e PN v i G 2

A New Stability Analysis of a CMAC-Based
Adaptive Control System

August 23, 1995

The CMAC adaptive control element is envisaged as being used as a
feed-forward component ’piggy-backed’ with an existing continuous time
conventional feedback controller, as shown below, in what Kawato terms
"Feedback Error Learning’. The CMAC is by its nature a digital element, so

>

Derivative

. Discrete Time Block
inPUT Ly s oroh—0 ST pLANT +{ouTPuT

x{t)

Training Signal Continucus Time Continuous Time Output

Controlier Plant

Figure 1: CMAC adaptive contrcl element used in conjunction with a con-
ventional feedback controller.

to facilitate easier analysis, the conventional feedback controller (CFC) will
be approximated as a digital element followed by a zero-order-hold (ZOH),
running at the same clock speed as the CMAC. The continuous time plant
preceded by the ZOH can now be exactly represented as a digital plant.
For the time being, linear time-invariant single-input single-output systems

will be examined. Non-linear systems will subsequently be discussed briefly.
The analysis will be carried out in three stages of increasing complexity :

e CMAC without generalization, no CFC.
e CMAC without generalization, with CFC.
e CMAC with generalization, with CFC.

The training of the CMAC is assumed to be via a periodic input signal
(period p discrete time steps), which the system output will match when
training is complete.

1 CMAC without Generalization, no CFC

The configuration of the system is now as shown below. The discrete transfer

LN
.
Derivative Adaptive Element

v{t)

x(t

Output

INPUT p—L
Sum e(t)

Training Signal Discrete Time Block ~ Exact Discrete Equivalent
of Continuous Time Plant

Figure 2: Previous system with the conventional feedback controller removed
for easter analysis.

function of the plant is represented as

z(z) _ PN(z)
u(z) PD(z2)

Without generalization, the CMAC behaves as a look-up table. For every
point in the discretized phase space, defined by the training signal inputs

to the CMAC, there is a memory location with a stored value, representing
the control value to be output whenever the training signal trajectory passes
through this point in phase space. This corresponding memory will hereafter
be referred to as the weight space. The values stored in the weight space
locations change during training via addition of the update signal. Because
the training signal is assumed to be periodic (period p time steps) the same
point in phase space is passed through (and thus the same memory location is
used to output the control value) every p time steps. The iterative behaviour
of the CMAC block can thus be described as

u(k) = u(k —p) + v(k —p+ d)

where the CMAC memory used to generate the (k — p)’th control value is
updated with the update value from d time steps later, for reasons that will
become clear in a moment. The transfer function of the CMAC element is

then
u(z) AN(z) ¢

v(z) AD(z) zp-1
Let the transfer function of the update element be represented by
oz) _ $UN(2)
e(z) UD(z)

where ¢ is a gain commonly referred to in the literature as the learning raie.
The overall closed loop transfer function of the system is now

z(z) ¢ PN(2)UN(2) z¢

r(z) (22 = 1)PD(2)UD(z) + ¢ PN(z) UN(z) 2¢

Given that ¢, UN(z), UD(z), and d can be chosen by the designer, the
question is how to ensure stability of the above transfer function, in which
the period p could be quite large. The poles are defined by the denominator,
which is in the form
(28 = 1)Q(2) + ¢ R(2)

Obviously if ¢ R(z) = @Q(z) then the denominator reduces to zP Q(z). This
is equivalent to setting UN(z) = PD(z), and UD(z) = PN(z)z%. Note
that the update transfer function UN(2)/U D(z) must be a proper one, ie.
the denominator must be of equal or greater order than the numerator, and
because it is likely that the order of PD(z) is greater than that of PN(z),
the 'update delay’ d must be chosen accordingly. This is what could be

referred to as the ’ideal update’, because the update transfer function is
essentially the inverse of the plant transfer function. However this requires
exact knowledge of the plant, and in any case one might ask what is gained
over just inserting a straight feed-forward element which is the inverse of
the plant 7 The answer is that if the plant characteristics changed, then
assuming stability were maintained, the CMAC would still retrain itself,
whereas the straight feed-forward element would not.

