Lectures 5 and 6
Theories of Top Inequality
Distributional Dynamics and Differential Operators

Distributional Macroeconomics
Part II of ECON 2149

Benjamin Moll

Harvard University, Spring 2018
Outline

2. Literature on inequality and random growth

 - tools: differential operators as transition matrices
 - will be extremely useful for analysis, computation of fully-fledged heterogeneous agent models later on
Power Laws

• **Definition 1:** S follows a power law (PL) if there exist $k, \zeta > 0$ s.t.
 \[
 \Pr(S > x) = kx^{-\zeta}, \quad \text{all } x
 \]

• S follows a PL \Leftrightarrow S has a Pareto distribution

• **Definition 2:** S follows an asymptotic power law if there exist $k, \zeta > 0$ s.t.
 \[
 \Pr(S > x) \sim kx^{-\zeta} \quad \text{as } x \to \infty
 \]

• Note: for any f, g $f(x) \sim g(x)$ means $\lim_{x \to \infty} f(x)/g(x) = 1$

• Surprisingly many variables follow power laws, at least in tail
City Size

- Order cities in US by size (NY as first, LA as second, etc)
- Graph $\ln \text{Rank}_{NY} = \ln 1$, $\ln \text{Rank}_{LA} = \ln 2$ vs. \ln Size
- Basically plot log quantiles $\ln \Pr(S > x)$ against $\ln x$
City Size

• **Surprise 1:** straight line, i.e. city size follows a PL
 \[\Pr(S > x) = kx^{-\zeta} \]

• **Surprise 2:** slope of line \(\approx -1 \), regression:
 \[\ln \text{Rank} = 10.53 - 1.005 \ln \text{Size} \]
i.e. city size follows a PL with exponent \(\zeta \approx 1 \)
 \[\Pr(S > x) = kx^{-1}. \]

• A power law with exponent \(\zeta = 1 \) is called “Zipf’s law”

• Two natural questions:
 1. Why does city size follow a power law?
 2. Why on earth is \(\zeta \approx 1 \) rather than any other number?
Where Do Power Laws Come from?

• Gabaix’s answer: random growth

• Economy with continuum of cities

• S_t^i: size of city i at time t

$$S_{t+1}^i = \gamma_{t+1}^i S_t^i, \quad \gamma_{t+1}^i \sim f(\gamma) \quad \text{(RG)}$$

• S_t^i follows random growth process $\Leftrightarrow \log S_t^i$ follows random walk

• Gabaix shows: (RG) + stabilizing force (e.g. minimum size) \Rightarrow power law. Use “Champernowne’s equation”

• Easier: continuous time approach
Random Growth Process in Continuous Time

• Consider random growth process over time intervals of length Δt

$$S_{t+\Delta t}^i = \gamma_{t+\Delta t}^i S_t^i$$

• Assume in addition that $\gamma_{t+\Delta t}^i$ takes the particular form

$$\gamma_{t+\Delta t}^i = 1 + g\Delta t + \nu \varepsilon_t^i \sqrt{\Delta t}, \quad \varepsilon_t^i \sim \mathcal{N}(0, 1)$$

• Substituting in

$$S_{t+\Delta t}^i - S_t^i = (g\Delta t + \nu \varepsilon_t^i \sqrt{\Delta t}) S_t^i$$

• Or as $\Delta t \to 0$

$$dS_t^i = gS_t^i dt + \nu S_t^i dW_t^i$$

i.e. a geometric Brownian motion!
Stationary Distribution

- Assumption: city size follows random growth process
 \[dS^i_t = gS^i_t dt + \nu S^i_t dW^i_t \]
- Does this have a stationary distribution? No! In fact
 \[\log S^i_t \sim N((g - \nu^2/2)t, \nu^2 t) \]
 \[\Rightarrow \text{distribution explodes.} \]
- Gabaix insight: random growth process + stabilizing force does have a stationary distribution and that’s a PL
 - Note: Gabaix uses “friction” rather than “stabilizing force”
 - use the latter because “friction” already means something else
- Simplest possible stabilizing force: \(g < 0 \) and minimum size \(S_{\text{min}} \)
 - if process goes below \(S_{\text{min}} \) it is brought back to \(S_{\text{min}} \) (“reflecting barrier”)

Note: Gabaix uses “friction” rather than “stabilizing force”
Stationary Distribution

• Use Kolmogorov Forward Equation

• Recall: stationary distribution satisfies

\[0 = -\frac{d}{dx}[\mu(x)f(x)] + \frac{1}{2} \frac{d^2}{dx^2} [\sigma^2(x)f(x)] \]

