Simulator of optimally controlled molecular motion
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This paper presents results of a molecular dynamics simulator (MDS) used to explore optimal
control of molecular motion. A realistic model of an interatomic potential is created by a
configuration of magnets. This simulated potential approximately models both the short and long
range portions of true molecular potentials. Atoms within a polyatomic molecule are simulated
using carts which float on an air track and a mechanical driver simulates the action of a controlling
laser. In-analogy with a molecular system, the potential is determined by analysis of a series of
dynamics experiments. Knowledge of the potential combined with optimal control theory enables
the design of the driver motion necessary to achieve controlled dissociation. Successful control
requires overcoming a variety of difficulties analogous to those expected to be faced in the control
of true molecular systems. The MDS provides insight into factors affecting the molecular control by

demonstrating a real-time simulation of laser controlled molecular dynamics.

L. INTRODUCTION

Recently there has been considerable interest 1n de51gn1ng
shaped laser pulses to control molecular systems.!™* One ob-
jective has been to perform molecular site-selective chemis-
try. In order to achieve such ambitious goals, many uncer-
tainties and complications have to be overcome. The
molecular dynamics simulator (MDS) is a tool that has been
developed to help gain insight into the physical issues and
problems that may arise when dynamics of real molecules
are controlled in a laboratory environment. The use of a
physical simulator is especially useful since it focuses atten-
tion on the validity of approximations for describing the true
system, and it also forces one to consider real laboratory
noise and imprecision. The MDS is. a bench top electrome-
chanical simulator of driven molecular dynamical motion
and includes. the capability of simulating chemical bond
breaking. Since the MDS operates on the comfortable time
scale of seconds and its actions are directly visible, it is
possible to identify easily and often intuitively both favor-
able and undesirable behavior. The MDS is an inexpensive
forerunner to true laser control experiments, and it provides
an ongoing testing ground for new concepts in molecular
manipulation and control prior to their full implementation.
The MDS regorted here is a significant extension of an ear-
lier version™® in that the simulated molecular bonds are now
nonlinear.

The MDS operates naturally as a classwal mechanical de-
vice, and so ‘it is necessary to consider the significance of
classical mechanics when modeling molecular interactions.
Although quantum mechanics provides the proper descrip-
tion for designing optimal controllers of molecular systems,
the calculations are currently impractical for systems of more
than three or four degrees of freedom. Further, in many cases
classical mechanics may be used as an approximate descrip-
tion of the average quantum mechanical dynamics. This is a
good approximation for cases in which the system size is
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much greater than the de Broglie wavelength and when wave
packet spreading and tunneling are avoided or are insignifi-
cant. In these cases, computer simulations indicate that clas-
sical descriptions may often be quite adequate.”

A fundamental issue concerns how the MDS may be em-
ployed to yield useful insight and guidance towards the ulti-
mate goal of actually controlling molecules. The logic here is
quite analogous to the everyday employment of ball and
stick models of molecules to provide insight into various
structural and possibly, chemical reaction pathways of real
molecules. Although such simple classical models cannot
mimic all molecular structural features, they very often pro-
vide key insights to guide chemical thinking, and even labo-
ratory synthesis of new molecules. It is exactly in this fash-
ion that we put forth the MDS, but at a higher level of now

‘being a dynamical analog of the actual process of manipu-

lated reactivity at the molecular scale. Laser control of reac-
tions, we now fully understand, is an inherently dynamical
process and cannot be simply viewed in structural, or even
spectroscopic, terms alone.  Although a simulated field suc-
cessfully controlling the MDS will likely not be directly scal-
able in all of its features, down to an optical control field at
ultrafast molecular times, the insights gained are expected to
be valuable for assessing what type of processes are feasible,
as well as the nature of the key issues and the pitfalls that
need to be addressed. Thus, we assert that, just as ball and
stick models have garnered a routine position in the strue-
tural chemist’s tool box, the MDS can play an equally valu-
able role for the scientist attempting to consider control of

‘molecular dynamical events. Perhaps the most significant

limitation will come from the fact that most practical MDS
devices will likely be restricted to relatively simple molecu-
lar analogs, but for the foreseeable future, this circumstance
also coincides with what is being contemplated in the labo-
ratory at the molecular control level.
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Fig. 1. Diagram of the MDS. Carts floating on a near frictionless air track
are driven by a computer controlled driver, and their positions are measured
by linear photodetectors.

