Procesdings of the 1993 international
Symposium on Intelligent Control
Chicago, Htiinols, USA - August 1993

TM4 - 3:10

Endpoint Position Control Using Biological Concepts

Kelly Ann Smith & Michael G. Littman

Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

Abstract

A biologically inspired algorithm has been refined for
position contro! of a multilink robotic manipulator. In this
approach, changes in joint angles are computed by a method of
successive forward approximation in a manner that is naturally
parallel and very simple. Improvements to the algorithm
provide nearly uniform convergence for all motions regardless
of direction and location in the workspace. Neural networks
may be used to further improve trajectory control,

1 - Introduction

A manipulator with more degrees of freedom (DOF)
than necessary to perform a task is redundant. For example, a
planar manipulator needs only two DOF to reach any point in
the x-y plane. A redundant manipulator would have three or
more DOF, and it may achieve a given endpoint position in an
infinite number of ways.

The human body in profile can be thought of as a seven
link redundant manipulator, moving in a plane (Figure 1).

O

Figure 1. Seven-link representation of the human body in profile.

We have developed such a manipulator in our laboratory, and
we refer to it as SLIM (Skill-Learning Intelligent Manipulator).
One of the goals of our work on SLIM is for movement to
occur anthropomorphically. For this reason, we are interested
in algorithms which form biological-like trajectories.

In most instances, there are infinitely many postures
that a redundant manipulator may take to reach a given
endpoint. In determining a posture, it is often beneficial to
consider other factors, such as balance or obstacle avoidance,
which makes some postures more desirable than others. An
important advantage of redundancy is that it provides postural
flexibility to satisfy multiple goals. These include the ability to
reach around obstacles and avoid undesirable joint positions.
Redundancy may also provide the ability to distribute loads
throughout a structure, to optimize dynamic response, to
minimize joint torques, or to lessen shock [1-8].

It is also well-established that there are many ways to
manage link redundancy, although there is no generai
agreement as to a best method. The most common approach
involves the Moore-Penrose pseudoinverse. We will discuss

0-7803-1206-6/93/$3.00 ©1993 IEEE

some of the drawbacks of this method and explore the use of
an alternative biologically inspired approach. We will also
discuss how neural networks may be used to optimize its
performance. :

1.1 - Inverse Kinematics of a Redundant
Manipulator \

The endpoint of a manipulator arm is given by the
vector X, made up of m Cartesian coordinates. X is a

function of ©, a measure of » joint angles (Figure 2).

)

.ﬁ

[) (xl,x2)

9, ® endpoint

>4

Figure 2. This figure demonstrates the relationship between angles 9,
6;, 63 and Cartesian coordinates x; and x; .

To move the end of the arm toward the desired

endpoint, the appropriate joint velocities (©) need to be
determined. Since X = f(@), then

x=*6 o x=Jb (1)
d6

where J = % is the Jacobian matrix of dimension (m xn).
When m = n, © may be found by taking the inverse of J, or
o=J"'x (2)

Since J is not square for redundant manipulators (n > m), the
Moore-Penrose right pseudoinverse or weighted right

pseudoinverse of J can be used to determine ©.

e=J"x=JTJy'x (3)
or
O=J"xX=wyTgwyT)'x (4)

255

where W is a weighting matrix of dimension (nxn).

1.2 - Managing Redundancy

Our goal has been to find a simple algorithm to manage
redundancy that is easy to implement and may be mapped onto
a parallel computer. The algorithm must work well both inside
and outside the reach of the arm, and at singularities. Also, a
manipulator should begin a trajectory immediately after a
desired endpoint is given; the delay, or latency, should be as
small as possible. The algorithm should also be generalizable
to other problems, such as systems with many links or force-
position control. The belief that nature has produced a very
successful redundant manipulator leads us to consider
biologically inspired algorithms.

