Lecture 5
Key Facts on Income and Wealth Distribution

ECO 521: Advanced Macroeconomics I

Benjamin Moll

Princeton University, Fall 2016
A Budget Constraint to Organize our Thoughts

Want to think about

1. inequality of labor income
2. inequality of capital income
3. wealth inequality
4. consumption inequality
5. distribution of factor income (capital vs labor share)
A Budget Constraint to Organize our Thoughts

- N households indexed by $i = 1, \ldots, N$, discrete time $t = 0, 1, 2 \ldots$

$$c_{it} + s_{it} = \underbrace{y_{it}^l + y_{it}^k}_{y_{it}}, \quad a_{it+1} = s_{it} + a_{it}$$

$$\Rightarrow a_{it+1} = \underbrace{y_{it}^l + y_{it}^k + a_{it}}_{y_{it}} - c_{it}$$

- y_{it}: total household income
- y_{it}^l: labor income
- y_{it}^k: capital income
- c_{it}: consumption
- s_{it}: saving
- a_{it}: wealth

- Usual budget constraint = special case with $y_{it}^l = w_t l_{it}$, $y_{it}^k = r_t a_{it}$

- Power of above budget constraint: accounting identity

- Remark: nothing special about discrete time

 - could have also written $a_{i,t+1} = \int_0^1 s_{i,t+\tau} d\tau + a_{i,t}$

 - real world: continuous time, data sampled at discrete intervals
Why useful?

• Aids clarity of thinking

• Consider following questions

 • when income inequality increases, do we expect wealth inequality to increase as well?

 • If so, will this happen simultaneously or with some lag?

• More later: personal vs factor income distribution

 • When will an increase in the capital share result in an increase in inequality?
Measuring Inequality
Measuring inequality

• Visualizing distributions: some key concepts you should know
 1. density
 2. cumulative distribution function
 3. quantile function
 4. Lorenz curve

• Some commonly used summary statistics (but always keep in mind: impossible to summarize distribution with one number)
 1. 90-10 ratio, interquartile range and other percentile ratios
 2. top shares
 3. Gini coefficient
Quantile Function

- Quantile function = inverse of CDF
 \[y(p) := F^{-1}(p), \quad F(y) := \Pr(y_{it} \leq y) \]

- Pen’s parade:

Lorenz Curve

- $L(p)$: share of total income going to bottom $p\%$
- Relationship between Lorenz curve and quantile function:
 $$L'(p) = \frac{y(p)}{\bar{y}}$$

Figure 4. Example of Lorenz curve for income.
Atkinson’s Theorem: Lorenz Dominance and Welfare

• Main message: if Lorenz curves for two distributions do not cross (“Lorenz dominance”), can rank them in terms of welfare

• Consider an income distribution F with density f

• For any u with $u' > 0$, $u'' < 0$, define welfare criterion

$$ W(F) := \int_0^{\bar{y}} u(y)f(y)dy $$

• Theorem (Atkinson, 1970): Let F and G be two income dist’ns with equal means. Then F generates higher welfare than G if and only if the Lorenz curve for F lies everywhere above that for G:

$$ W(F) \geq W(G) \iff L_F(p) \geq L_G(p) \quad \text{all } p \in [0, 1] $$

• Easy to extend to unequal means – Shorrocks (1993)

• Proof in two steps

1. Lorenz dominance \iff 2nd-order stochastic dominance

2. 2nd-order stochastic dominance \iff welfare ranking
Step 1 of proof: Lorenz dominance \Leftrightarrow SOSD

Lemma 1: Let F and G be two income distributions with equal means. Then $L_F(p) \geq L_G(p)$, all $p \in [0, 1] \Leftrightarrow \int_0^y [F(x) - G(x)] dx \leq 0$ for all y

Proof of Lemma 1 (\Rightarrow part, see Atkinson (1970) for \Leftarrow part):