II. MDS DESCRIPTION AND THE SIMULATED
INTERATOMIC POTENTIAL '

The MDS consists of carts, representing atoms, which
float on a nearly frictionless linear air track and a mechanical
"driver which is the analog of a laser (Fig. 1). The positions of
the carts and the driver are traced using optical position de-
tectors connected to a computer. The position sensing
method requires that battery operated light-emitting diodes
be placed on the carts and driver, and linear photodetectors
be located alongside them. The driver detector is used with a
proportional integral (PI) feedback circuit to remove me-
chanical loading effects due to the inertia of the carts, in
addition to providing driver position information. Each cart
provides a vibrational degree of freedom for the model of a
molecule, and the driver represents the forcing by a laser.
This MDS evolved out of an earlier version in which me-
chanical springs, both harmonic and nonlinear were used to
join the carts and driver. We found however, that the con-
figuration of small rare earth magnets in Fig. 2 provides a
much more realistic representation of a molecular potential.
The cart/driver schematic in Fig. 2 shows the stable equilib-
rium distance corresponding to the bottom of the potential
well at 0.7 cm. For displacements of the cart to larger rela-
tive distances the attractions between the nearest poles of the
three dipoles dominate so that the net force is attractive. The
same concepts apply at the unstable equilibrium point at
—0.7 cm except that the forces are repulsive since the nearest
three poles of the dipoles are the same. By treating the mag-
nets as point dipoles, the following analytic form for the
potential was obtained:

Vix(g—€—qq)
V(ig—e€)= Vo—[xz_,_l?qz eiqZ)OZ]S/z . (N

A plot of this potential is shown above the cart and driver in
Fig. 2 by the solid and dashed lines. Here V and g, are
arbitrary constants used to define the positions of the axes,
V, and x are parameters that depend on the strength of the
magnets and their relative positions, g is the displacement of
the cart in the lab frame, and € is the driver displacement
which is generally much smaller than g. The motion of the
cart is restricted to the potential well on the right-hand side
of Fig. 2, and the lower part of the steep repulsive wall to the
left-hand side. The motion of the simulator never entered the
unphysical dashed region which differs from models of the
true molecular potential which have a steep wall shown by
the dotted line. Dissociation occurs when the cart has suffi-
cient energy to escape from the well to the right-hand side.
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Fig. 2. The potential energy of a magnetically simulated bond is shown
against relative distance between the driver and the cart. The solid line
covers the region accessed by the dynamics. The dashed line shows the
actual potential energy of the magnetic bond. For comparison the dotted line
indicates how a realistic molecular bond would appear. The driver and cart
are shown in their equilibrium positions below.

The potential is linear in bond displacement (g — €) near the
inflection point on the repulsive wall, and the soft attractive
barrier falls off as 1/(g—¢€)* at large displacements. The
potential can also be described by its Taylor expansion in the
driver displacement

V=V +0V
0T He

1 8*V

I 24...
B €+2 (962 e+ , (2)
e=0

e=10

where the second term on the right-hand side represents the
linear dipole interaction, and the third term the polarizability
interaction. In the present form of the MDS it was found that
the polarizability term is typically 10% of the linear term.
When the MDS is configured with a single cart and driver it
simulates the oscillations in a diatomic molecule, and when
configured with two carts and a driver it simulates oscilla-
tions in a triatomic molecule.

As with the control of a molecular system, it is necessary
first to establish the potential. This was done by iteratively
performing a series of trial dynamics experiments to be mod-
eled by an appropriate potential. First a test driver function
was generated using optimal control theory and approximate
values for the potential parameters. Then accurate values of
these potential parameters were obtained by fitting the result-
ing dynamics to the model and the form of the potential was
verified as adequate. Figure 3 shows the response to the driv-
ing field, and a fit to it using the equations of motion with the
potential form given above.

III. OPTIMAL CONTROL

In general for small displacements the Hamiltonian of a
molecule and also its simulated form is given by
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Fig. 3. The response of the cart (upper line) to a test driver function (lower
line) to determine the parameters of the potential energy curve. The solid
line is a three parameter fit using the equations of motion assuming a po-
tential of the form given in Eq. (1). '
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H=p"Gp+V(q,e), €)

where g and p are vectors containing the positions and mo-
menta of the carts, respectively, and G ‘is the Wilson G
matrix.® In the case where only one cart was used p and ¢
become scalars and G becomes the inverse of the mass m.
The equations of motion are given by Hamilton’s equations

. _dH _p(1)

=% ~m > 4)
. OH v S
P="% =5 ap(1), )

where ap is added as the damping term of the cart motion
and is assumed to be proportional to velocity. In matrix form
these equations are represented by

i=f(z,1), z(t)=(;’g;). ©6)