• Here geometric Brownian motion: \(\mu(x) = gx, \sigma^2(x) = \nu^2 x^2 \)

\[0 = -\frac{d}{dx}[gx f(x)] + \frac{1}{2} \frac{d^2}{dx^2} [\nu^2 x^2 f(x)] \]
Stationary Distribution

- **Claim:** solution is a Pareto distribution, \(f(x) = S_{\min}^\zeta x^{-\zeta-1} \)

- **Proof:** Guess \(f(x) = Cx^{-\zeta-1} \) and verify

\[
0 = -\frac{d}{dx}[gxCx^{-\zeta-1}] + \frac{1}{2} \frac{d^2}{dx^2}[\nu^2 x^2 Cx^{-\zeta-1}]
\]

\[
= Cx^{-\zeta-1} \left[g\zeta + \frac{\nu^2}{2} (\zeta - 1)\zeta \right]
\]

- This is a quadratic equation with two roots \(\zeta = 0 \) and \(\zeta = 1 - \frac{2g}{\nu^2} \)

- For mean to exist, need \(\zeta > 1 \) \(\Rightarrow \) impose \(g < 0 \)

- Remains to pin down \(C \). We need

\[
1 = \int_{S_{\min}}^{\infty} f(x) \, dx = \int_{S_{\min}}^{\infty} Cx^{-\zeta-1} \, dx \quad \Rightarrow \quad C = S_{\min}^\zeta. \Box
\]
Tail inequality and Zipf’s Law

• “Tail inequality” (fatness of tail)

\[\eta := \frac{1}{\zeta} = \frac{1}{1 - 2g/\nu^2} \]

is increasing in \(g \) and \(\nu^2 \) (recall \(g < 0 \))

• Why would Zipf’s Law (\(\zeta = 1 \)) hold? We have that

\[\tilde{S} = \int_{S_{\text{min}}}^{\infty} xf(x)\,dx = \frac{\zeta}{\zeta - 1} S_{\text{min}} \]

\[\Rightarrow \quad \zeta = \frac{1}{1 - S_{\text{min}}/\tilde{S}} \to 1 \quad \text{as} \quad S_{\text{min}}/\tilde{S} \to 0. \]

• Zipf’s law obtains as stabilizing force becomes small
Alternative Stabilizing Force: Death

• No minimum size

• Instead: die at Poisson rate δ, get reborn at S_*

• Can show: correct way of extending KFE (for $x \neq S_*$) is

\[
\frac{\partial f(x, t)}{\partial t} = -\delta f(x, t) - \frac{\partial}{\partial x} [\mu(x)f(x, t)] + \frac{1}{2} \frac{\partial^2}{\partial x^2} [\sigma^2(x)f(x, t)]
\]

• Stationary $f(x)$ satisfies (recall $\mu(x) = gx$, $\sigma^2(x) = \nu^2x^2$)

\[
0 = -\delta f(x) - \frac{d}{dx} [gx f(x, t)] + \frac{1}{2} \frac{d^2}{dx^2} [\nu^2x^2 f(x)] \quad \text{(KFE')}\]
Alternative Stabilizing Force: Death

• To solve (KFE’), guess $f(x) = Cx^{-\zeta-1}$

$$0 = -\delta + \zeta g + \frac{\nu^2}{2}\zeta(\zeta - 1)$$

• Two roots: $\zeta_+ > 0$ and $\zeta_- < 0$. General solution to (KFE’):

$$\Rightarrow f(x) = C_-x^{-\zeta_- -1} + C_+x^{-\zeta_+ -1} \text{ for } x \neq S_*$$

• Need solution to be integrable

$$\int_0^\infty f(x)\,dx = f(S_*) + \int_0^{S_*} f(x)\,dx + \int_{S_*}^\infty f(x)\,dx < \infty$$

• Hence $C_- = 0$ for $x > S_*$, otherwise $f(x)$ explodes as $x \to \infty$

• And $C_+ = 0$ for $x < S_*$, otherwise $f(x)$ explodes as $x \to 0$
Alternative Stabilizing Force: Death

- Solution is a **Double Pareto** distribution:

$$f(x) = \begin{cases}
C(x/S_*)^{-\zeta_-} & \text{for } x < S_* \\
C(x/S_*)^{-\zeta_+} & \text{for } x > S_*
\end{cases}$$
Generalizations and Other Stabilizing Forces

• See Appendix D of “The Dynamics of Inequality” for a pretty exhaustive list
 • death and rebirth with $S_t^i \sim \psi(S)$
 • additive term
 \[dS_t^i = y dt + gS_t^i dt + \nu S_t^i dW_t^i, \quad g < 0, \quad y > 0 \]
 •

