.15)

When the interaction energy is small and the controlling
time, T, is short, such that | H,, | T <1, we may ignore the
higher order perturbation solutions

5
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pi(1) = p(0) +p (1), (2.16)
Then, the susceptibility in Eq. (2.2) becomes
k(t) =N, Tr[ae~"tp, (1)}, (2.17)

The first term of p,(¢) in Eq. (2.16), p1(0), gives rise
to the initial susceptibility, k(0), and thus the susceptibility
change reads

Ak(t) =N, Tr{ae~ o p (£)e]. (2.18)

To calculate the trace, one may choose the eigenfunctions
of H, as a basis set, in which both Hy and p(0) are diag-
onal. The eigenfunctions of Hj can be denoted by |Inm),
Ho|Inm)=E,}Inm) (2.19a)
with
!
,Bnkl lkmy).

|Inm) = (2.19b)
k

Here / is the quantum number of total angular momentum,
m and k are the components of / along the Z axis and ¢
axis, and n is just a label. For a symmetric-top molecule, n
is equal to k, and B, are delta functions, Bx=08 For a
linear molecule the summation disappears and one has
n=k=0. It can be shown that the diagonal elements of the
first-order density matrix p?”(t) are zero. This implies
that the population distribution is not changed to first or-
der. After some algebra, Eq. (2.18) becomes

' ~
Ax(t) = J A (t—s5)T (s)ds, (2.20a)
0
where
~ iNg In 2
T)=—" X (@) (m)*lpu(®)
Inm!'n’
-——pp,,:(O)]exp(iwl,,p,,;s). (220b)
with
(a)m . (m)={Inm|a,|I'n'm) (2.20c)
and
Dpltnt =E[,,—Elr,,l . (220d)

Here p,,(0) is the initial probability in state |Inm). Equa-

tion (2.20a) shows that for a nonresonant laser field of

normal intensity, the susceptibility change of a molecular

gas only depends on the square of the amplitude, AX(1).
For a gas of linear molecules, one has

Ak(£) =N Aa Trcos?(8)e~Ho'p{ (r)eMo']  (2.21a)

and
T(s)=N,Aa Im|exp(—i2710Bs)
X 2 G2j+|exp(—th'SBjs)+exp(—1'21r61}s)
j=0

X % Gyjyaexp(—i2n8Bjs) (2.21b)
j=0
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with

W) 1(1-1)
Gi=ha 157 aI=1)

—exp[—(I=2)(I-1)/al},

{exp[—1(I—1)/a]

(2.21¢)

where a=kT,/B, Z, is rotational partition function and
Im denotes taking the imaginary part. W(/) is equal to the
number of nuclear spin functions that couple with 1. For
example, suppose the molecules are homonuclear diatomic.
Then for integral spin I,

Wl IQ2r+1) for odd |,

i€ )=l(1+1)(21+1) for even |,
while for half-integral spin 7,

J+DHQI+1) for odd J,

s _{1(214-1) for even [

Since the frequency difference of successive transitions for
both even [ states and odd [ states is a constant 8 B, the two
summations in Eq. (2.21b) can be conveniently performed
by using the fast Fourier transform (FFT) algorithm.
From Eq. (2.21b) it is seen that 7(s) is a periodic function
of 5 with a period 1/2B.

B. Optimal control formulas

Following the prescription of optimal control theory,?
one starts an optimal control calculation by setting up a
cost functional in accordance with the physical objectives.
As mentioned in Sec. I, there are two types of control
objectives: (1) terminal susceptibility control where a spec-
ified value of the susceptibility change is to be reached at a
target time T (2) susceptibility functional form control
where a specified functional form for the susceptibility
change is desired as a function of time. Two physical re-
. strictions on the pump laser field are taken into account:
the total energy fluence and peak intensities [or the norm of
the amplitude, | 4(¢)|]. Experimentally, the fluence is lim-
ited by the femtosecond laser/amplitude system. After
pulse shaping, the fluence is at most equal to the fluence
supplied by the laser. For a given fluence, the peak inten-
sity can vary substantially depending on the duration and
the structure of the shaped laser wave form. In some ex-
periments it is desirable to limit the peak intensity in order
to avoid unwanted, parasitic nonlinear effects or sample
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damage. Accordingly, two cost functionals and optimiza-
tion formulae will be given in the following two subsec-
tions.
1. Terminal susceptibility control

