Outline

1. Hamilton-Jacobi-Bellman equations in deterministic settings (with derivation)

2. Numerical solution: finite difference method
Hamilton-Jacobi-Bellman Equation: Some “History”

- William Hamilton
- Carl Jacobi
- Richard Bellman

Aside: why called “dynamic programming”?

Bellman: “Try thinking of some combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.”

Recall the generic deterministic optimal control problem from Lecture 1:

\[v(x_0) = \max_{\{\alpha(t)\}_{t \geq 0}} \int_0^\infty e^{-\rho t} r(x(t), \alpha(t)) \, dt \]

subject to the law of motion for the state

\[\dot{x}(t) = f(x(t), \alpha(t)) \quad \text{and} \quad \alpha(t) \in A \]

for \(t \geq 0, \ x(0) = x_0 \) given.

- \(\rho \geq 0 \): discount rate
- \(x \in X \subseteq \mathbb{R}^N \): state vector
- \(\alpha \in A \subseteq \mathbb{R}^M \): control vector
- \(r : X \times A \rightarrow \mathbb{R} \): instantaneous return function
Example: Neoclassical Growth Model

\[v(k_0) = \max_{\{c(t)\}_{t \geq 0}} \int_0^\infty e^{-\rho t} u(c(t)) dt \]

subject to

\[\dot{k}(t) = F(k(t)) - \delta k(t) - c(t) \]

for \(t \geq 0 \), \(k(0) = k_0 \) given.

- Here the state is \(x = k \) and the control \(\alpha = c \)
- \(r(x, \alpha) = u(\alpha) \)
- \(f(x, \alpha) = F(x) - \delta x - \alpha \)
Generic HJB Equation

• How to analyze these optimal control problems? Here: “cookbook approach”

• Result: the value function of the generic optimal control problem satisfies the Hamilton-Jacobi-Bellman equation

\[\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x) \cdot f(x, \alpha) \]

• In the case with more than one state variable \(N > 1 \), \(v'(x) \in \mathbb{R}^N \) is the gradient of the value function.
Example: Neoclassical Growth Model

• “cookbook” implies:

\[\rho v(k) = \max_c u(c) + v'(k)(F(k) - \delta k - c) \]

• Proceed by taking first-order conditions etc

\[u'(c) = v'(k) \]
Derivation from Discrete-time Bellman

- Here: derivation for neoclassical growth model
- Extra class notes: generic derivation
- Time periods of length Δ
- Discount factor
 $$\beta(\Delta) = e^{-\rho\Delta}$$
- Note that $\lim_{\Delta \to 0} \beta(\Delta) = 1$ and $\lim_{\Delta \to \infty} \beta(\Delta) = 0$
- Discrete-time Bellman equation:

 $$v(k_t) = \max_{c_t} \Delta u(c_t) + e^{-\rho\Delta} v(k_{t+\Delta}) \quad \text{s.t.}$$

 $$k_{t+\Delta} = \Delta(F(k_t) - \delta k_t - c_t) + k_t$$
Derivation from Discrete-time Bellman

- For small Δ (will take $\Delta \rightarrow 0$), $e^{-\rho \Delta} = 1 - \rho \Delta$

 \[v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \rho \Delta) v(k_{t+\Delta}) \]

- Subtract $(1 - \rho \Delta)v(k_t)$ from both sides

 \[\rho \Delta v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \Delta \rho)(v(k_{t+\Delta}) - v(k_t)) \]

- Divide by Δ and manipulate last term

 \[\rho v(k_t) = \max_{c_t} u(c_t) + (1 - \Delta \rho) \frac{v(k_{t+\Delta}) - v(k_t)}{k_{t+\Delta} - k_t} \frac{k_{t+\Delta} - k_t}{\Delta} \]

- Take $\Delta \rightarrow 0$

 \[\rho v(k_t) = \max_{c_t} u(c_t) + v'(k_t) \dot{k}_t \]
Connection Between HJB Equation and Hamiltonian

- Hamiltonian
 \[\mathcal{H}(x, \alpha, \lambda) = r(x, \alpha) + \lambda f(x, \alpha) \]

- HJB equation
 \[\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x)f(x, \alpha) \]

- Connection: \(\lambda(t) = v'(x(t)) \), i.e. co-state = shadow value

- Bellman can be written as \(\rho v(x) = \max_{\alpha \in A} \mathcal{H}(x, \alpha, v'(x)) \) ...