The approach we have been investigating is that of
Berkinblit and his colleagues, who found that spinalized frogs
use a method of successive approximation to attain a new
endpoint [9]. This method involves a simple cross-product
term for the angular velocity of each joint, independent of the
others. The necessary movements are obtained in parallel.
Besides having the advantage of inherent parallelism, the
manipulator begins to move even before the algorithm has
converged. This method has problems at singularities;
however, the use of muscle synergies can resolve these
difficulties. A synmergy is a group of muscles which act
together to achieve a single goal, such as the multijoint task of
the withdrawal of an arm from a dangerous object. The
inclusion of reflex synergies also has benefits in improving
convergence of the algorithm,

Hinton also propeces a method of controlling a
manipulator arm based on parallel control [10]. He suggests
using a "motion blackboard" which represents the static and
dynamic parameters of the arm at any instant. - Joint
computations are performed in parallel, and all joints have
access to the previous values put on the motion blackboard.
Hinton's structure may be combined along with Berkinblit's
algorithm [9] to form a method of paraliel successive
approximation.

Other methods for managing redundancy include a
variation of inverse kinematics called the Jacobian null-space
method. This has been used by many to simultaneously
achieve endpoint positioning and other goals, which include
avoiding obstacles [2-3], singularities and unwanted joint
torques [4]. Nakamura, ef al. satisfy a number of objectives
using a task priority system [5].

Use of the null space is helpful when dealing with
multiple objectives; however, it is computationally expensive,
since the inverse Jacobian must constantly be re-evaluated.
The applications of many other algorithms are also viable, but
most require many computations to achieve a result. This
causes a delay before any movement occurs. Also, it is
unlikely that these calculations are performed in biological
movements.

Pipelined and parallel processing can be used to reduce
this time. Pipelined processing works well if many serial
calculations are needed, such as finding the inverse of a
matrix. Pipelining an inverse kinematics system has the
capacity to improve computation time; however, there is a
delay before the first set of calculations is finished where there
is no movement.

There is generally a much smaller time delay for
calculations computed in parallel over those which are
pipelined. Zhang and Paul [11] take advantage of this in a
parallel method of performing the inverse kinematics task.
Movement begins sooner in a parallel system, and accuracy is
not necessarily sacrificed. It is simply a matter of performing a
few more iterations with the parallel method to achieve the
accuracy obtained by a pipelined method. Since our algorithm

is inherently parallel, we enjoy the advantages of quick
processing and no delay in movement. Both of these qualities
contribute to biological-like movements.

2 - Berkinblit-Hinton Algorithm

The biologically inspired Berkinblit-Hinton algorithm
is quite simple. A basic cross-product term provides joint
velocities in the form of angle increments:

A6; =kjjr|lelsin(g;) or w*At=krixe (5)

These increments represent velocities taken over a constant
change in time, Af. A scalar gain, k;, multiplies the cross-
product of r; and e. r;is the vector from joint i to the end of
the arm. e is the error vector, which is measured from the
actual endpoint of the arm to the desired endpoint. ¢; is the
angle at joint {, as defined in Figure 2. ¢; is the angle between
r; and the error vector (Figure 3).

© actual endpoint
* desired endpoint

Figure 3. This figure defines r, e and ¢.

A6; is computed for each of the { joints simultaneously,
and all links are commanded to move at each iteration.

2.1 - Performance of Algorithm

This paper discusses only those results found in
simulation where we assumed there was no gravity (no
dynamics). This algorithm was tested on an n-link arm, with
the constraints that it could only move into postures a human
arm could obtain. In this section, we discuss the results of a
two-link case for simplicity. Similar results on the
corresponding three-link arm are discussed in Section 3 -
Application to N-Link Systems.

A measure of the algorithm’s performance is obtained
by moving the desired endpoint one-sixth of the total arm
length as a step input. The number of iterations needed for
convergence to within one-tenth of the original error is
determined. An example data point is shown in Figure 4, The
sum of all iterations in the four planar directions is found for
33 points in the first quadrant. This measure of performance is
defined as /4.

Performance near the origin is also a concern. Using
the same method as before, the number of iterations until
convergence is found when the endpoint is near the origin.
The error vector is one-sixtieth of the total arm length. Two
values are summed: a horizontal error and a vertical error.
This second measure is /.