There are a number of different ways to account for the
restriction on the amplitude of the fields for numerical
optimization. Here let Ay be a given upper bound value for
|4(#)|. We introduce a restraint functional

T
L5, [ 1A~ HAW) ~dole

T
+Bs jo [ —A(t) —Ao]? h[ —A(D) — Ao},

(2.22a)

where the amplitude 4(¢) is to be optimized. Instead of
A(1), we can directly optimize A%(1). In this case, the re-
straint functional can be expressed as

T 2 272 2 2
L,=p Jo [4%(r) —Ag)* h[A47(2) —Ao]dt

T
+ﬁzL [—A2(0) ]2 h[—4%(1))dL.

Here B, and B, in Egs. (2.22a) and (2.22b) are weight
factors and A(x) is a Heaviside function defined by

N 1 for x>0,

[x]= 0 for x<0,

and thus Eq. (2.22a) and Eq. (2.22b) weight against
|A(2)| > 4o Note that strictly speaking, the last term in
Eq. (2.22b) is zero, but when using B(¢) =A%(1) as the
actual control variable, there is no assurance that the al-
gorithm will pick B(#)>0. Thus, the last term is included

so that solutions with B(¢) >0 are obtained. The cost func-
tional Q reads '

(2.22b)

(2.22¢c)

Q=Bo[AK(T) — fol*+B/Ls+ L, (2.23)
with the energy fluence péﬁalty term
T
L= f AX(nd, (2.24)
0

where f is a target value of the susceptibility change at 7.
The weight factors By, B/, By, and B, are used for balancing
the relative importance of each term. Including the term,
Ly, in the cost functional expresses the desire to minimize
the energy fluence of the field. The functional derivative of
Q with respect to A(¢') using Eq. (2.22a) has the form

o
- 8(B,L+L
50 4/30[A;<(T)—fO]T(T—z')A(z')Jr——%‘—(’—t—,)—‘ﬁ for 0<t'<T, (2252)
SA() . : oo
0 otherwise,
with
S5BsL+Ly)
————-——;A{,,) 2l 2B, [A(") — Ag B[ A(1") —Ao) +2B,[A(2") + Aol h[ — A(#') — Ao] +2B,A (). (2.25b)

Similarly using Eq. (2.22b) the functional derivative with respect to AX(1) is
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~ 8(BL,+ L)
50 230[AK(T)—f0]T(T—z')+% for 0<1'<T,
= . (2.26a)
A1) .
0 otherwise,

with

8(BsLs+ L))

BB LI Lo) o (g 42(17) — ALV KA — A3) 4 B2 Y — A2 )1} 4By (2.260)

S5A4%(¢")

Equations (2.26) and (2.25) are the working formulas to
search for the optimal field Agp(t') and Aop(t'), respec-
tively. The optimal field, Agp(t) [or A,,(£)], can be ob-
tained by solving the equation, 5Q/8Ag(t')=0 [or 6Q/
8A(1') =0), iteratively. It should be noted that the optimal
solution may not be unique (i.e, Q may have multiple
minima). It was found to be easier to optimize A%(¢) than
A(?). Therefore, all of the results presented in the present
works are obtained by optimizing 4%(¢).

2. Functional form control

For the optimal control of the susceptibility change as
a function of time, we introduce an error functional which
measures the deviation of the susceptibility change as a

1

' T 8(BsLs+Lp)
80 2f;{w(t)[AK(t)—f(t)]T(,_t,)dt+%

4Ny )
0 otherwise,

subject to Eq. (2.26b). In the numerical calculations to
follow, the conjugate gradient algorithm was used for iter-
atively searching and constructing optimal fields. Detailed
results will be presented in the next section for CS; gas.

1. ILLUSTRATIONS

As an illustrative example, we consider the optimal
control of the susceptibility change for CS, gas. The linear
and symmetric molecule, CS,, has a zero total nuclear spin.
Therefore, only even [ rotational states can be populated.
As a result, the odd summation in Eq. (2.21b) for T'(s) no
longer exists. For CS,, the rotational constant is small (B
=0.1091 cm~!),% and the polarizability anisotropy is
large with Aa=9.6 33!