- ... hence the “Hamilton” in Hamilton-Jacobi-Bellman

- Can show: playing around with FOC and envelope condition gives conditions for optimum from Lecture 1

- Mathematicians’ notation: in terms of maximized Hamiltonian \(H \)
 \[\rho v(x) = H(x, v'(x)) \]
 \[H(x, p) := \max_{\alpha \in A} r(x, \alpha) + pf(x, \alpha) \]
Some general, somewhat philosophical thoughts

- MAT 101 way (“first-order ODE needs one boundary condition”) is not the right way to think about HJB equations

- these equations have very special structure which one should exploit when analyzing and solving them

- Particularly true for computations

- Important: all results/algorithms apply to problems with more than one state variable, i.e. it doesn’t matter whether you solve ODEs or PDEs
Existence and Uniqueness of Solutions to (HJB)

Recall Hamilton-Jacobi-Bellman equation:

\[
\rho v(x) = \max_{\alpha \in A} \left\{ r(x, \alpha) + v'(x) \cdot f(x, \alpha) \right\} \quad \text{(HJB)}
\]

Two key results, analogous to discrete time:

• **Theorem 1** (HJB) has a unique “nice” solution

• **Theorem 2** “nice” solution equals value function, i.e. solution to “sequence problem”

• Here: “nice” solution = “viscosity solution”

• See supplement “Viscosity Solutions for Dummies”

• Theorems 1 and 2 hold for both ODE and PDE cases, i.e. also with multiple state variables...

• ... also hold if value function has kinks (e.g. from non-convexities)

• Remark re Thm 1: in typical application, only very weak boundary conditions needed for uniqueness (≤’s, boundedness assumption)
Numerical Solution of HJB Equations
Finite Difference Methods

- See http://www.princeton.edu/~moll/HACTproject.htm
- Explain using neoclassical growth model, easily generalized to other applications

\[\rho v(k) = \max_c u(c) + v'(k)(F(k) - \delta k - c) \]

- Functional forms

\[u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \quad F(k) = k^\alpha \]

- Use finite difference method

 - Two MATLAB codes
 - http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
 - http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m
• There is a well-developed theory for numerical solution of HJB equation using finite difference methods

• Key paper: Barles and Souganidis (1991), “Convergence of approximation schemes for fully nonlinear second order equations”

• Result: finite difference scheme “converges” to unique viscosity solution under three conditions
 1. monotonicity
 2. consistency
 3. stability

Finite Difference Approximations to $v'(k_i)$

- Approximate $v(k)$ at l discrete points in the state space, k_i, $i = 1, ..., l$. Denote distance between grid points by Δk.

- Shorthand notation

 $$v_i = v(k_i)$$

- Need to approximate $v'(k_i)$.

- Three different possibilities:

 $$v'(k_i) \approx \frac{v_i - v_{i-1}}{\Delta k} = v_{i,B}$$
 \text{backward difference} \\
 $$v'(k_i) \approx \frac{v_{i+1} - v_i}{\Delta k} = v_{i,F}$$
 \text{forward difference} \\
 $$v'(k_i) \approx \frac{v_{i+1} - v_{i-1}}{2\Delta k} = v_{i,C}$$
 \text{central difference}
Finite Difference Approximations to $v'(k_i)$
Finite Difference Approximation

FD approximation to HJB is

\[\rho v_i = u(c_i) + v'_i [F(k_i) - \delta k_i - c_i] \] \text{(*)}

where \(c_i = (u')^{-1}(v'_i) \), and \(v'_i \) is one of backward, forward, central FD approximations.