Optimal control theory is used to design a driving function
€(t) which forces the cart to reach an objective state vector
z(T) at the target time 7. The method is based on the calcu-
lus of variations, to achieve the best form for €(¢#) by mini-
mizing an objective cost functional. The driver €(¢) cannot
be an arbitrary function for a real laser pulse or for the me-
chanical driver and is subject to various constraints; first it
must be a smooth continuous function without any jumps
that could not be followed by the driver or laser and second
the amplitude of the driver at the initial and final times, €(0)
and €(T), must equal zero. The second requirement follows
from the first constraint and the fact that before and after the
time interval the driving field has zero amplitude. These con-
straints are met by representing €(z) by a Fourier series of
sine functions

ol it
6(t)=2 C; sin(T). )]
i=1

By keeping N small one can restrict the form of the solution,
and avoid unwanted high frequency behavior.

Optimal control theory uses a cost functional which is
minimized by adjusting €(¢), and eventually calculates an
optimum driving field e(¢) to reach the objective subject to
the constraints. The cost functional is constructed based on
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physical considerations of balancing the desire to reach the
objective in competition with minimizing any undesirable
aspects of the system dynamics and control function. In par-
ticular, the cost functional used here is given by

1 1 (7
J=§[2(T)— y]TPf[z(T)—- 7]+5 fo dt[ th(q2—¢”

1 (T
+3 f di[z(8)TWz(£) + W,e(1)?], @®)
0

where the first term is the deviation from the final objective,
%, weighted with the matrix P;. The second term is a
weighted envelope that restricts the amplitude of the re-
sponse (bond stretch in this case) below a straight line join-
ing the initial and final states using a smoothed step function
h(s)=tan"!(gs)+ /2. This function A(s) approaches zero
for s<0, and = for >0, and its slope is governed by the
parameter g. The second term is important since it prevents
large oscillations, which accentuate effects due to noise,
from occurring near the beginning period. The third term
permits the integrated amplitude of the cart and driver to be
weighted with W and W,, respectively, and so weights
against large amplitude oscillations of the cart and driver
over the whole interval encouraging smaller, more- control-
lable dynamics. The same considerations are expected to be
of importance in actual controlled molecular dynamics.

To minimize J with the constraint that the equations of
motion be satisfied, a Lagrange multiplier vector A (¢) is in-
troduced '

i=- [ anToti- s 01 ©

and the new cost functional J is minimized with respect to A,
z, and e. The resultant optimizing equations were solved nu-
merically, and an optimal trajectory was generated with the
design of e(¢) to be implemented in the MDS. Its action on
the simulated molecule was then observed. Despite the pres-
ence of laboratory noise and uncertainties in the potential, no
special care was taken to include robustness in the design
process, but the results proved adequate in this case. Two
examples are considered below corresponding to control of
di- and triatomic molecules.

IV. RESULTS

In the examples shown here, emphasis is given to issues
and observations that have important analogs at the molecu-
lar scale. First, Fig. 4 shows an optimally designed molecular
bond length trajectory for a single cart (i.e., a diatomic mol-
ecule), which reaches an objective amplitude and momentum
after 5 s, with four actual runs of the MDS. The designed
driving field is shown below the cart trajectory as a solid line
and the actual laboratory driver as a dotted line. The plot
demonstrates the very good repeatability achieved by the
cart’s response to successive runs of the driving control field
as well as a high degree of accuracy in following the pre-
dicted trajectory and in reaching the final objective. The tra-
jectory shown here resulted in dissociation after the control
field was turned off. To obtain such accurate and repeatable
results there were a number of factors. that had to be taken
into account, many of which may be analogous to actual
molecular control issues.

Morris et al. 819



Cart

Position (cm)

' Driver

Fig. 4: The response of the cart to an optimally generated driving function.
The upper solid line is the predicted path for the cart, and the four dotted
lines show successive laboratory trajectories of the cart, demonstrating good
control and repeatability. The lower solid line is the generated driver func-
tion and the dotted line the actual driver path. The cart dissociated after the
end of the plot.

The model for the potential did not accurately describe
large amplitude oscillations, reflecting the fact that fits to
large oscillations (>3 cm) gave significantly different param-
eters than fits to smaller ones (<1 cm). In order to produce
accurate predictions for the trajectories, it was necessary to
restrict the amplitude of the oscillations to be under 1 cm
until the final “kick” from the driver caused dissociation as
shown in Fig. 4. In true molecular dynamics the potentials
often have to be approximated. Here too, information at
higher energies is often less reliable, and so a designed tra-
jectory may have to be restricted in a similar way.