In the following subsections, we present results of ter-
minal optimal control and the functional optimal control
of the susceptibility change for CS, gas in terms of a di-
mensionaless susceptibility change, Ax(t), defined by

Ak(0) =Ax(t) /(N Aa)

=Tr{cos?(0) e~ p{V (1)), 3.1

Here the temperature is assumed to be T',,=300 K. The
effects of gas temperature or the initial Boltzmann distri-

—

function of time from a desired shape. Let f(¢) represent
the desired profile which is defined over some time interval
[T,T], then the error functional may be written as

T,
4=f’mnMﬂn—ﬂoPn

i

(2.27)

where w(t) is a weight function. The cost functional cho-
sen, therefore, is

Q=Le+ﬁfo+Lp’

where Lp and L/ are defined by Egs. (2.22) and (2.24),
respectively. The corresponding working formula for opti-
mizing 4%(¢') is

(2.28)

for 0<t'<Tj, @ 29)

r

bution on the optimally controlled susceptibility changes
will be discussed in Sec. III C. The amplitude, A%, is
restrained with the bound value, A(2,=2.0>< 10719 au.
(~7.0 MW/cm?), while the energy fluence control is ne-
glected by assigning 8,=0 in the cost functionals. For the
terminal control case, we choose f,=0.1 for the error
function, fo=1.0 for the desired value of Ax(T) at a tar-
get time r=T, and B,=8,= 10'° for the amplitude control.
For the functional form control of the susceptibility
change, B,=8B,=1 and the weight function w(t)=10" are
utilized, unless specified otherwise.

A. Optimal control of susceptibility change at time T

It is evident from Egs. (2.21) that for a linear molec-
ular gas T'(z) is a periodic function of time ¢ with a period
1/2B, and chqracteristic time 1/8 B. For the terminal con-
trol cases, these times play an important role, which will
become clear in the following results. For CS,, 1/8 5=138.2
ps, and hence 1/2B=152.9 ps.

Figures 1(a)-1(e) display the optimal fields with fy
=1.0 for target times T'=11.2 ps, 49.4(=11.2+1/8B) ps,
87.6(=11.241/4B) ps, 125.8(=11.2+3/8B) ps, and
T=152.9(=1/2B) ps, respectively. Three important fea-
tures are evident in the figures. First, each of the optimal
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0.0 382 76.4 1147 1529

t (ps)

FIG. 1. The terminal control optimal fields for CS, gas at temperature
. T,=300 K for the various target times (a) T==11.2 ps, (b) T=49.4
(=11.2+1/8B) ps, (¢) T=87.6(=11.2+1/4B) ps, (d) T=1258
(=11.243/8B) ps, and (e) T=152.9(=1/2B) ps, respectively, ob-
tained under the bound restriction, 42(¢)<2x 10~'° a.u. B is the molec-
ular rotational constant which is equal to 0.1091 cm™! for CS,. These
plots, together with the plot in Fig. 2, show that the optimal fields are a
function of (T"—¢) for the time interval [0,T] with a characteristic time of
i/8 B and a period of 1/2B.

fields is composed of a set of rectangular (or quasirectan-
gular) single and double pulses. Second, all of these opti-
mized pulses satisfy the bound requirement, i.e., 42(£)<2
%107 a.u,, and approach the bound value. Finally, the
optimal fields are a function of (T —¢) for the time interval
[0,T]. There is always a single pulse ending at the target
time. The distance between any two neighboring pulses
(single or double) is approximately ~1/8 B. We can there-
fore classify these pulses into five types labeled by py, p, P3,
P4 and ps in the figures. The following features of these
types of pulses are observed: (1) the p, pulse is of width
~0.8 ps and always ends at a target time T (here the pulse
width is defined by the full width at half-maximum of the
intensity); (2) The two pulses of the double pulse p, are of
the same width ~ 1.2 ps, and one pulse is delayed by ~0.8
ps from the other. The center position of p, is 1/8 B away
from the target time T (3) The second pulse in p; is of the
same width as p|. It is delayed by ~0.8 ps from the the first
pulse and starts at the time 1/4 B away from the target time
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T=2023 ps
20

1.5

1.0

Optimal A2(l) (10-10 eu)

0.5

0.0

0.0 38.2 76.4 114.7 152.9 1811

t (ps)

FIG. 2. The terminal control optimal field for CS; gas at temperature
T,,=300 K for the target time T=202.3(=11.245/8 B) ps, longer than
1/2 B, obtained under the same bound restriction as the one for Figs. 1.
The plot shows the periodic structures of the optimal field.