Two complications:

1. which FD approximation to use? “Upwind scheme”
2. (*) is extremely non-linear, need to solve iteratively: “explicit” vs. “implicit method”

My strategy for next few slides:

• what works
• at end of lecture: why it works (Barles-Souganidis)
Which FD Approximation?

- Which of these you use is extremely important
- Best solution: use so-called “upwind scheme.” Rough idea:
 - forward difference whenever drift of state variable positive
 - backward difference whenever drift of state variable negative
- In our example: define

 \[s_{i,F} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,F}), \quad s_{i,B} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,B}) \]

- Approximate derivative as follows

 \[v_i' = v_{i,F} 1_{\{s_{i,F}>0\}} + v_{i,B} 1_{\{s_{i,B}<0\}} + \tilde{v}_i 1_{\{s_{i,F}<0<s_{i,B}\}} \]

 where \(1_{\{\}}\) is indicator function, and \(\tilde{v}_i = u'(F(k_i) - \delta k_i)\).
- Where does \(\tilde{v}_i'\) term come from? Answer:
 - since \(v\) is concave, \(v'_{i,F} < v'_{i,B}\) (see figure) \(\Rightarrow s_{i,F} < s_{i,B}\)
 - if \(s'_{i,F} < 0 < s'_{i,B}\), set \(s_i = 0 \Rightarrow v'(k_i) = u'(F(k_i) - \delta k_i), i.e. we’re at a steady state.\]
Sparsity

- Discretized HJB equation is

\[\rho v_i = u(c_i) + \frac{v_{i+1} - v_i}{\Delta k} s_{i,F}^+ + \frac{v_i - v_{i-1}}{\Delta k} s_{i,B}^- \]

- Notation: for any \(x \), \(x^+ = \max\{x, 0\} \) and \(x^- = \min\{x, 0\} \)

- Can write this in matrix notation

\[\rho v = u + Av \]

where \(A \) is \(I \times I \) (\(I \)= no of grid points) and looks like...
Visualization of A (output of `spy(A)` in Matlab)
The matrix \(\mathbf{A} \)

- **FD method** approximates process for \(k \) with **discrete Poisson process**, \(\mathbf{A} \) summarizes Poisson intensities
 - entries in row \(i \):

\[
\begin{bmatrix}
 - \frac{s_{i,B}^-}{\Delta k} & \frac{s_{i,B}^-}{\Delta k} & \frac{s_{i,F}^+}{\Delta k} \\
 \text{inflow}_{i-1} \geq 0 & \text{outflow}_i \leq 0 & \text{inflow}_{i+1} \geq 0
\end{bmatrix}
\begin{bmatrix}
 v_{i-1} \\
v_i \\
v_{i+1}
\end{bmatrix}
\]

- negative diagonals, positive off-diagonals, rows sum to zero:
- tridiagonal matrix, very sparse

- \(\mathbf{A} \) (and \(\mathbf{u} \)) depend on \(\mathbf{v} \) (nonlinear problem)

\[
\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}
\]

- Next: iterative method...
Iterative Method

- Idea: Solve FOC for given v^n, update v^{n+1} according to
 \[\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^n = u(c_i^n) + (v^n)'(k_i)(F(k_i) - \delta k_i - c_i^n) \]
 \[(*) \]

- Algorithm: Guess v_i^0, $i = 1, \ldots, I$ and for $n = 0, 1, 2, \ldots$ follow
 1. Compute $(v^n)'(k_i)$ using FD approx. on previous slide.
 2. Compute c^n from $c_i^n = (u')^{-1}[(v^n)'(k_i)]$
 3. Find v^{n+1} from $(*)$.
 4. If v^{n+1} is close enough to v^n: stop. Otherwise, go to step 1.