- Denote mean by μ, pth quantile by $y_F(p)$, i.e. $F(y_F(p)) = p$. Have

$$L_F(p) := \frac{1}{\mu} \int_0^{y_F(p)} y f(y) dy$$

- Integrate by parts $\mu L_F(p) = y_F(p)p - \int_0^{y_F(p)} F(y) dy$

- Compare L_F and L_G at point p – WLOG assume $y_F(p) \leq y_G(p)$

$$\mu[L_F(p) - L_G(p)] = [y_F(p) - y_G(p)]p - \left[\int_0^{y_F(p)} F(y) dy - \int_0^{y_G(p)} G(y) dy \right]$$

$$= - \int_0^{y_G(p)} [F(y) - G(y)] dy + \left[\int_{y_F(p)}^{y_G(p)} F(y) dy - (y_G(p) - y_F(p))F(y_F(p)) \right]$$

- Mean value theorem: $\int_{y_F(p)}^{y_G(p)} F(y) dy = (y_G(p) - y_F(p))F(\hat{y})$ for some $\hat{y} \in [y_F(p), y_G(p)] \Rightarrow \text{2nd term} \geq 0 \Rightarrow \mu[L_F(p) - L_G(p)] \geq 0$
Step 2 of proof: SOSD \iff welfare ranking

Lemma 2: Let F and G be two income distributions. Then $W(F) \geq W(G) \iff \int_0^y [F(x) - G(x)] dx \leq 0$ for all $y \in [0, \bar{y}]$

Proof of Lemma 2 (\iff part, see risk aversion literature for \Rightarrow part):

$$W(F) - W(G) = \int_0^{\bar{y}} u(y)f(y)dy - \int_0^{\bar{y}} u(y)g(y)dy$$

$$= \int_0^{\bar{y}} u'(y)[G(y) - F(y)]dy$$

$$= -\int_0^{\bar{y}} u''(y)S(y)dy + u'(\bar{y})S(\bar{y})$$

where $S(y) := -\int_0^y [F(x) - G(x)] dx$

- From 2nd-order stochastic dominance $S(y) \geq 0$ for all y
- Further $u' > 0$, $u'' < 0$ for all y by assumption
- Hence $W(F) - W(G) \geq 0$
Publicly Available Data Sources for U.S.

• Survey of Consumer Finances (SCF)
 http://www.federalreserve.gov/econresdata/scf/scfindex.htm

• Panel Study of Income Dynamics (PSID)
 https://psidonline.isr.umich.edu/

• Consumer Expenditure Survey (CEX)
 http://www.bls.gov/cex/

• Current Population Survey (CPS)
 http://www.census.gov/programs-surveys/cps.html

• IRS public use tax model data (Piketty-Saez), through NBER

• for features, pros and cons of these see Gianluca Violante’s lecture notes “Micro Data: A Helicopter Tour” http://www.econ.nyu.edu/user/violante/NYUTeaching/QM/Fall15/Lectures/Lecture2_Data.pdf
Other countries or other variables

- World Wealth and Income Database (Piketty-Saez top shares)
 http://www.wid.world/

- ECB Household Finance and Consumption Survey (HFCS)

- Luxembourg Income Study Database
 http://www.lisdatacenter.org/our-data/lis-database/

- IPUMS International (household-level micro data from around the world): https://international.ipums.org/international/

- Execucomp (Executive Compensation)
 https://wrds-web.wharton.upenn.edu/wrds/ds/execcomp/exec.cfm
 http://www.anderson.ucla.edu/rosenfeld-library/databases/business-databases-by-name/execucomp

- Billionaire Characteristics Database
Income Inequality in U.S.
Income Concepts, Individuals vs Households

\[\text{Earnings of Person 1} + \text{Earnings of Person 2} + \text{Income from capital} + \text{Private transfers} + \text{State transfers} = \text{Household gross income} \]

- \(\text{Direct taxes} = \text{Household disposable income} \)

\[
\text{Household disposable income} \div \text{number of equivalent adults} = \text{Household equivalised disposable income}
\]

\[
\text{Disposable income} + \text{Value of public services} = \text{Household extended income}
\]

\text{FIGURE 1.5: Guide to household income}

U.S. Income Distribution

Source: Kuhn and Rios-Rull (2016)
U.S. Income Distribution

Figure 5. **Lorenz curves of income in 1989 and 2013.**

Source: Kuhn and Rios-Rull (2016)
Evolution of Household Income Distribution in U.S.