T. The first pulse of p; has a relatively long rise time, and
its typical width is ~2.4 ps; (4) The pulse p, has the same
width as p, and the center position is 3/8 B away from the
target time T} (5) The pulse ps can be viewed as the image
of the first pulse of p; reflected at the center of p, and starts
at ~(7T—-0.8) ps. B

Although the optimal fields shown in Figs. 1 are the
ones for the indicated specific target times, they character-
ize the general behavior of optimal fields for other target
times in those regions. In fact, for target times within the
same region, e.g., T <1/8 B, the optimal fields possess the
same behavior. In other words, the shapes of optimal fields
as a function of (T'—t) are the same, regardless of the
particular target times in this region. We have also carried
out extensive numerical studies for 7> 1/2B, and found
that the optimal fields are always composed of the above
mentioned five types of pulses and have a periodic struc-
ture with the period of 1/2B. Figure 2 shows an example
for T=202.3(=11.2+5/8B) ps. An optimal field for
T > 1/2 B can be constructed in the following way. Letting
n be the number of complete periods that T contains, the
structure of the optimal field in [T—n/2B,T] is the nth
replica of the optimal field shown in Fig. 1(¢), and in
[0,T—n/2B), it is the replica of the optimal field in the
[(n+1)/2B—T,1/2B] region.

Figure 3 presents the power spectrum of the optimal
field shown in Fig. 1(c). One sees that the entire spectrum
is in the microwave region. Physically, this is understand-
able, since the variations of A%(1) are dictated by molecular
rotational transitions. It should be noted that the envelope
of the spectral peaks mainly results from the narrowest
pulse of the field, i.e., p;, and modified by the other pulses
in Fig. 1(c). The pulse p, has an approximate rectangular
shape with width ~0.8 ps. The Fourier transform of p| is
a zero-order Bessel function and the main peak has band-
width ~40 cm™". The fine structure of the spectrum, with
a width ~0.87 cm™, is determined by the distance of the
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FIG. 3. The power spectrum of the optimal field 42(¢) shown in Fig.
1(c). It characterizes the general features of the intensity-constrained
optimal fields for the terminal control of the electric susceptibility change
of CS, gas.

neighboring pulses. Since all the optimal fields for the ter-
minal controls have similar features, one can expect that
their spectra should have similar features to the one shown
in Fig. 3. Note that this power spectrum was calculated
assuming that the phase 3 (¢) of the optical field is constant
[see Eq. (2.1)]. The susceptibility change of the molecular
gas depends only on the optical intensity profile and not on
the phase profile; However, the power spectrum does de-
pend on the assumed phase profile 3(¢). Thus the power
spectrum plotted in Fig. 3 is only one of many possible for
a given A%(1). In some cases it may be useful to utilize a
time-varying phase profile as a further degree of freedom,
e.g., to obtain a smoother power spectrum. [This approach
was in fact utilized in the work of Ref. 3, in which pulse
shaping techniques?? were used to convert individual fem-
tosecond pulses into pulse sequences suitable for simple
molecular control experiments. By choosing a proper set of
phases 9 (1), it was possible to achieve pulse sequences with
the same power spectrum as the original femtosecond
pulse, thus avoiding loss of energy in the pulse shaping
process.]

The susceptibility changes induced by the optimal
fields shown in Figs. 1 are presented in Figs. 4 as a function
of time. It is seen that the susceptibility changes are
steadily driven by the optimal fields from initially zero to a
maximum at the given target time. After the target times
the susceptibility changes evolve freely with a period of
1/72B and a characteristic time of 1/8 B. Comparing the
susceptibility changes for various target times, one can ob-
serve that the longer the target time, the larger the suscep-
tibility change can be. The achieved susceptibility changes,
Ak(T), are ~2.9% 1077 for T=11.2 ps, ~6.4X 1077 for
7'=49.4 ps, ~9.9%X1077 for T=87.6 ps, ~13.4%x 107’
for T=125.8 ps, and ~14.0X 1077 for a complete period
T=152.9 ps.