Noise in the initial conditions due to air fluctuations had to
be suppressed since it caused a phase shift and significant
deviations in the resulting trajectory. Likewise errors in the
specification of the initial molecular state could degrade the
effectiveness of molecular optimal control. Damping was
also a factor, and was adequately modeled as being propor-
tional to the velocity.

One interesting observation was the effect of an extra un-
modeled degree of freedom in our apparatus. It was found
that as the cart approached the driver a small torque initiated
sideways oscillations which modified the linear motion. The
net effect here was the introduction of an unmodeled term in
the Hamiltonian which caused nonrepeatable motion and a
significant loss in accuracy. The torque could be due to
slightly different strength magnets on the cart, misalignment
of the driver magnet, or imperfections in the dipole nature of
the magnets. The lateral oscillations were greatly reduced by
a change in geometry (reducing the moment arm) and by
careful alignment of the magnet on the driver with respect to
the cart magnets. As a result the repeatability of the cart runs
was significantly increased. This overall situation once again
has a molecular analogy in that an incomplete model of the
molecule one is attempting to control, or incomplete knowl-
edge of the laser-molecular interaction can influence the
overall performance of the optimal controller.

In the control of real molecular dynamics, the propagation
of the laser pulse through a sample medium can change the
laser field. Similarly the mechanical driver is influenced by
the cart motions and PI feedback is needed to cause the
driver to accurately track a desired trajectory as shown in
Fig. 4. Analogous steps will have to be considered when
designing an optimal field for a molecular system.
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Fig. 5. A simulated triatomic molecule. The solid lines show the designed
driver function and the predicted trajectories of both carts. The final target-is
a maximum separation of the two carts with a minimal separation of the
driver and first cart. The dashed lines show four consecutive trajectories of
the carts.
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After successfully controlling the single cart model, an
additional cart was added to simulate a triatomic molecule
using a magnetic bond similar to the one joining the driver
and the first cart. The equations of motion and the cost func-
tional were extended in a straightforward manner to account
for the extra degree of freedom, and then the potential of the
second bond was found in a similar way to the potential of
the first bond but using the new equations of motion. Opti-
mal control theory was then used to generate a theoretical
driving field to force the carts to obtain objective displace-
ments at a given time. The responses of the carts to this
driving field are shown in Fig. 5, along with the predicted
response of the carts. Here the MDS maps onto a family of
possible triatomic molecules including the case of the
stretched target bond being the stronger of the two. These
plots show very good control over almost the full trajectory.
Not surprisingly the control of the carts is not quite as pre-
cise as the single cart case due to uncertainties in both bond
potentials. Thus these results strongly suggest the need for
improved control in order to achieve designed bond break-

ing.

V. CONCLUSION

The MDS provides a low cost method of testing the vi-
ability of different schemes to control molecular dynamics,
as well as helping in assessing which factors could be impor-
tant. The first example presented here of a one degree-of-
freedom diatomic molecule, successfully demonstrates con-
trolled dissociation of a bond. The second example shows
that control can be extended to molecules with more degrees
of freedom. By carrying out this laboratory demonstration,
we were forced to deal with many experimental uncertainties
that one could expect to encounter for actual bond selective
chemistry. The advantages of the MDS over computer simu-
lations alone includes the necessity to consider many experi-
mental factors that might otherwise have been overlooked in
a computer model such as an incomplete knowledge of the
potential form or an unmodeled degree of freedom. Given
also that the MDS models a nonlinear oscillator, it is an
excellent apparatus to test the robustness of optimal control
theory.
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Additional carts could be added to simulate larger poly-
atomic molecules as was done in the linear harmonic MDS.’
A true simulation of selective chemistry could be tested in
which one of the bonds is broken while the other is left
intact, and the robustness of the optimal control theory ex-
amined. Chaotic behavior may also be observed in systems
with two or more degrees of freedom, and 1ts p0551ble effects
on the achievement of control 1nvest1gated 0 The MDS may
also be suitable for testing other proposed methods of
achieving selective chemistry. An example would be the use
of closed-loop learning algorithms to circumvent the com-
puter design process on the incompletely known molecular
system in which the smulated molecule teaches the driver
how to achieve its control.!! Eventually a desired response
would be generated without having to provide a detailed
model for the potential, and its MDS evaluation could be a
valuable forerunner to actual molecular implementation.
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