The behaviour of the roots of the denominator of the overall transfer
function can be examined in more detail by noting that it is already in the
correct form to be plotted as a root locus, viz. (22 — 1)Q(z) + ¢ R(2) =
0, where we regard (2P — 1) Q(z) as the denominator (roots of which are
represented below as x's), and ¢ R(z) as the numerator (roots of which are
represented below as o’s). Assume all roots of Q(z) are already inside the
unit circle. Now it is necessary to ensure that all the roots of 2% — 1, sitting
on the unit circle, move inside it as ¢ is increased from zero. The best way
to ensure this is to place the zeros’ of R(z) exactly over the 'poles’ of @(z),
so that the following root locus results. This is exactly what was done with

Imag Axis

Real Axis

Figure 3: Root locus of the poles of the overall transfer function as the
learning rate ¢ is increased from zero (no generalization, no CFC). For this
ezample, Q(z) has all its roots inside the unit circle, and p was chosen as
10 for easy visualization of results. Here roots of R(z) ezactly maich those
of Q(z). All poles initially move inside the unit circle as ¢ is increased.

the 'ideal update’, as seen by the fact that all the 'poles’ of z? — 1 converge
at the origin when ¢ = 1 (if the leading cocflicients of @(2) and R(z) are the

same). But what if the plant transfer function is not known exactly? The
situation where Q(z) is not ’canceled’ exactly by R(z) is shown in the next
figure. As long as Q(z) and ¢ R(z) approximately match, then the system
will be stable for a range of ¢ values. There is one important point to note,

2

25 T2 Ts O o5 o o5 1 s 2 as
Real Axis

Figure 4: Same ezample as previously, but where roots of R(z) do not match

those of Q(z) ezactly, but R(z) and Q(z) are of the same order. Again, all

poles initially move inside the unit circle.

however. The order of Q(z) and R(z) must be ezactly the same, or some
of the 2P — 1 poles will immediately move away from the unit circle as ¢ is
increased, rather than first moving inside it and then out. One consequence
of this is that if there is some transport delay in the plant, represented by

the transfer function
z(z) PN(z)

u(z) 2b PD(z)
then the 'update delay’ d must be chosen to take this into account ezactly.
The following figures show this effect.

tmag Axis

Real Axis

Figure 5: Same ezample, where R(z) is of higher order than Q(z). Some
poles immediately move outside the unit circle as ¢ is increased.

Imag Axis

0
Real Axis

Figure 6: Same ezamnple, where R(z) is of lower order than Q(z). Some
poles immediately move outside the unit circle as ¢ is increased.

2 CMAC without Generalization, with CFC

LN

[o | SuAc

Derivative Adaptive Eiexyent
UPDATE
v(t)

Discrete Time Block "
() 1) uft) XO_

INPUT — i R - { PLANT - ourpur'

Sum et Sumi

Discrete Approximation of gyact Discrete Equivalent
Continuous Time Controller 5f Continuous Time Plant

u2(t)

Training Signal Output

Figure 7: Continuous time CFC approzimated by a discrete time CFC fol-
lowed by a ZOH. This ZOH is then lumped with the continuous time plant
to create an eract discrete time equivalent plant.

The transfer function of the CFC element is represented as

u1(2) _ CN(z)
e(z) CD(z)

and the overall transfer function of the system is now

z(z) : (22 = 1)PN(z)CN(2) UD(z)+ ¢ 2¢ PN(z) CD(2) UN(z)
r(z) =~ (2¢ — 1)[PD(z)CD(2)+ PN(z)CN(z2)]UD(2)+ ¢ 2¢ PN(z) CD(z) UN(2)

the denominator of which is still in the form

(2 - 1) Q(2) + ¢ R(2)
The effect of the CFC has been to modify the Q(z) and R(z) polynomials,
so that the 'ideal update’ is now
$UN(z) PD(z)CD(z)+ PN(z)CN(z)
UD(z) 28 PN(z) CD(z)

where again d must be chosen so that Q(z) and R(z) are exactly the same
order. The following is a simulation example which shows that the CMAC

7

does indeed behave as described above, when there is no generalization. The
plant and CFC transfer functions were chosen to be

PN(z) _ 1

PD(z) ~ z(2-10.8)
CN(z) z2—0.7
m - 05 ——————

Each of the directions in the the CMAC phase space, r(t),7(t) was discretized
into 101 levels. The training signal was (t) = sin 22 ¢ with a time step of
0.025 seconds, giving a periodicity p = 200. In accordance with the above
principles, the variable parameters were chosen to be

Update transfer function : %% = ___Z'ZO-G
Learning rate : ¢ = 0.5

Update delay : d =2
The following behaviour resulted. The update delay was then changed to