The above results can be understood by carefully ex-
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FIG. 4. The induced electric susceptibility changes of CS, gas under the
optimal fields shown in Figs. 1(a)-1(e), respectively, at temperature T,
=300 K.

amining Eq. (2.20a) and Eqgs. (2.21). In Eq. (2.20a), it is
shown that the susceptibility change of a molecular gas,
Axk(T), is equal to the convolution of a driving field A% (1)
and the function T°(¢) over [0,T]. Naturally, the structure
of T(t) plays a key role in determining Ax(7T). For a
linear molecular gas the function T'(¢), described by Eq.
(2.21b), is proportional to the imaginary part of the Fou-
rier transforms of G, multiplied by the phases, and is a
temperature-dependent periodic function of ¢ with a period
1/2 B and a characteristic time 1/8 B. For CS, gas, as men-
tioned before, all G, with odd angular momentum quantum
numbers /(=2j + 1) equal zero because of symmetry. Fig-
ure 5 shows T'(¢) as a function of time ¢ for CS; gas at the
temperature 300 K, and one can see that it has both pos-
itive and negative peaks. Noting that A%(¢) is a non-
negative function and considering the convolution relation,
it is obvious that in order to maximize the terminal value of
Axk(T), a control field, AX(T —1), must match the struc-
ture of 7T'(¢) over the time interval [0,7). Therefore, the
optimal field A*(T—1) should have maximal overlap with
all of the positively valued peaks of T'(¢) and be zero at the
negatively valued peaks of T (). Moreover, it has to satisfy
the restraint upper bound condition. It is these factors that
finally result in the special structures of the optimal fields.
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FIG. 5. The characteristic function T(t) of the electric susceptibility
change of a linear molecular gas under non-resonant optical fields, de-
scribed by Eq. (2.21b), whose structures play a key role in determining
the optimal control and the optimal fields properties. This plot is for CS,.

Without any additional restriction on the control field, the
best shape is rectangular for the pulses to assure the largest
overlapes. The actual shapes of the optimized pulses shown
in Figs. 1 and 2 deviate from the expected rectangles, due
to the particular choice of the cost functional Q.

B. Optimal control of temporal profiles of
susceptibility change

We now proceed to discuss the optimal control of the
temporal profiles of the susceptibility change in CS,. As the
first example, we consider the target profile
f

0 for 0<t<yy,
fosin®[w(t—1t)/a] for 1 <t<t,,
f(={fo for n<t<t, (3.2)
Sfosin?[m(t—14)/a] for p<e<yy,

0 for t,<t<ts,

with £;=10.0 ps, £,=11.0 ps, t3=27.2 ps, 1,=28.2 ps, s
=1/8B=38.2 ps, a=2.0 ps and fo=107%, which is dis-
played in Fig. 6(a) by the dashed line (virtually exactly
overlapped by the achieved solid line optimal result).
Physically, we wish to control the gas molecules by quickly
(within ~1 ps) orienting them in a desired fashion, then
keep this orientation for 16.2 ps, and after f; quickly
(within ~1 ps) come back to the original isotropic state.
The temporal profile of the susceptibility change induced
by the optimal field is displayed in Fig. 6(a) by the solid
line. It is seen that the target profile and the optimally
reached profile coincide virtually exactly with each other!
The temporal susceptibility change of the CS, gas sample
can be controlled to almost exactly follow the target profile
with the optimal field. The optimal field is given by the
solid line in Fig. 6(b) and its power spectrum is shown in
Fig. 7. Unlike the optimal field for a case of terminal con-
trol, which is composed of a set of rectangular pulses, the
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FIG. 6. The temporal profile control of the electric susceptibility change
of CS, gas at T, =300 K. The solid lines in (a) and (b} are, respectively,
the optimally controlled susceptibility change profile and the correspond-
ing optimal control field. The target profile is defined by Eq. (3.2) and
plotted by the dashed line in (a) which is virtually exactly overlapped by
the solid line to show that the desired target profile can be almost exactly
approached. The dotted line in (a) is the result under the non-optimal
field shown in b by the dotted line which explains the importance of the
fine structure of the optimal field.