As shown in these figures, the endpoint trajectories are
quite smooth, with minimal instabilities. It is also
demonstrated that this method produced large changes in
endpoint initially; the changes become smaller and smaller as
the endpoint nears its goal. This response is very desirable
because of its similarity to the behavior of humans and other

256

animals. It is also desirable because of other properties.
Convergence may require a few more iterations than an inverse
kinematics method. However, those iterations consist only of
three very simple calculations for each link, unlike the inverse

Jacobian which requires work of order »3 [12],

$

.
/

0 =46.88" x1=0.100
8,=6361" x2=0.500

8; =41.81° x1=0.000
8y =9638" x2=0.400

iterations: 21 iterations: 3

Figure 4a. The two simulations above are shown in the notation below.
For a gain of k; = 4, it took 21 iterations to move the actual endpoint
from (.1, .4) to (.1, .5), and 3 iterations to move from (.1, .4) to (0, .4).
(Each link is .3 long.)

21
3

(x1,%x2) = (.1, 4)

Figure 4b. The performance in Figure 4a is symbolized by this diagram.

2.2 - Drawbacks to Method

In situations where an extension or retraction of the
arm is needed, many iterations are needed. If the arm simply
needs to be rotated, it only takes a few iterations (see Figure
5.

10
N ”

Figure 5. Using the notation from Figure 4, iterations for motion
upwards and to the right are noted.

(x1,x2) = (.5,0)

The slow convergence when retracting and extending is due to
the sine term in the cross-product. The angle ¢; between r;
and the error vector is 0 when extending and n when
retracting. Since sin (0) = sin () = 0, 6; does not change.
Since 6; must change before 6; changes, this process becomes
very slow and many iterations are needed for convergence. If
sin (¢2) = 0 also, the arm does not move at all. 14 = 4800
iterations, and most of the iterations are found along
extending/retracting lines. '

There is another region where convergence is slow.
Near the origin, r; is very small, which causes 46; to be small.
The arm moves very slowly, as shown by the large iteration
count in Figure 6 (/p = 3372 iterations).

3366

(x1,x2) = (.01, 0)
Figure 6. Using the notation from Figure 4, iterations for motion
upwards and to the right are noted.

2.3 - Solutions to Problems

The basic Berkinblit-Hinton algorithm has two main
drawbacks: slow convergence when retracting/extending and
slow convergence near the origin, The first problem can be
solved by looking at biology. Humans have reflexes in all of
their joints; these reflexes serve to synchronize the movements
of many muscles to achieve a result. This coordinated
movement is a synergy. There are, of course, many reflexes
involved with extending and retracting the limbs. For this
reason, a reflex term is now added which helps to collapse and
straighten the arm. This is based on the error between the
actual length of the arm and the desired length. The cross-
product term for the first link is as follows:

Wi*At=k;r;xe or ABy = kglrillelsincg;) (6)

where k; is the cross-product gain of link i{. The reflex term is
the corresponding dot product:

w*At=k,r;ee or A8, =k,|rillelcos(d;) (7)

where k,; is the reflex gain of link /. In a multilink arm, all the
angles needed to collapse the arm are dependent on A6;. The
reflex gain k,; is as follows: k2 = -2 k7, as shown in Figure
7.212rnore than two links are used, ky gyen = -2 ky7 and ky pag
=L Ky],

Figure 7. When &, 3= -2 k,; , the arm extends while keeping x3
constant. With more links, we would find a characteristic "accordion”
shape.

The use of the reflex term gives a significant
improvement in the number of iterations needed to move the
arm endpoint: 4 = 696 and Ip = 4,343. Performance is
unimproved near the origin, as shown by a large Ip; however,
the iterations needed for movement in the rest of the workspace
are reduced by 85.5%. The major improvements are along
extending/retracting lines.

The second obstacle in this study is poor performance
near the origin. Since r; is small here, 46; is also small.
Therefore, many iterations are required to move the endpoint.
Also, if the arm is folded up so that the endpoint is near the
origin, a small change in endpoint causes a large change in the
joint angles.

257

The easiest way to fix this is to divide 40 by a function
r; which is very small near the origin. The simplest of these

functions and the most obvious choice is |r;|. This normalizes
the functions. The cross-product term becomes

A0, =k l:—'llel sin(9;) = keilel sin(¢;) (8)

and the reflex term becomes

A6, = kril:—_i,llel cos(9;) = kil cos(¢;) (%)

where r;"=|r;|. These are summed together:

A(),- =A0ci +A9ri (10)
where A6,; is a function of A6, , as discussed earlier in this
section. Table 1 is a table of I4 (iterations throughout the

workspace in one quadrant) and /g (iterations near the origin)
for all cases mentioned so far.