FIGURE 3 The distribution of family income in the United States.

Evolution of Household Income Distribution in U.S.

The top decile share in U.S. national income dropped from 45-50% in the 1910s-1920s to less than 35% in the 1950s (this is the fall documented by Kuznets); it then rose from less than 35% in the 1970s to 45-50% in the 2000s-2010s. Sources and series: see piketty.pse.ens.fr/capital21c.

Evolution of Household Income Distribution in U.S.

Fig. 9. Percentiles of the household earnings distribution (CPS). Shaded areas are NBER recessions.

Source: Heathcote-Perri-Violante (2010), “Unequal We Stand…”
Other Countries

See https://ourworldindata.org/incomes-across-the-distribution/
Inequality in the tails: back to the roots...

• ... more precisely 1896 and

• In 1896, Vilfredo Pareto examined income and wealth distribution across Europe
 • published “Cours d’économie politique”, for whole book see http://www.institutcoppet.org/2012/05/08/cours-deconomie-politique-1896-de-vilfredo-pareto/
 • relevant part http://www.princeton.edu/~moll/pareto.pdf
poser en ligne droite. Disons immédiatement que nous allons retrouver cette tendance dans les nombreux exemples que nous aurons encore à examiner.

Un autre fait, tout aussi, et même plus remarquable, c'est que les courbes de la répartition des revenus, en Angleterre et en Irlande, présentent un parallélisme à peu près complet. Ce fait est à rapprocher d'un autre, que nous allons bientôt constater: les inclinaisons des lignes mn, pq obtenues pour dif-

Schedule D — Année 1893-94.

<table>
<thead>
<tr>
<th>£</th>
<th>GREAT BRITAIN</th>
<th>IRELAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>400 648</td>
<td>17 717</td>
</tr>
<tr>
<td>200</td>
<td>234 485</td>
<td>9 365</td>
</tr>
<tr>
<td>300</td>
<td>121 996</td>
<td>4 592</td>
</tr>
<tr>
<td>400</td>
<td>74 041</td>
<td>2 684</td>
</tr>
<tr>
<td>500</td>
<td>54 419</td>
<td>1 898</td>
</tr>
<tr>
<td>600</td>
<td>42 072</td>
<td>1 428</td>
</tr>
<tr>
<td>700</td>
<td>34 209</td>
<td>1 104</td>
</tr>
<tr>
<td>800</td>
<td>29 311</td>
<td>940</td>
</tr>
<tr>
<td>900</td>
<td>25 033</td>
<td>771</td>
</tr>
<tr>
<td>1000</td>
<td>22 896</td>
<td>684</td>
</tr>
<tr>
<td>2000</td>
<td>9 880</td>
<td>271</td>
</tr>
<tr>
<td>3000</td>
<td>6 069</td>
<td>142</td>
</tr>
<tr>
<td>4000</td>
<td>4 161</td>
<td>88</td>
</tr>
<tr>
<td>5000</td>
<td>3 081</td>
<td>68</td>
</tr>
<tr>
<td>10000</td>
<td>1 104</td>
<td>22</td>
</tr>
</tbody>
</table>

Fig. 47.
Power Laws

• Pareto (1896): upper-tail distribution of number of people with an income or wealth X greater than a large x is proportional to $1/x^\zeta$ for some $\zeta > 0$

$$\Pr(X > x) = kx^{-\zeta}$$

• **Definition 1:** x follows a power law (PL) if there exist $k, \zeta > 0$ s.t.