optimal field for profile control has a similar shape to the
target profile. To understand the importance of the fine
structure of optimal field, we have used the nonoptimal
field presented in Fig. 6(b) by the dotted line as the driving
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FIG. 7. The power spectrum of the optimal field A%(1) shown in Fig.
6(b).
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FIG. 8. The optimal control results of CS, gas at T,,=300 K for the
target profile defined by Eq. (3.3) and plotted in (a) by the dashed line
which is overlapped virtually exactly with the optimally achieved solid
line. The corresponding optimal field is shown in (b).

field. The resultant temporal susceptibility change profile is
shown in Fig. 6(a) by the dotted line. It is seen that the
modified field without the detailed features does not give
rise to the desired profile. Therefore, it is necessary to use
the designed optimal field in order to achieve nearly perfect
control. However, quite respectable results can be achieved
by a square pulse in this case.

Next, we proceed to explore control for more complex
profiles. First, we consider a target profile given below
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FIG. 9. The optimal control results of CS, gas at T,,=300 K for the
target profile defined by Eq. (3.4) and plotted in (a) by the dashed line
which is overlapped virtually exactly with the optimally achieved solid
line. The corresponding optimal field is shown in (b).

lapped virtually exactly with the optimally achieved solid
line). The optimal control field is presented in in Fig. 8(b).
Figure 8(a) shows that the desired temporal susceptibility
change once again can be reached virtually exactly. We
next consider a target profile consisting of three curves: a
sinusoid, a Gaussian and an exponential:

0 for 0gt<yy,

Sosin[w(t—1)/al for

FO=) £ expl = (1—12)2/b]

foexp[—(ts—1)/c]

§<t<ty,
' (3.4)
for t2<t<t4 ,

for ,<I<ts.

(0 for 0gt<yy,
Sfosin{w(t—t))/a] for 4<t<ty,
fo for n,<t<t;,
Sfo{l—sin[7(t—1t;)/al} for 01<t<ty,
f= 10 for 1,<t<ts,
fo exp[ — (t—15)%/b] for 1<t<tg,
fo for t,<t<tq,
foexp[—(t—17)/b) for 4<t<ty,
0 for 1<t<ty,
(3.3)

where t;=2.4 ps, ,=3.6 ps, 13=15.5 ps, 1,=16.7 ps, &5
=21.8 ps, t,=23.9 ps, t;=33.4 ps, t3=35.5 ps, ty=1/8B
=38.2 ps, a=2.4 ps, b=2.4 ps’, and f,=10"". Figure
8(a) depicts the target profile by the dashed line (over-

The target profile shown in Fig. 9(a) by the dashed line
(and once again overlapping the optimal result) is calcu-
lated with parameters #;=6.0 ps, £,=10.0 ps, £= 19.1 ps,
1,=29.0 ps, t;=38.2 ps, a=4.0 ps, b=0.4 ps%, ¢=10.0 ps,
and f,=10"% The optimal control field is displayed in
Fig. 9(b). The nearly identical results of the target profile
and the optimal profile shows that the desired profile can
be well controlled.

The conclusions based on control of CS, above remain
general, even though they are shown for special cases, un-
der the condition that the target temporal profile is a
smooth and non-negative function with “reasonable” max-
imal values and is localized within a time interval shorter
than 1/8B. This can be readily understood by carefully
examining the convolution relation given in Eq. (2.20a),
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FIG. 10. The optimal control results of CS, gas at T,, =300 K for the
target profile plotted in (a) by the dashed line. The solid lines in (2) and
(b) are the optimal susceptibility change profile and optimal control field,
respectively, under the weight function w(r) =100 defined over the time
interval [0,74.0}, while the dotted lines are the results under the weight
function defined by Eq. (3.6).

the structure of f(t) presented in Fig. 5, and the field
amplitude restraint. We have carried out extensive numer-
ical studies on the control of non-smooth profiles, e.g.,

0 for O<t<yy,
fy={fo for 4<t<p, (3.5)
0 for ,<t<1/8B.