• In general, distribution will not be exactly Pareto or exactly double-Pareto

• But often, under quite weak assumptions, it will still follow asymptotic power law, i.e.
 \[\text{Pr}(S > x) \sim kx^{-\zeta} \quad \text{as} \quad x \to \infty \]
Literature: Inequality and Random Growth

• Income distribution

• Wealth distribution

• Dynamics of income and wealth distribution
 • Aoki and Nirei (2014), Gabaix, Lasry, Lions and Moll (2016), Hubmer, Krusell, Smith (2016)
Literature: Inequality and Random Growth

• “Technically, one can indeed show that if shocks take a multiplicative form, then the inequality of wealth converges toward a distribution that has a Pareto shape for top wealth holders […], and that the inverted Pareto coefficient (an indicator of top end inequality) is a steeply rising function of the gap $r - g$.”

• Idea: $\mu(x) = (r - g - \text{constant})x$

• In book this point unfortunately gets lost in discussion about how $r - g$ affects capital share
 - factor income vs personal income distribution
 - no general connection between capital share and inequality (see end of Lecture 3)
The Dynamics of Inequality
Question

- In U.S. past 40 years have seen rapid rise in top income inequality
- Why?
Question

- **Main fact** about top inequality (since Pareto, 1896): upper tails of income (and wealth) distribution follow **power laws**

- Equivalently, top inequality is **fractal**

 1. ... top 0.01% are X times richer than top 0.1%,... are X times richer than top 1%,... are X times richer than top 10%,...

 2. ... top 0.01% share is fraction Y of 0.1% share,... is fraction Y of 1% share, ... is fraction Y of 10% share,...
Evolution of “Fractal Inequality”

\[
\frac{S(0.1)}{S(1)} = \text{fraction of top 1% share going to top 0.1%}
\]

\[
\frac{S(1)}{S(10)} = \text{analogous}
\]
This Paper

• **Starting point:** existing theories that explain top inequality at point in time
 - differ in terms of underlying economics
 - but share basic mechanism for generating power laws: random growth

• **Our ultimate question:** which specific economic theories can also explain observed dynamics of top income inequality?
 - e.g. falling income taxes? superstar effects?

• **What we do:**
 - study transition dynamics of cross-sectional income distribution in theories with random growth mechanism
 - contrast with data, rule out some theories, rule in others

• **Today:** income inequality. **Paper:** also wealth inequality.
Main Results

- Transition dynamics of standard random growth models **too slow** relative to those observed in the data
 - analytic formula for speed of convergence
 - transitions particularly slow in **upper tail** of distribution
 - jumps cannot generate fast transitions either

- Two parsimonious deviations that generate **fast transitions**
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices

- Both only consistent with particular economic theories

- Rise in top income inequality due to
 - **simple tax stories**, stories about Var(permanent earnings)
 - rise of “superstar” entrepreneurs or managers
A Random Growth Theory of Income Dynamics

- Continuum of workers, heterogeneous in human capital h_{it}
- die/retire at rate δ, replaced by young worker with h_{i0}
- Wage is $w_{it} = \omega h_{it}$
- Human capital accumulation involves
 - investment
 - luck
- “Right” assumptions \Rightarrow wages evolve as

 $$d \log w_{it} = \mu dt + \sigma dZ_{it}$$

 - growth rate of wage w_{it} is stochastic
 - μ, σ depend on model parameters
 - see Appendix C: log-utility + constant returns (same trick as AK-RBC model in Lecture 4)
Stationary Income Distribution

- **Result:** The stationary income distribution has a Pareto tail

 \[\Pr(\tilde{w} > w) \sim C w^{-\zeta} \]

- Convenient to work with log income \(x_t = \log w_t \)

 \[\Pr(\tilde{w} > w) \sim C w^{-\zeta} \iff \Pr(\tilde{x} > x) \sim Ce^{-\zeta x} \]

- Tail inequality \(1/\zeta \) increasing in \(\mu, \sigma \), decreasing in \(\delta \)
Stationary Income Distribution

- Have $x_{it} = \log w_{it}$ follows

 $$dx_{it} = \mu dt + \sigma dZ_{it}$$

- Need additional “stabilizing force” to ensure existence of stat. dist.
 - income application: death/retirement at rate δ
 - alternative: reflecting barrier

- Distribution $p(x, t)$ satisfies ($\psi(x) =$ distribution of entry wages)

 $$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi \quad (\ast)$$

- With reflecting barrier at $x = 0$, have boundary condition

 $$0 = -\mu p(0, t) + \frac{\sigma^2}{2} p_x(0, t)$$

 Derivation: $\int_0^\infty p(x, t)dx = 1$ for all t, and hence from (\ast)

 $$0 = \int_0^\infty p_t dx = \left[-\mu p + \frac{\sigma^2}{2} p_x\right]_0^\infty$$
Stationary Income Distribution