Case ky ko ko scaling Ia In

A 0 4 4 none 4800 3372
B o 2 2 normalized 3232 90
C 55 3 3 none 696 4343
D 1 2 2 normalized 575 88

Table 1. Iterations 1o convergence as a function of scaling and gains.
Normalization and the use of reflex gain k,; # 0 decrease iteration count.

In each case, the highest gains that did not give more
than one overshoot anywhere in the workspace were used.
For example, the normalization in case B required lower gains
than case A, yet the iteration counts were lower in case B
because of the large improvements from normalization. Use of
the reflex term leads to fewer iterations throughout the
workspace along extending/retracting lines. The normalized
scaling greatly improves performance near the origin, as
shown by the small values of /.

2.4 - Further Improvements

The iteration counts may be lowered even further. This
can be accomplished using different gains for each angle and
using improved scaling. Neural networks may be introduced
here as a method of determining these gains.

The best performance is to be obtained when the cross-
product terms for angles 62, 63, ..., 8, are as small as
possible, since 6 efficiently controls the direction of the entire
arm, and the reflex terms control its length. However, at joint
limits, there is no reflex term; it is "turned off” by setting all
ky; to zero when joint limits are reached because of poor
behavior of the algorithm. This agrees with biology, since
there is no reflex action when the joints are in these positions.
Here, cross-product terms from all angles are needed. This
problem can be solved by keeping the cross-product gain for
62, 63, ... , 6, smaller than the gain of 6;, yet not zero. Using
the normalized version of this algorithm containing both cross-
product and reflex terms, there is a definite improvement.
Comparing the case when all cross-product gains were
identical with the case when k.; > k.2 , it is shown that the
latter case gives better performance (Table 2).

Case ki ko ko scaling In Ip
D
E 2

1 2 2 normalized 575 88
2.5 0 nomalized 337 71
F 1.8 2.4 0.6 nommalized 372 74

Table 2. Iterations to convergence as a function of scaling and gains. The
use of different cross-product gains k.; and k. decrease iteration counts
I and Ip.

In all cases, the gains k. and k, are as large as possible
without producing significant oscillations. Case E provides
the lowest iteration counts, but does not converge at joint
limits. In case F, k.2 is much smaller than k., so it
approximates the ideal case E while converging everywhere.
Since 48,2 is small, case F is more stable than case D, which
allows the gains k. and k, to be increased. Increasing these
gains results in fewer iterations needed for convergence, and
the nonzero k. gives good performance outside arm's reach.
This is supported by our results.

Another possible improvement lies in the area of
scaling. Normalization may not be the optimal method,
although it gives a significant improvement to the algorithm.
Other r;' terms may be superior; however, it is likely that
these terms would necessitate longer computation time.
Ideally, we want to know the optimal gains for the normalized
algorithm. Fewer calculations are required if all we need is a
gain instead of a specialized function r;'. It is also true that
each state responds better to a different gain. We can
implement neural networks to calculate optimal gains for all
states.

2.5 - Improvements Using Neural Networks

The algorithm can be improved by using a neural
network to find the optimal gains. At this time, neural
networks are not used on our system. This is solely an
example of how we could implement a simple gradient descent
method to optimize our gains.

Using the k¢ and k, from the previous sections as a
starting point, we can update the gains as the system is trained
throughout the workspace. The system is as follows:

q

0,(t) J
82(t)

state O (t) =

=[B1(t-1) + kea] $in(y(t-1)) + ki] cos(@1(-1) |
02(1-1) + kea @] sin(@2(t-1)) - 2 kn e cos(1(t-1)) |

(11)
output X (t) = ggg}
_[11 cos @10+ 1z cos (81(t) + 8,1 (12
L 11 sin (01(1)+ 12 sin (6;(1) + 62(1))
[k<:l
weight w; =| ke, (13)
| kn ij

258

Subscripts i, j refer to the state of the system. Since
we want a relatively small, manageable state matrix, the state
will be divided into p; x p2 blocks. The shoulder, with
constraints -180° < 8; < 90° becomes separated into p;
categories while the elbow, 0° < 6, < 180° becomes p;
categories. wj; is updated only when the state falls into block