- See http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

- Important parameter: $\Delta =$ step size, cannot be too large (“CFL condition”).

- Pretty inefficient: I need 5,990 iterations (though quite fast)
Efficiency: Implicit Method

- Efficiency can be improved by using an “implicit method”

\[
\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^{n+1} = u(c_i^n) + (v_i^{n+1})'(k_i)[F(k_i) - \delta k_i - c_i^n]
\]

- Each step \(n \) involves solving a linear system of the form

\[
\frac{1}{\Delta}(v^{n+1} - v^n) + \rho v^{n+1} = u + A_n v^{n+1}
\]

\[
((\rho + \frac{1}{\Delta})I - A_n) v^{n+1} = u + \frac{1}{\Delta} v^n
\]

- but \(A_n \) is super sparse \(\Rightarrow \) super fast

- See http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

- In general: implicit method preferable over explicit method
 1. stable regardless of step size \(\Delta \)
 2. need much fewer iterations
 3. can handle many more grid points
Implicit Method: Practical Consideration

- In Matlab, need to explicitly construct A as sparse to take advantage of speed gains

- Code has part that looks as follows

\[
X = -\min(mub,0)/dk; \\
Y = -\max(muf,0)/dk + \min(mub,0)/dk; \\
Z = \max(muf,0)/dk;
\]

- **Constructing full matrix – slow**

\[
\text{for } i=2:I-1 \\
\quad A(i,i-1) = X(i); \\
\quad A(i,i) = Y(i); \\
\quad A(i,i+1) = Z(i); \\
\text{end}
\]

\[
A(1,1)=Y(1); A(1,2) = Z(1); \\
A(I,I)=Y(I); A(I,I-1) = X(I);
\]

- **Constructing sparse matrix – fast**

\[
A = \text{spdiags}(Y,0,I,I) + \text{spdiags}(X(2:I),-1,I,I) + \text{spdiags}([0;Z(1:I-1)],1,I,I);
\]
Non-Convexities
Non-Convexities

- Consider growth model

\[\rho v(k) = \max_c u(c) + v'(k)(F(k) - \delta k - c). \]

- But drop assumption that \(F \) is strictly concave. Instead: “butterfly”

\[
\begin{align*}
F(k) &= \max \{ F_L(k), F_H(k) \}, \\
F_L(k) &= A_L k^\alpha, \\
F_H(k) &= A_H ((k - \kappa)^+)^\alpha, \quad \kappa > 0, \ A_H > A_L
\end{align*}
\]
Standard Methods

- Discrete time: first-order conditions

\[u'(F(k) - \delta k - k') = \beta v'(k') \]

no longer sufficient, typically multiple solutions
- some applications: sidestep with lotteries (Prescott-Townsend)
- Continuous time: Skiba (1978)
Instead: Using Finite-Difference Scheme

Nothing changes, use same exact algorithm as for growth model with concave production function

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_skiba.m

(a) Saving Policy Function

(b) Value Function
Visualization of \mathbf{A} (output of $\text{spy}(\mathbf{A})$ in Matlab)
Appendix
Why this works? Barles-Souganidis

- Here: version with one state variable, but generalizes
- Can write any HJB equation with one state variable as
 \[0 = G(k, v(k), v'(k), v''(k)) \]
 \[(G)\]
- Corresponding FD scheme
 \[0 = S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) \]
 \[(S)\]
- Growth model
 \[G(k, v(k), v'(k), v''(k)) = \rho v(k) - \max_c u(c) + v'(k)(F(k) - \delta k - c) \]
 \[S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = \rho v_i - u(c_i) - \frac{v_{i+1} - v_i}{\Delta k} (F(k_i) - \delta k_i - c_i)^+ \]
 \[- \frac{v_i - v_{i-1}}{\Delta k} (F(k_i) - \delta k_i - c_i)^- \]
1. **Monotonicity**: the numerical scheme is monotone, that is S is non-increasing in both v_{i-1} and v_{i+1}

2. **Consistency**: the numerical scheme is consistent, that is for every smooth function v with bounded derivatives

 $$S(\Delta k, k_i, v(k_i); v(k_{i-1}), v(k_{i+1})) \to G(v(k), v'(k), v''(k))$$

as $\Delta k \to 0$ and $k_i \to k$.