- Stationary Distribution \(p_\infty(x) \) satisfies

\[
0 = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi
\]

- Find solution via guess-and-verify: plug in \(p(x) = Ce^{-\zeta x} \)

\[
0 = \mu \zeta + \frac{\sigma^2}{2} \zeta^2 - \delta + \delta \frac{\psi(x)}{Ce^{-\zeta x}}
\]

- Assume \(\lim_{x \to \infty} \psi(x)/e^{-\zeta x} = 0 \Rightarrow \) last term drops for large \(x \) & \(\zeta \) solves

\[
0 = \mu \zeta + \frac{\sigma^2}{2} \zeta^2 - \delta
\]

with positive root

\[
\zeta = \frac{-\mu + \sqrt{\mu^2 + 2\sigma^2 \delta}}{\sigma^2}
\]

- Tail inequality \(\eta = 1/\zeta \) increasing in \(\mu, \sigma \), decreasing in \(\delta \)
Other Theories of Top Inequality

- We confine ourselves to theories that generate power laws
 - random growth
 - models with superstars (assignment models) – more later

- Example of theories that do not generate power laws, i.e. do not generate fractal feature of top income inequality:
 - theories of rent-seeking (Benabou and Tirole, 2015; Piketty, Saez and Stantcheva, 2014)
 - someone should write that “rent-seeking ⇒ power law” paper
Transitions: The Thought Experiment

- Suppose economy is in Pareto steady state
- At $t = 0$, $\sigma \uparrow$. Know: in long-run \rightarrow higher top inequality

\[
p(x) = \zeta e^{-\zeta x}
\]

← slope = $-\zeta$
Instructive Special Case: $\sigma = 0$ (“Steindl Model”)

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
 - stationary distribution $f(w) = \zeta w^{-\zeta}$, $\zeta = \delta/\mu$
 - stationary distribution of $x_t = \log w_t$: $p(x) = \zeta e^{-\zeta x}$, $\zeta = \delta/\mu$
 - at $t = 0$, $w_t \uparrow$. Know from $\zeta = \delta/\mu$: in long-run, top inequality \uparrow
Transition in Steindl Model

- Denote
 - old steady state distribution: $p_0(x) = \alpha e^{-\alpha x}$
 - new steady state distribution: $p_\infty(x) = \zeta e^{-\zeta x}$

- Can show: for $t, x > 0$ density satisfies
 \[
 \frac{\partial p(x, t)}{\partial t} = -\mu \frac{\partial p(x, t)}{\partial x} - \delta p(x, t), \quad p(x, 0) = \alpha e^{-\alpha x}
 \]

- Result: the solution to (*) is
 \[
 p(x, t) = \zeta e^{-\zeta x}1_{\{x \leq \mu t\}} + \alpha e^{-\alpha x + (\alpha - \zeta)t}1_{\{x > \mu t\}}
 \]
 where $1_{\{\}}$ = indicator function
Transition in Steindl Model

- Transition is slower in the upper tail, taking time $(x) = x = \infty$ for the local PL exponent to converge to its steady state value.

- Related to slow transition: crazy (age, income) distribution (Luttmer).
General Case
General Case

- Recall Kolmogorov Forward equation for $p(x, t)$

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi$$

- Question: at what speed does $p(x, t)$ converge to $p_\infty(x)$?

- Need a “distance measure”

- Use L^1 norm:

$$\|p(x, t) - p_\infty(x)\| := \int_{-\infty}^{\infty} |p(x, t) - p_\infty(x)| \, dx$$

- Measures average distance between p and p_∞

- Later: more general distance measures
General Case: Average Speed of Convergence

• **Proposition:** \(p(x, t) \) converges to stationary distrib. \(p_\infty (x) \)

 • rate of convergence

 \[
 \lambda := - \lim_{t \to \infty} \frac{1}{t} \log \| p(x, t) - p_\infty (x) \| \tag{*}
 \]

 • without reflecting barrier

 \[
 \lambda = \delta
 \]

 • with reflecting barrier

 \[
 \lambda = \frac{1}{2} \frac{\mu^2}{\sigma^2} 1_{\{\mu < 0\}} + \delta
 \]

• Interpretation of \((*)\): exponential convergence at rate \(\lambda \)

\[
\| p(x, t) - p_\infty (x) \| \sim k e^{-\lambda t} \quad \text{as } t \to \infty
\]

• Half life is \(t_{1/2} = \ln(2)/\lambda \Rightarrow \text{precise quantitative predictions} \)
Before proving this, let’s take a step back...