(i,). Initially,
24
wi=| .6 (14)
1.8
for all (i, j). These gains are chosen because they have given

the best performance so far.
Minimizing the least squares error energy function

E(O.W)= 115 [D-X(OW 1)] 2 L (15)

where the desired endpoint position D = [g‘ } and 7 is a small
2
positive learning rate, the weight update AW is calculated as

___9EOW)
AW =W
oax;(t) axi(t)
aakcl aakcl
- x1(t) x2(1) d;-x1() }
=N dkep) okco [d2'x2([) (16)
ax (1) axx(t)
okn dkn

The system has been reduced from the two-
dimensional plane {(6;,62): -180° < 6; <90°, 0° < 6, <1807}
t0 a matrix of dimension (p; x p2). This simplification has
many benefits. The smaller size means fewer calculations have
to be performed when updating weights. Also, only p;x p;
positions need to be trained. While updating the weights of
one state, the weights of many nearby states are also being
updated. Therefore, it is not necessary for the manipulator to
visit all states in order to be fully trained.

This reduction of state space has a loss of accuracy
associated with it, since a block of state is treated as only one
state. A few more iterations might be needed, but we sacrifice
this for the speed and simplicity we gain by using a very small
state matrix.

We desire a fast, simple method to achieve a desired
endpoint. The use of neural networks increases the accuracy
by optimizing the gains. This further increases the similarities
between our algorithm and biology, since this is now a
learning algorithm. This gradient-descent neural network is
very basic but learns quickly, due to a reduction in state space.

3 - Application to N-Link Systems

This approach works as well on n-link systems as it
does on two-link systems. k. and k, must be lowered as n
becomes greater, since a small change in each angle produces a
progressively larger change in the final endpoint as the number
of links increases.

The n-link system has the same problems with
retraction / extension as the two-link system had. It is
similarly solved by using reflex terms. The reflex gain k,; are
as follows: kr even = -2 kr], and kr odd = 2 kr].

Some reflex terms must be turned off when a joint limit
is reached, as it was in the two-link case. The method works

best when k.2, k3, ... ,krn are all smaller than k,;.
Normalization also improves the algorithm greatly, and the
response when the endpoint is near the origin is much quicker
than when not normalized. The cross-product angle changes
may also be weighted in the n-link case. Those joints which
do not perform well under high torques can be given smaller
weights than others.

Performance for the three-link case is rated in the same
way as for two links. Corresponding results are given in
Table 3.

Case ky kg ko kg3 oscaling Ia Iz
A 0 35 35 3.5 none 6768 82
B O 1.5 1.5 1.5 normalized 2399 20
c 1 3 3 3 none 554 103
D 15 15 15 1.5 normalized 497 26
E 15 25 0 0 normalized 395 o
F 2 25 0.5 0.5 normalized 449 49

Table 3. Iterations to convergence as a function of scaling and gains.
Normalization and the use of a refiex gain k,; # 0 decrease iterations /4
and Ip, as do the use of different cross-product gains k., k.2 and k.3 also
decrease /4 and Ip.

In all cases, the highest gains which did not cause
significant oscillations were used. As in the two-link case,
case E provides the lowest I, iteration counts. However, it
does not function well at joint limits, as shown by /g. Among
those that do converge, case F is optimal.

The same neural network is used on an n-link system.
The weight matrix now has n legs and n+1 gains for each state
(n cross-product gains and I reflex gain). As more links are
added, the weight matrix increases exponentially. For this
reason, fewer state space categories may be wanted. As in the
two-link case, only the weights that correspond to the current
state are updated.

The method outlined for the two-link case is easily
generalizable for the n-link case, since ali the problems in both
cases are solved using identical means, and improvements to
both are received equally well.