$$\Pr(X > x) = kx^{-\zeta}, \quad \text{all } x$$

• x follows a PL $\iff x$ has a Pareto distribution

• **Definition 2:** x follows an asymptotic power law if there exist $k, \zeta > 0$ s.t.

$$\Pr(X > x) \sim kx^{-\zeta} \quad \text{as } x \to \infty$$

• Note: for any f, g $f(x) \sim g(x)$ means $\lim_{x \to \infty} f(x)/g(x) = 1$

• Surprisingly many variables follow power laws, at least in tail
 • see Gabaix (2009), “Power Laws in Economics and Finance,” very nice, very accessible
Power Laws

- Another way of saying same thing: top inequality is fractal
 - ... top 0.01% is M times richer than top 0.1%,... is M times richer than top 1%,... is M times richer than top 10%,...
 - to see this, note that top p percentile x_p satisfies

 \[k x_p^{-\zeta} = p/100 \quad \Rightarrow \quad \frac{x_{0.01}}{x_{0.1}} = \frac{x_{0.1}}{x_{1}} = \ldots = 10^{1/\zeta} \]

- average income/wealth above pth percentile is

 \[
 \bar{x}_p = \mathbb{E}[x|x \geq x_p] = \int_{x_p}^{\infty} x \zeta k x^{-\zeta-1} \, dx = \frac{\zeta}{\zeta-1} x_p \quad \Rightarrow
 \frac{\bar{x}_{0.01}}{\bar{x}_{0.1}} = \frac{\bar{x}_{0.1}}{\bar{x}_{1}} = \ldots = 10^{1/\zeta}
 \]

- Related result: if x has a Pareto distribution, then share of x going to top p percent is

 \[S(p) = \left(\frac{100}{p} \right)^{1/\zeta-1} \]
The income distribution’s tail has gotten fatter

- \(\frac{S(0.1)}{S(1)} \) = fraction of top 1% share going to top 0.1%
- \(\frac{S(1)}{S(10)} \) = analogous, find top inequality \(\eta = 1/\zeta \) from

\[
\frac{S(p/10)}{S(p)} = 10^{\eta-1} \quad \Rightarrow \quad \eta = 1 + \log_{10} \frac{S(p/10)}{S(p)}
\]
Wealth Inequality in U.S.
A first thing to note

- Data for wealth considerably murkier than for income

- Particularly true for top wealth inequality

 - excellent summary by Kopczuk (2015), “What Do We Know About Evolution of Top Wealth Shares in the United States?”

- Main thing that’s clear: wealth more unequally distributed than income

- Pen’s parade for wealth: https://www.youtube.com/watch?v=QPKKQnijnsM
Households Hold Many Different Assets and Liabilities

Source: Kuhn and Rios-Rull (2016)
Wealth Lorenz Curve (Kennickell, 2009)

Pareto Tail of Wealth Distribution in SCF

NetWealth >= exp(14)

Source: own calculations using SCF
Piketty’s most interesting figure

Figure 10.6. Wealth inequality: Europe and the U.S., 1810-2010

Until the mid 20th century, wealth inequality was higher in Europe than in the United States.
Sources and series: see piketty.pse.ens.fr/capital21c.
Saez-Zucman: it’s even more extreme

B. Top 10-1% and 1% wealth shares

Share of total household wealth

Top 10% to 1%

Top 1%

Percentage values: 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%
Kopczuk: it’s not so clear

Figure 1
Top 0.1% and Top 1% Wealth Shares

Measurement methods:
- Estate tax multiplier
- SCF and precursor surveys
- Capitalization
Capitalization Method

- First use: Robert Giffen (1913), next Charles Stewart (1939)
 - http://www.nber.org/chapters/c9522.pdf
 - interesting discussion by Milton Friedman