• ... and take a somewhat different perspective on the Kolmogorov Forward equation
 • exploit heavily analogy to finite-state processes
• This will also be extremely useful for computations
• Let’s focus on case with reflecting barrier at \(x = 0 \) and \(\delta = 0 \)
• Kolmogorov Forward equation is

\[
p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx}
\]

with boundary condition

\[
0 = -\mu p(0, t) + \frac{\sigma^2}{2} p_x(0, t)
\]
Key: operator in KFE = transpose of transition matrix

- Just for a moment, suppose x_{it} = finite-state Poisson process
- $x_{it} \in \{x_1, ..., x_N\} \Rightarrow$ distribution = vector $p(t) \in \mathbb{R}^N$
- Dynamics of distribution

$$\dot{p}(t) = A^T p(t),$$

where $A = N \times N$ transition matrix

- Key idea: KFE is exact analogue with continuous state
- Can write in terms of differential operator A^*

$$pt = A^* p, \quad A^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx}$$

with boundary condition $0 = -\mu p(0) + \frac{\sigma^2}{2} p_x(0)$

- A^* analogue of transpose of transition matrix A^T
This can be made more precise...

- **Definition:** the inner product of two functions \(v \) and \(p \) is
 \[<v, p> = \int_{0}^{\infty} v(x)p(x) \, dx \] (analogue of \(v \cdot p = \sum_{i=1}^{N} v_i p_i \))

- **Definition:** the adjoint of an operator \(A \) is the operator \(A^* \) satisfying
 \[<Av, p> = <v, A^*p> \]
 Note: adjoint = analogue of matrix transpose \(Av \cdot p = v \cdot A^T p \)

- **Definition:** An operator \(B \) is self-adjoint if \(B^* = B \)

- **Definition:** the infinitesimal generator of a Brownian motion is the operator \(A \) defined by
 \[Av = \mu v_x + \frac{\sigma^2}{2} v_{xx} \]
 with boundary condition \(v_x(0) = 0 \)
 - same operator shows up in HJB equations, e.g.
 \[\rho v = u + \mu v_x + \frac{\sigma^2}{2} v_{xx} \]
 \[u = \text{period return} \]
 - will call it “HJB operator”, plays role of transition matrix
A^* is adjoint of A (& vice versa)

- Result: A^* in the Kolmogorov Forward equation is the adjoint of A
- Proof:

$$\langle v, A^* p \rangle = \int_0^\infty v \left(-\mu \rho_x + \frac{\sigma^2}{2} \rho_{xx} \right) dx$$

$$= \left[-v \mu \rho + \frac{\sigma^2}{2} v \rho_x \right]_0^\infty - \int_0^\infty \left(-\mu v_x \rho + \frac{\sigma^2}{2} v_x \rho_x \right) dx$$

$$= \left[-v \mu \rho + \frac{\sigma^2}{2} v \rho_x - \frac{\sigma^2}{2} v_x \rho \right]_0^\infty + \int_0^\infty \left(\mu v_x \rho + \frac{\sigma^2}{2} v_{xx} \rho \right) dx$$

$$= v(0) \left(\mu \rho(0) - \frac{\sigma^2}{2} \rho_x(0) \right) + \frac{\sigma^2}{2} v_x(0) \rho(0) + \langle A v, p \rangle$$

$$= \langle A v, p \rangle .$$

- key step is to use integration by parts and boundary conditions
Carries over to any diffusion process

- ... with x-dependent μ and σ

- “HJB operator” (infinitesimal generator)

\[
A\nu = \mu(x) \frac{\partial \nu}{\partial x} + \frac{\sigma^2(x)}{2} \frac{\partial^2 \nu}{\partial x^2}
\]

with appropriate boundary conditions

- “Kolmogorov Forward operator”

\[
A^* p = -\frac{\partial}{\partial x} (\mu(x) p) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\sigma^2(x) p)
\]

with appropriate boundary conditions

- Result: A^* is adjoint of A

- Proof: integration by parts just like previous slide
Computation of Kolmogorov Forward Equations

- That operator in KFE = transpose of transition matrix is very useful for computations
- Use finite difference method $p_i^n = p(x_i, t^n)$
- Key: already know how to discretize A
- recall from Lectures 3 and 4 that discretize HJB equation as

$$\rho v = u + \mu v_x + \frac{\sigma^2}{2} v_{xx} \quad \text{as} \quad \rho v = u + Av$$
Computation of Kolmogorov Forward Equations