4 - Conclusion

Following biological principles, we have developed a
means of bringing an n-link arm to an endpoint. As in
biology, the joint movements can be computed in parallel.
This method of successive approximation is biologically
inspired. The joint velocities can be effectively modeled as 46;
over a given time, where Ag; is the sum of two terms:

AB,- = Aea' + AG,,- (10)
The actual speed of implementation depends upon the timestep

that is used to produce velocities. The normalized cross-
product term is

4G, = kel sin(¢;) (8)
and the normalized reflex term is
46,; =k,;le|cos(¢;) (9)

The addition of the reflex term and the use of
normalization have been shown to significantly improve the
algorithm. The number of iterations needed to obtain a certain

259

endpoint has decreased and the speed of response has
increased. When k.; (i = 2, 3,..., n) are less than k¢, there is
also improvement. Further improvements include the use of
neural networks to determine the optimal gains, which should
result in even better performance.

The method used is very simple to implement and is
easily generalizable to an n-link manipulator. This offers an
advantage over other methods. It also has the advantage of
being inherently compatible with parallel processing: all of the
joint angles are computed simultaneously, since the
calculations are independent of one another. Unlike some
other methods, it is not necessary to compute the entire path
before any movement occurs.

This biologically-inspired algorithm works very well
for endpoint position control. It may also be applied to force
and hybrid control. We are currently working on the dynamic
version. This method has been implemented in the control of
our redundant manipulator, SLIM, with very promising
results.

Acknowledgments

We would like to thank Stephen Lane, David
Handelman and Jack Gelfand for their helpful discussions and
insights.

References

{1] Nahon, M and J. Angeles. Reducing the Effects of
Shocks Using Redundant Actuation. In: Proceedings of the
1991 IEEE International Conference on Robotics and
Automation, April 1991, pp. 238 - 243,

{21 Maciejewski, A. A. and C. A. Klein. Obstacle
Avoidance for Kinematically Redundant Manipulators in
Dynamically Varying Environments. In: The International
Journal of Robotics Research, Vol. 4, No. 3, Fall 1985,
pp., 109 - 117.

[3] Kircanski, M. and M. Vukobratovic. Contribution to
Control of Redundant Robotic Manipulators in an Environment
with Obstacles. In: The International Journal of Robotics
Research, Vol. 5, No. 4, Winter 1986, pp. 112-119.

[4] Podhorodeski, R. P, A. A. Goldenberg and R. G.
Fenton. Resolving Redundant Manipulator Joint Rates and
Identifying Special Arm Configurations Using Jacobian Null
Spaces. In: IEEE Transactions on Robotics and Automation,
Vol. 7, No. 5, October 1991, pp. 607 - 618.

[S] Nakamura, Y., H. Hanafusa and T. Yoshikawa.
Task-Priority Based Redundancy Control of Robot
Manipulators. - In: The International Journal of Robotics
Research, Vol. 6, No. 2, Summer 1987, pp. 3 - 15.

{6] Hollerbach, J. M. and K. C. Suh. Redundancy
Resolution of Manipulators through Torque Optimization. In:
IEEE Journal of Robotics and Automation, Vol. RA-3, No.
4, August 1987, pp. 308 - 316.

{71 Maciejewski, A. A. and C. A. Klein. Numerical
Filtering for the Operation of Robotic Manipulators through
Kinematically Singular Configurations. In: Journal of
Robotic Systems, Vol. 5, No. 6, 1988, pp. 527 - 552.

[8] Colbaugh, R., H. Seraji and K. L. Glass. Obstacle

Avoidance for Redundant Robots Using Configuration
Control. In: Journal of Robotic Systems, Vol. 6, No. 6,
1989, pp. 721 - 744,

[91 Berkinblit, M. V., I. M. Gel'fand and A. G.
Fel'dman. Model of the control of the movements of a
multijoint limb. In: Biophysics , Vol. 31, No. 1, 1986, pp.
142 - 153.

[10] Hinton, G. Parallel Computations for Controlling an
Arm. In: Joumal of Motor Behavior, Vol. 16, No. 2, 1984,
pp- 171 - 194,

[11]) Zhang, Hong, Paul, Richard P. A Parallel Inverse
Kinematics Solution for Robot Manipulators Based on
Multiprocessing and Linear Extrapolation. In: IEEE
Transactions on Robotics and Automation, Vol. 7, No. §,
1991, pp. 660 - 669.

[12] Kreyszig, Erwin. Advanced Engineering
Mathematics, Sixth Edition. John Wiley & Sons, 1988,

260