- Used by Saez and Zucman (2016)

- Idea of capitalization method
 - observe $y_{it}^k = r_{it}a_{it}$
 - estimate $\hat{a}_{it} = y_{it}^k / \bar{r}_t = a_{it} \times r_{it} / \bar{r}_t$

- Potential problem: $r_{it} \neq \bar{r}$, systematically with a_{it}
 - see Fagereng, Guiso, Malacrino and Pistaferri (2016)
Estate Multiplier Method

Due to Mallet (1908) http://piketty.pse.ens.fr/files/Mallet1908.pdf

- split population into groups $g = 1, \ldots, G$
 - e.g. percentiles 1 to 100 of the population
 - $N_g =$ no of people in group g
 - $p_g =$ mortality rate in group g
 - $D_g =$ no of deaths in group g

- This equation holds by definition:
 \[D_g = p_g N_g \]

- Similarly, denoting $W_g =$ total wealth in group g, $E_g =$ total estates
 \[E_g = p_g W_g \]

- Therefore, given data on p_g and E_g, can calculate
 \[W_g = E_g / p_g \]
 or $W_g = m_g E_g$ where $m_g = 1 / p_g$ is the “estate multiplier”
“3D Inequality”: Consumption, Income and Wealth
“3D Inequality”: Consumption, Income and Wealth

Lorenz Curves (2011)

- Wealth inequality > income inequality > consumption inequality
- Source: own calculations using PSID
Table 2: PSID Households across the net worth distribution: 2006

<table>
<thead>
<tr>
<th>NW Q</th>
<th>% Share of:</th>
<th>% Expend. Rate</th>
<th>Head’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Earn.</td>
<td>Disp Y</td>
<td>Expend.</td>
</tr>
<tr>
<td>Q1</td>
<td>9.8</td>
<td>8.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Q2</td>
<td>12.9</td>
<td>11.2</td>
<td>12.4</td>
</tr>
<tr>
<td>Q3</td>
<td>18.0</td>
<td>16.7</td>
<td>16.8</td>
</tr>
<tr>
<td>Q4</td>
<td>22.3</td>
<td>22.1</td>
<td>22.4</td>
</tr>
<tr>
<td>Q5</td>
<td>37.0</td>
<td>41.2</td>
<td>37.2</td>
</tr>
</tbody>
</table>

Correlation with net worth

- 0.26
- 0.42
- 0.20

Source: Krueger, Mitman and Perri (2016)
Personal Income Distribution vs Factor Income Distribution
Factor Shares and Inequality

Developed countries: sizeable increase in capital share
(Elsby-Hobijn-Sahin, Karabarbounis-Neiman, Piketty-Zucman, Rognlie)

Usual argument: “capital is back” ⇒ income inequality will increase/already has

Logic: capital income more concentrated than labor income
Factor Shares and Inequality

• Nicest discussion I’ve seen: James Meade (1964) “Efficiency, Equality and the Ownership of Property”, Section II
 http://www.princeton.edu/~moll/meade.pdf

• Succinct summary in 2006 Economic Report of President: “Wealth is much more unequally distributed than labor income. As a result, the extent to which aggregate income is divided between returns to labor and returns to wealth (capital income) matters for aggregate inequality. When the labor share of income falls, the offsetting increase in capital income (returns to wealth) is distributed especially unequally, increasing overall inequality.”
Factor Shares and Inequality

• David Ricardo (1821): “The produce of the earth – all that is derived from its surface by the united application of labour, machinery, and capital, is divided among three classes of the community; namely, the proprietor of the land, the owner of the stock or capital necessary for its cultivation, and the labourers by whose industry it is cultivated. [...] To determine the laws which regulate this distribution, is the principal problem in Political Economy”

• What is the relationship between capital (or other factor) share and inequality?

• Use our organizing framework to think about this
Relationship between capital share and inequality?