- By same logic: correct discretization of A^* is A^T
- Discretize
 \[p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} \quad \text{or} \quad p_t = A^* p \quad \text{(KFE)} \]

 as (explicit scheme)
 \[\frac{p^{n+1} - p^n}{\Delta t} = A^T p^n \]

 or slightly better (implicit scheme)
 \[\frac{p^{n+1} - p^n}{\Delta t} = A^T p^{n+1} \Rightarrow p^{n+1} = (I - \Delta t A^T)^{-1} p^n \]

- can also obtain these finite-difference schemes directly from (KFE), i.e. without using “operator in KFE = transpose of transition matrix”
- Section 2 in http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf
- but if have already computed A for HJB equation, no need to do discretization again – get (KFE) for free!
Back to the proof of average-speed proposition

• To gain intuition, suppose again finite-state process \(p(t) \in \mathbb{R}^N \) with

\[
p(t) = A^T p(t)
\]

• assume \(A \) is diagonalizable
• denote eigenvalues by \(0 = |\lambda_1| < |\lambda_2| < ... < |\lambda_N| \)
• corresponding eigenvectors by \((v_1, \ldots, v_N) \)

• **Theorem:** \(p(t) \) converges to \(p_\infty \) at rate \(|\lambda_2| \) (“spectral gap”)

• **Proof sketch:** decomposition

\[
p(0) = \sum_{i=1}^{N} c_i v_i \quad \Rightarrow \quad p(t) = \sum_{i=1}^{N} c_i e^{\lambda_i t} v_i
\]

• **Example:** symmetric two-state Poisson process with intensity \(\phi \)

\[
A = \begin{bmatrix}
-\phi & \phi \\
\phi & -\phi
\end{bmatrix}, \quad \Rightarrow \quad \lambda_1 = 0, \quad |\lambda_2| = 2\phi
\]

Intuitively, speed \(|\lambda_2| \) ↑ in switching intensity \(\phi \)
Proof of proposition (reflecting barrier, $\delta = 0$)

- Generalize this idea to continuous-state process
- Analyze Kolmogorov Forward equation

\[p_t = \mathcal{A}^* p, \quad \mathcal{A}^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} \]

in same exact way as \(\dot{p}(t) = \mathcal{A}^T p(t) \)

- Proof has two steps:
 1. realization that speed = second eigenvalue (spectral gap) of operator \mathcal{A}^*
 2. analytic computation: spectral gap given by

\[|\lambda_2| = \frac{1}{2} \frac{\mu^2}{\sigma^2} \]
Analytic Computation of Spectral Gap

- Discrete eigenvalue problem

$$A\mathbf{v} = \lambda \mathbf{v}$$

- Continuous eigenvalue problem

$$A\varphi = \lambda \varphi$$

or

$$\mu \varphi'(x) + \frac{\sigma^2}{2} \varphi''(x) = \lambda \varphi(x)$$

with boundary condition $$\varphi'(0) = 0.$$
Analytic Computation of Spectral Gap

- **Definition:** an operator \mathcal{B} is self-adjoint if $\mathcal{B}^* = \mathcal{B}$
- **Result:** all eigenvalues of a self-adjoint operator are real
- **want to analyze eigenvalues of \mathcal{A}**
 - but problem: \mathcal{A} is not self-adjoint
 - eigenvalues could have imaginary parts
- **Solution:** construct **self-adjoint transformation** \mathcal{B} of \mathcal{A} as follows
 1. Consider stationary distribution p_∞ satisfying
 \[0 = \mathcal{A}^* p \quad \Rightarrow \quad p_\infty = e^{(2\mu/\sigma^2)x} \]
 2. Consider $u = \nu p_\infty^{1/2} = \nu e^{(\mu/\sigma^2)x}$. Can show u satisfies
 \[u_t = \mathcal{B} u, \quad \mathcal{B} u := \frac{\sigma^2}{2} u_{xx} - \frac{1}{2} \frac{\mu^2}{\sigma^2} u \]
 with boundary condition $u_x(0) = \frac{\mu}{\sigma^2} u(0)$.
- **To see that \mathcal{B} is self-adjoint:** $\langle \mathcal{B} u, p \rangle = \langle u, \mathcal{B} p \rangle$ using same steps as before (integration by parts)
Eigenvalues of B

The first eigenvalue of B is $\lambda_1 = 0$ and the second eigenvalue is $\lambda_2 = -\frac{1}{2} \frac{\mu^2}{\sigma^2}$. All remaining eigenvalues satisfy $|\lambda| > |\lambda_2|$

Figure: Spectrum of B in complex plane
Proof of Lemma

- Consider eigenvalue problem

\[\mathcal{B}\varphi = \lambda \varphi \]

\[\frac{\sigma^2}{2} \varphi''(x) - \frac{1}{2} \frac{\mu^2}{\sigma^2} \varphi(x) = \lambda \varphi(x) \quad (E) \]

with boundary condition \(\varphi'(0) = \frac{\mu}{\sigma^2} \varphi(0) \)

- Can show: for \(\lambda \in \left(-\frac{1}{2} \frac{\mu^2}{\sigma^2}, 0\right) \) all solutions to \((E)\) satisfying boundary condition explode as \(|x| \to \infty \). See appendix of paper.