The calculated results show that they can not be controlled
perfectly because the profiles are not smooth at some
points. For instance, the purely rectangular profile, repre-
sented by Eq. (3.5), is discontinuous at #; and ¢,. Physi-
cally, this behavior should not be surprising because any
physical observable can not be changed at an infinite rate.

When a target profile is defined over a time interval
longer than 1/8B, it is usually difficult to achieve good
control. To illustrate this, we choose the functions given by
Eq. (3.3) as the target profile again, but with parameters
1, =4.5 ps,.t,=5.5 ps, t3=15.2 ps, t,=16.2 ps, t;="58.3 ps,
1,=60.5 ps, t;=69.7 ps, t3=71.8 ps, t,=76.4 ps, a=2.4 ps,
b=2.4 ps?, and f,=105. Figure 10(a) depicts the target
profile by the dashed line. The optimal control field and
temporal susceptibility change profile with B,=1, £,
=10 and the weight function w(¢) =100 defined over
[0,74.0] ps are plotted in Fig. 10(b) and Fig. 10(a) by the
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solid lines, respectively. It is seen that the optimal field can
not control the susceptibility change to accurately follow
the target profile. The main reason is that in addition to the
first set of peaks of T°(¢) located near the initial time, the
sccond sct of pecaks located at ~ 1/8 B arc also affecting the
susceptibility change. Thus the detailed assignment of the
weight function w(¢) in the cost functional plays an im-
portant role in determining how to make the susceptibility
change approach the target profile. For example, if we are
particularly concerned with the profile in the regions II
(fy<t<ty) and IV (¢<t<t3), shown in Fig. 10(a), the
weight function can be chosen as

[ 102 for O<r<y¢,
10*  for <t<t,, ;
w(t)=4{102 for t<t<ts, (3.6)
100 for t<t<tg,
(102 for  13<t<ty,

with ¢, defined above. The calculated optimal field under
B,=1 and B,=10% is presented in Fig. 10(b) and the re-
sultant susceptibility change profile is displayed in Fig.
10(a) by the the dotted lines. Compared to the the solid
line in Fig. 10(a), we see that the susceptibility change can
now be much better controlled to follow the target profile
in the regions II and IV (i.e., the achieved and desired
results are indistinguishable in these regions).

Next, we examine a profile of a constant function de-
fined over a time interval longer than 1/8 B. Physically,
this is equivalent to requiring the achieved polarization to
be retained for longer than 1/8B. For convenience, we
consider a target profile having the form of Eq. (3.2) with
parameters ¢, =2.4 ps, 1,=3.6 ps, ;=72.8 ps, 1;=74.0 ps,
t;=76.3 ps, a=2.4 ps, and f,=1078 as shown in Fig.
11(a) by the dashed line (closely overlapped by the solid
line). The difference between this target profile and the one
shown in Fig. 6 is that the latter has the constant function
duration shorter than 1/8 B. The solid lines in Fig. 11(a)
and Fig. 11(b) present the optimized susceptibility change
profile and the optimal field, respectively, for =1, B,
=105, and the weight function w(z) = 10? over [0, 76.0] ps.
It is evident that the desired constant profile can be well
achieved. From Fig. 11(b), it is seen that except for the
peaks in the middle, the optimal field overall behaves
roughly like the susceptibility change profile. In order to
understand the roles played by those peaks, as well as the
importance of the detailed structure of the optimal field for
the control, we employ a simplified nonoptimal field shown
in Fig. 11(b) by the dotted line as a driving field. The
dotted line in Fig. 11(a) depicts the resultant temporal
susceptibility change. Obviously, the desired polarization is
no longer retained; instead, there is an oscillation at about
1/8 B away from the initial rise position ¢;. The oscillation
is caused by the second set of peaks (at ~1/8B) of T'(¢).
Therefore, we conclude that the role played by the peaks of
the optimal field in Fig. 11(b) is to suppress the oscilla-
tions of the susceptibility change.
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FIG. 11. The temporal profile control of the electric susceptibility change
of CS, gas at T,,=300 K. The target profile is plotted by the dashed line
in (a) (closely overlapped by the solid line). The solid lines in (a) and
(b) are the optimal susceptibility change profile and the optimal control
field, respectively. The dotted line in (a) is the result under the non-
optimal field shown in (b) by the dotted line which shows the importance
of the fine structure of the optimal field.