1 T T T T T T T T Y
5 10 15 20 25 30 35 40 45 5¢

0

N

. " . . ' : s L :
5 10 15 20 25 30 35 40 45 50

D), x(t)
=]

e(t)
=]

" " s n . s
0 & 10 15 20 25 30 35 40 45 50

5

L A L n " \ . 2 L
-] 10 15 20 25 30 35 40 45 50
tima t

Figure 8: CMAC without generalization, update delay chosen correctly.

be d = 1, with the results

[10 20 30 40 50 60 70 80
T T T v T

e{y
o
?
-
B
——
PR —

. A . A A
0 10 20 30 40 50 60 70 80
0.5 T T T T v T
e il
5 o\~ LA A | ’
08 ") .) s "
[} 10 20 30 40 50 60 70 80
1 T - T T T T T T
g O—WMM/WM/
a3
_1 2 n R ; L . .
[} 10 20 30 40 50 60 70 80

time t

Figure 9: CMAC without generalization, update delay chosen incorrectly.

3 CMAC with Generalization, with CFC

With generalization, the CMAC no longer behaves exactly as a lookup table.
The amount that each succeeding weight template overlaps the previous
ones, and where it overlaps, depends very much on the training signal. As
an analysis tool, imagine the following simplified behaviour. Assume that
each weight template always overlaps the previous one by the same fixed
amount, in the manner shown in the next figure. For the example depicted
in the figure, with five weights used at each calculation of the control value,
an overlap m of three weights with the previous time step, and and 'update
delay’ d of one time step, the transfer function of the CMAC becomes

3 1 1
uz(k) = guz(k—l)‘Fguz(k*'P+2)+gu2(kfp+l)
3 1 1
+ k) +zu(k-p+3)+ cv(k-p+2)
u'z(z)=AN(;:)=9zs IpplA4l2
v(z) AD(z) o112 1,

5

Now the denominator of the overall transfer function becomes (2P — 2 27~1 -
122 — 12)Q(z) instead of (2P — 1) Q(2), and the following figure, plotting

9

Figure 10: Simplified CMAC behaviour. Weights used at each time step to
calculate the control value.

the poles and zeros of the CMAC transfer function, shows that the poles
of this new polynomial, rather than sitting on the unit circle, are all on or
inside the unit circle. The net effect of this change is to make the system
much easier to stabilize. The reader may verify that the general form of the
CMAQC transfer function with the preceeding simplification in behaviour is

a } b .)
up(k) = Zug(k—ja)+ = us(k — js) + — u2(k — 5c)
g g g
a) b . c .
+ —v(k—ja+d)+ —v(k—jp-+d)+ -v(k~jc+d)
g g g
with the indices and coefficients

Ja = 1ifm>0
jb = p—np, ny the largest such that ny (g - m)<g,if g—m>0
je = p— n, n. the largest such that n.(¢g — m) <=m,ifg-m >0

0 otherwise

{m/gifd:l

b = { 1/g max([min{(p — j» + 1) (¢ — m), 9} — max{(p —) (¢ — m),m}],0)if jo —d >=0
0 otherwise : -

as for b (but do not duplicate b if j. = j)

o
1

10

Imag Axis
(=]

= %5 0 05 1
Real Axis

Figure 11: Poles and zeros of the CMAC transfer function, generalization

g = 5, overlap m = 3, update delay d = 1, period p = 20

How closely does this simplified behaviour represent the actual behaviour
of the CMAC? In practice, because the weights chosen as training proceeds
are so dependent on the training signal, the overlap varies. It becomes
possible that even with generalization, there are periods in the training
cycle where there is no overlap, and this situation is exactly equivalent to
no generalization. Thus it becomes necessary to design the update block and
the learning rate such that the system is stable for any overlap. However
the no-generalization case, because the pales of the CMAC transfer funtion
are initially on the unit circle rather than inside it, is the most restrictive
case.

The following figure shows the same simulation depicted previously, with
a generalization g = 5 selected.

11

2 T ¥ T T T T ¥
30 40 50 (] 70 B8O
05 T T T T
g o :
s . .
30 40 50 60 70 80
01 T T T T T T Y
s o — .
k-J
0 10 20 30 40 50 60 70 80
0.5 T T T T T T T
S SAVAVAVAVAVAVAVAVAVAVAVAVAVAVR
=
9 R
[+] 10 20 30 40 50 60 70 80
time t

Figure 12: CMAC with generalization ¢ = 5, update delay chosen correctly
based on the no-generalization case.

12