- Intuition why rate of convergence of \(\mathcal{B} \) is \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \)
 - recall \(\mathcal{B} u := \frac{\sigma^2}{2} u_{xx} - \frac{1}{2} \frac{\mu^2}{\sigma^2} u \)
 - consider case \(\sigma \approx 0 \): \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \) term large relative to \(\frac{\sigma^2}{2} \)

\[u_t = \mathcal{B} u \approx -\frac{1}{2} \frac{\mu^2}{\sigma^2} u \quad \Rightarrow \quad u(x, t) \approx u_0(x) e^{-\frac{1}{2} \frac{\mu^2}{\sigma^2} t} \]

i.e. operator \(\mathcal{B} \) features exponential decay at rate \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \)
Transition in Upper Tail

- Distribution $p(x, t)$ satisfies a Kolomogorov Forward Equation
 \[p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi \]
 (*)

- Can solve this, but not particularly instructive

- Instead, use so-called Laplace transform of p
 \[\hat{p}(\xi, t) := \int_{-\infty}^{\infty} e^{-\xi x} p(x, t) \, dx = \mathbb{E}[e^{-\xi x}] \]

- \hat{p} has natural interpretation: $-\xi$th moment of income/wealth $w_{it} = e^{x_{it}}$
 - e.g. $\hat{p}(-2, t) = \mathbb{E}[w_{it}^2]$
 - only works in case without reflecting barrier/lower bound
Transition in Upper Tail

Proposition: The Laplace transform of p, \hat{p} satisfies

$$\hat{p}(\xi, t) = \hat{p}_\infty(\xi) + (\hat{p}_0(\xi) - \hat{p}_\infty(\xi)) e^{-\lambda(\xi)t}$$

with moment-specific speed of convergence

$$\lambda(\xi) = \mu\xi - \frac{\sigma^2}{2}\xi^2 + \delta$$

Hence, for $\xi < 0$, the higher the moment $-\xi$, the slower the convergence (for high enough $|\xi| < \zeta$)

Key step: Laplace transform transforms PDE \ast into ODE

$$\frac{\partial \hat{p}(\xi, t)}{\partial t} = -\xi\mu\hat{p}(\xi, t) + \xi^2\frac{\sigma^2}{2}\hat{p}(\xi, t) - \delta\hat{p}(\xi, t) + \delta\hat{\psi}(\xi)$$
Can the model explain the fast rise in inequality?

• Recall process for log wages

\[d \log w_{it} = \mu dt + \sigma dZ_{it} + \text{death at rate } \delta \]

• \(\sigma^2 = \text{Var(permanent earnings)} \)

• Literature: \(\sigma \) has increased over last forty years
 • Kopczuk, Saez and Song (2010), DeBacker et al. (2013), Heathcote, Perri and Violante (2010) using PSID
 • but Guvenen, Ozkan and Song (2014): \(\sigma \) flat/decreasing in SSA data

• Can increase in \(\sigma \) explain increase in top income inequality?
 • experiment: \(\sigma^2 \uparrow \) from 0.01 in 1973 to 0.025 in 2014 (Heathcote-Perri-Violante)
Putting the Theory to Work

- Recall formula $\lambda(\xi) = \mu \xi - \frac{\sigma^2}{2} \xi^2 + \delta$
- Compute half-life $t_{1/2}(\xi) = \log 2 / \lambda(\xi)$
Transition following Increase in σ^2 from 0.01 to 0.025
OK, so what drives top inequality then?