3. **Stability**: the numerical scheme is stable, that is for every $\Delta k > 0$, it has a solution $v_i, i = 1, \ldots, l$ which is uniformly bounded independently of Δk.
Why this works? Barles-Souganidis

Theorem (Barles-Souganidis)

If the scheme satisfies the monotonicity, consistency and stability conditions 1 to 3, then as $\Delta k \to 0$ its solution v_i, $i = 1, \ldots, l$ converges locally uniformly to the unique viscosity solution of (G)

• Note: “convergence” here has nothing to do with iterative algorithm converging to fixed point

• Instead: convergence of v_i as $\Delta k \to 0$. More momentarily.
Intuition for Monotonicity

• Write (S) as

\[\rho v_i = \tilde{S}(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) \]

• For example, in growth model

\[
\tilde{S}(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = u(c_i) + \frac{v_{i+1} - v_i}{\Delta k} (F(k_i) - \delta k_i - c_i)^+ \\
+ \frac{v_i - v_{i-1}}{\Delta k} (F(k_i) - \delta k_i - c_i)^-
\]

• Monotonicity: \(\tilde{S} \uparrow \) in \(v_{i-1}, v_{i+1} \) (\(\Leftrightarrow S \downarrow \) in \(v_{i-1}, v_{i+1} \))

• Intuition: if my continuation value at \(i - 1 \) or \(i + 1 \) is larger, I must be at least as well off (i.e. \(v_i \) on LHS must be at least as high)
Checking the Monotonicity Condition in Growth Model

• Recall upwind scheme:

\[
S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = \rho v_i - u(c_i) - \frac{v_{i+1} - v_i}{\Delta k}(F(k_i) - \delta k_i - c_i)^+ \\
- \frac{v_i - v_{i-1}}{\Delta k}(F(k_i) - \delta k_i - c_i)^-
\]

• Can check: satisfies monotonicity: \(S\) is indeed non-increasing in both \(v_{i-1}\) and \(v_{i+1}\)

• \(c_i\) depends on \(v_i\)'s but doesn’t affect monotonicity due to envelope condition
Meaning of “Convergence”

Convergence is about $\Delta k \to 0$. What, then, is content of theorem?

- have a system of l non-linear equations $S(\Delta k, k, v_i; v_{i-1}, v_{i+1}) = 0$
- need to solve it somehow
- Theorem guarantees that solution (for given Δk) converges to solution of the HJB equation (G) as Δk.

Why does iterative scheme work? Two interpretations:

1. Newton method for solving system of non-linear equations (S)
2. Iterative scheme \leftrightarrow solve (HJB) backward in time

\[
\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^n = u(c_i^n) + (v^n)'(k_i)(F(k_i) - \delta k_i - c_i^n)
\]

in effect sets $v(k, T) =$ initial guess and solves

\[
\rho v(k, t) = \max_c u(c) + \partial_k v(k, t)(F(k) - \delta k - c) + \partial_t v(k, t)
\]

backwards in time. $v(k) = \lim_{t \to -\infty} v(k, t)$.
There’s another common method for solving HJB equation: “Markov Chain Approximation Method”

- effectively: convert to discrete time, use value fn iteration
- FD method not so different: also converts things to “Markov Chain”

\[\rho v = u + A v \]

Connection between FD and MCAC
- also shows how to exploit insights from MCAC to find FD scheme satisfying Barles-Souganidis conditions

Another source of useful notes/codes: Frédéric Bonnans’ website

http://www.cmap.polytechnique.fr/~bonnans/notes/edpfin/edpfin.html