C. Temperature effects on optimal control

The results shown are for the gas temperature of 300
K. Since the purpose of control is to change the system
from an initial state to a desired state, the optimal control
fields, as well as the optimal control results, accordingly,
may be different as the gas temperature varies. A careful
study of temperature effects shows that the characteristics
of the optimal fields and the control of the susceptibility
changes remain essentially the same. This is because tem-
perature, in principle, only changes the population distri-
bution among the molecular rotational states, or G;. In
other words, the gas temperature only affects the resolution
of the oscillation peaks of 7'(¢), but not the entire relative
structure. Generally, the higher the temperature is, the
narrower the peaks of T'(f) are. As a consequence, for
terminal control, the pulse widths of the optimal field be-
come. narrower, and thus the achieved terminal suscepti-
bility change is smaller. For example, using the same cost
functional as in Fig. 1(e) for the target time T=152.9 ps,
the optimal terminal susceptibility change at 600 K is ap-
proximately half that at 300 K. For temporal profile con-
trol, increasing the temperature can smooth out the shapes
of the optimal ficlds and wash out their oscillations.

Shen et al.. Optimal control

IV. CONCLUSIONS

In this paper, we presented results for optimal control
of the electric susceptibility change of a homogeneous mo-
lecular gas with nonresonant lasers of low intensity. Two
types of optimal control objectives have been taken into
account: terminal control and temporal profile control. We
carefully considered restrictions on the magnitude of the
field amplitude, and introduced a step function into the
cost functionals which helped to realize the amplitude re-
striction. CS, gas was utilized for the purpose of illustra-
tion. However, the general optimal control properties dis-
cussed for CS, can also be applied to other linear molecular
gases with small rotational constants.

For terminal control of a maximal susceptibility
change at a target time T, an optimal control field is usu-
ally composed of a series of rectangular pulses of the same
amplitude equal to a preassigned bound value. The last
pulse of the optimal field always ends at the target time,
and any two neighboring pulses are separated from each
other by ~ 1/8 B ps. Therefore, the number of pulses of an
optimal field is completely determined by the length of T.
The structure of the optimal fields is regular. If we let T,
and T, be two different target times with T, shorter than
T,, then the entire structure of the optimal field for T'| over
[0,T,] coincides with the structure of the optimal field for
T, over [T,—T,T;]. The time 1/2B serves as the period
of an optimal field for 7> 1/2B, and is also the period of
gas susceptibility free evolution. We have shown that for a
desired target time T, the optimal field can drive the sus-
ceptibility change of CS, gas to achieve a maximal value
exactly at T. In general, the longer the target time, the
larger the maximally achievable value of the susceptibility
change at the target time. However, if the difference be-
tween two target times is much smaller than 1/8B, the
maximally achievable values are identical. With a limited
intensity laser (~7.0 MW/cm?) and a target time in the
hundred picosecond range, the optimized susceptibility

change of CS, gas is the order of Ax(T) ~ 1076,

For temporal profile control, the degree of control is
very much dependent on the length of the time interval
over which the target profile is defined. Usually if the time
interval is shorter than 1/8B and the target profile is a
smooth and non-negative function with a reasonable max-
imal value, the control usually can be realized perfectly. In
other cases, the detailed assignment of the weight function
in the cost functional plays an important role in determin-
ing how to make an optimally controlled susceptibility
change profile approach a target profile.

It has been seen that the gas temperature can also
affect the optimal control properties. For terminal control,
the pulse widths of an optimal field and the maximally
achievable susceptibility change are inversely proportional
to the gas temperature, while for temporal profile control,
a higher gas temperature will smooth out the functional
form of the optimal field.

We have also shown the- power spectra of the optimal
fields, both for terminal controls and for temporal profile
controls. For CS, gas at T, =300 K, the power spectra
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widths are less than a 100 cm™'. Having a carrier fre-
quency between 1~2X 10* cm™!, which is in the nonres-
onant region of CS,, and frequency band width ~10?
cm™!, the required laser fields for optimal control of sus-
ceptibility changes for CS, gas appear feasible to achieve in
the laboratory. It is the ultimate purpose of the present
work to be preparatory for a molecular optimal control
susceptibility change experiment.
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