Two candidates:

1. “type dependence”: heterogeneity in mean growth rates

2. “scale dependence”: “superstar shocks” to skill prices

Both are violations of Gibrat’s law
Type Dependence

- Casual evidence: very rapid income growth rates since 1980s (Bill Gates, Mark Zuckerberg)
- Two regimes: H and L with $\mu_H > \mu_L$

 $$dx_{it} = \mu_H dt + \sigma_H dZ_{it}$$
 $$dx_{it} = \mu_L dt + \sigma_L dZ_{it}$$

- Assumptions
 - drop from H to L at rate ψ
 - retire at rate δ

- See Luttmer (2011) for similar model of firm dynamics

- Proposition: Speed of transition determined by

 $$\lambda_H(\xi) := \xi \mu_H - \xi^2 \frac{\sigma_H^2}{2} + \psi + \delta \gg \lambda_L(\xi)$$

Scale Dependence

- Second candidate for fast transitions: \(x_{it} = \log w_{it} \) satisfies

\[
\begin{align*}
x_{it} &= \chi_t y_{it} \\
\log d y_{it} &= \mu dt + \sigma dZ_{it}
\end{align*}
\]

i.e. \(w_{it} = (e^{y_{it}})^{x_t} \) and \(\chi_t = \text{stochastic process} \neq 1 \)

- Note: implies deviations from Gibrat’s law

\[
dx_{it} = \mu dt + x_{it} dS_t + \sigma dZ_{it}, \quad S_t := \log \chi_t \neq 0
\]

- Call \(\chi_t \) (equiv. \(S_t \)) “superstar shocks”

- Proposition: The process (*) has an infinitely fast speed of adjustment: \(\lambda = \infty \). Indeed

\[
\zeta_{x_t} = \zeta^y / \chi_t \quad \text{or} \quad \eta_{x_t} = \chi_t \eta^y
\]

where \(\zeta_{x_t}, \zeta^y \) are the PL exponents of incomes \(x_{it} \) and \(y_{it} \).

- Intuition: if power \(\chi_t \) jumps up, top inequality jumps up
A Microfoundation for “Superstar Shocks”

- χ_t term can be microfounded with changing skill prices in assignment models (Sattinger, 1979; Rosen, 1981)
- Here adopt Gabaix and Landier (2008)
 - continuum of firms of different size $S \sim \text{Pareto}(1/\alpha_t)$.
 - continuum of managers with different talent T, distribution
 \[T(n) = T_{\text{max}} - \frac{B}{\beta} n^\beta_t \]
 where $n := \text{rank/quantile of manager talent}$
- Match generates firm value: constant $\times TS^{\gamma_t}$
- Can show: $w(n) = e^{\alpha t} n^{-\chi_t} (= e^{\alpha t + \chi t y_{it}}, y_{it} = -\log n_{it})$
 \[\chi_t = \alpha_t \gamma_t - \beta_t \]
- Increase in χ_t due to
 - β_t, γ_t: (perceived) importance of talent in production, e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)
- Other assignment models (e.g. with rent-seeking, inefficiencies)
Revisiting the Rise in Income Inequality

- Jones and Kim (2015): in IRS/SSA data, $\mu_H \uparrow$ since 1970s
- Experiment: in 1973 $\mu_H \uparrow$ by 8%

![Graph showing Top 1% Labor Income Share over decades from 1950 to 2050. The graph compares data from Piketty and Saez with models under high growth and steady state conditions.](image-url)
Conclusion

• Transition dynamics of standard random growth models too slow relative to those observed in the data

• Two parsimonious deviations that generate fast transitions
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices

• Rise in top income inequality due to
 • simple tax stories, stories about Var(permanent earnings)
 • rise in superstar growth (and churn) in two-regime world
 • “superstar shocks” to skill prices

• See paper for wealth inequality results
 http://www.princeton.edu/~moll/dynamics_wealth.pdf
Tools Summary

• Differential operators as transition matrices

• At fundamental level, everything same whether discrete/continuous
time/space
 • nothing special about continuous t
 • nothing special about continuous x
 • all results from discrete time/space carry over to
 infinite-dimensional (i.e. continuous) case
 • but computational advantages (e.g. sparsity) – next lecture

• Analogies
 • function $p \leftrightarrow$ vector p
 • (linear) operator $\mathcal{A} \leftrightarrow$ matrix A
 • adjoint $\mathcal{A}^* \leftrightarrow$ transpose A^T
Open Questions

• “What fraction” of top inequality is efficient in the sense of people getting paid marginal product? What fraction due to rent-seeking?

• What are the underlying economic forces that drove the increase in top inequality?
 • technical change?
 • globalization?
 • superstars?
 • rent-seeking?
 • particular sectors/occupations?

• Evidence for scale- and type-dependence?
 • what about income?
Using Norwegian administrative data (Norway has wealth tax), document massive heterogeneity in returns to wealth

- range of over 500 basis points between 10th and 90th pctile
- returns positively correlated with wealth

Interesting open question: can a process for returns to wealth like the one documented by FGMP quantitatively generate fast dynamics in top wealth inequality?