• Consider following question: when does an increase in capital share coincide with increase in income inequality?

• Use extension of Meade’s analysis (1964, Section II)

• Recall total income \(y_i = y_i^k + y_i^\ell \).

• Assume continuum of households \(i \in [0, 1] \) and order households such that \(y_1 \leq y_2 \leq ... \leq y_N \)

• Define aggregates

\[
Y := \int_0^1 y_i \, di, \quad Y^\ell := \int_0^1 y_i^\ell \, di, \quad Y^k := \int_0^1 y_i^k \, di
\]

• Capital share is

\[
\alpha := \frac{Y^k}{Y}
\]
Relationship between capital share and inequality?

• As measure of inequality take share of income held by top \(p \)% (equiv Lorenz curve)

\[
S(p) = \frac{1}{Y} \int_{i(p)}^{1} y_i di, \quad i(p) := p^{th} \text{ percentile household}
\]

• Question: when \(\alpha \) increases, what happens to \(S(p) \)?

• Easy to see that \(\frac{Y_i}{Y} = \alpha \frac{Y_i^k}{Y_k} + (1-\alpha) \frac{Y_i^\ell}{Y_\ell} \). Hence

\[
S(p) = \alpha \hat{S}^k(p) + (1-\alpha) \hat{S}^\ell(p)
\]

\[
\hat{S}^k(p) := \frac{1}{Y_k} \int_{i(p)}^{1} y_i^k di
\]

i.e. share of capital income going to top \(p \)% of total income, and similarly for \(\hat{S}^\ell(p) \)

• Same formula as Meade’s: \(i_1 = p_1(1-q) + \ell_1 q \) (see his Section II)
Meade’s 1964 Analysis

• Recall formula for top \(p \)% income share:

\[
S(p) = \alpha \hat{S}^k(p) + (1 - \alpha) \hat{S}^\ell(p)
\]

• When \(\alpha \) increases, does \(S(p) \) increase for all \(p \)?

• Meade: in data \(\hat{S}^k(p) > \hat{S}^\ell(p) \), hence \(\alpha \uparrow \Rightarrow S(p) \uparrow \) for all \(p \)

• But note implicit assumption: \(\hat{S}^k(p) \) and \(\hat{S}^\ell(p) \) are constant for all \(p \) when \(\alpha \uparrow \). How likely is this?

• Would happen only if \(y^k_i/Y^k \) and \(y^\ell_i/Y^\ell \) constant for all \(i \)
 • everyone’s \(y^k_i \) scales up exactly proportionately with \(Y^k \)
 • everyone’s \(y^\ell_i \) scales down exactly proportionately with \(Y^\ell \)

• Example: “capitalist-worker economy” in which bottom of distribution has only labor income, top has only capital income

\[
y^k_i = 0, \quad y^\ell_i = Y^\ell/\theta \quad \text{for } i \leq \theta, \quad y^k_i = Y^k/(1 - \theta), \quad y^\ell_i = 0 \quad \text{for } i > \theta
\]

• If only interested in (say) top 10% share: slightly weaker conditions
More Sophisticated Analysis

- More likely that whatever factor causes $Y^k \uparrow$ affects some individuals’ y_i^k proportionately more than others. Then

$$\frac{\partial S(p)}{\partial \alpha} = \hat{S}^k(p) - \hat{S}^\ell(p) + \alpha \frac{\partial \hat{S}^k(p)}{\partial \alpha} + (1 - \alpha) \frac{\partial \hat{S}^\ell(p)}{\partial \alpha}$$

 due to between-factor distribution

 due to changes in within-factor distribution

- Crucial question: sign and size of second term?

- In principle, 2nd term can be $+$ or $-$, may outweigh 1st term ($+$) in which case Meade’s analysis is misleading

- Two authors questioning relation between capital share & inequality

 - Blinder (1975): “the division of national income between labor and capital has only a tenuous relation to the size distribution”