We analyze a model economy with many agents, each with a different productivity level. Agents divide their time between two activities: producing goods with the production-related knowledge they already have and interacting with others in search of new, productivity-increasing ideas. These choices jointly determine the economy’s current production level and its rate of learning and real growth. We construct the balanced growth path for this economy. We also study the allocation chosen by an idealized planner who takes into account and internalizes the external benefits of search. Finally, we provide three examples of alternative learning technologies and show that the properties of equilibrium allocations are quite sensitive to two of these variations.

I. Introduction

The rate of a person’s learning at any task depends on two distinct forces: the effort he applies and the environment in which the learning takes place. In a general equilibrium analysis, both these forces must be

We thank three anonymous referees and the editor, Sam Kortum, for numerous helpful comments. We also thank Roland Benabou, Paco Buera, Mike Golosov, Gene Grossman, Olivier Gueant, Boyan Jovanovic, Jean-Michel Lasry, Erzo Luttmer, Stephen Morris, Ezra Oberfield, Nancy Stokey, and seminar participants at Minnesota, Notre Dame, Princeton, Penn State, New York University, Washington, the Minneapolis Fed, the Chicago Fed, the 2011 meetings of the Society for Economic Dynamics, and the National Bureau of Economic Research Summer Institute for helpful suggestions and criticism, and Zongbo Huang for outstanding research assistance.
represented by agents in the same economy, so a study of their effects must be an analysis of the social interactions of a group of people whose individual knowledge levels differ. Much of existing growth theory, whether “exogenous” or “endogenous,” ignores this distinction between effort and environment and so has nothing to say about how such social interactions might shape long-run growth and income distribution.

In this paper we analyze a new model of endogenous growth, driven by sustained improvements in individual knowledge. Agents in this economy divide their time between two activities: producing goods with the production-related knowledge they already have and interacting with others in search of new, productivity-increasing ideas. These choices jointly determine the economy’s current production level and its rate of learning and real growth. In order to focus on what is new in our analysis, we keep the production technology in the economy very simple: Each person produces at a rate that is the product of his personal productivity level and the fraction of time that he chooses to spend producing goods. There are no factors of production other than labor and there are no complementarities between workers. There are no markets, no prices, and no public or private property other than individuals’ knowledge—their human capital.

The learning technology involves random meetings: Each person meets others at a rate that depends on the fraction of time he spends in search. For us, a meeting means simply an observation of someone else’s productivity. If that productivity is higher than his own, he adopts it in place of the productivity he came in with. Everyone’s productivity level is simply the maximum of the productivities of all the people he has ever met. To ensure that the growth generated by this process can be sustained, we add an assumption to the effect that the stock of good ideas waiting to be discovered is inexhaustible.

The state of the economy is completely described by the distribution of productivity levels. An individual’s time allocation decisions will depend on this distribution because the productivity levels of others determine his own chances of improving his productivity through search. Individuals’ time allocation decisions in turn determine learning rates and thus the evolution of the productivity distribution. One of the two equilibrium conditions of the model is the Bellman equation for the time allocation problem of a single atomistic agent who takes the productivity distribution as given. The second condition is a law of motion for the productivity distribution, given the policy functions of individual agents.

These two equations take the form of partial differential equations, with time and productivity levels as the two independent variables. We motivate these two equations in the next section. Then we focus on a particular solution of these equations, a balanced growth path, along
which production grows at a constant rate and the distribution of relative productivities remains constant. In Section III, we discuss the properties of this balanced growth path and develop an algorithm to calculate it, given parameters that describe the production and search technologies. For a benchmark version of the model, we calculate the growth rate on a balanced path and plot the density of the distribution of relative productivities, the policy function relating a person’s search effort to his current productivity level, and the Lorenz curves describing the distribution of earnings flows and present values. We illustrate the effects of given changes in parameters, for example, that a fatter right tail of the initial productivity distribution leads to higher individual search effort and higher long-run growth.

There is an evident external effect in this decentralized equilibrium. The private return to knowledge acquisition motivates individual decisions that generate sustained productivity growth, but an individual agent does not take into account the fact that increases in his own knowledge enrich the learning environment for the people around him. The social return to search exceeds the private return, raising the possibility that taxes or subsidies can equate private and social returns and improve both growth rates and welfare. In Section IV, we formulate a planning problem in which the planner directs the time allocations of each of the continuum of individual agents in the economy. One of the contributions of this paper is to show how this problem can be broken into individual Bellman equations in which the value function for each person is his marginal social value under an optimal plan. We study the implied balanced growth path and compare the implied policy function and distribution of relative productivities to those implied by the decentralized problem studied in Section III. In Section V, we consider the implementation of the planning solution through the use of a Pigovian system of taxes and subsidies.

All of the analysis in Sections II–V is based on a single, specific model of the search/learning process. It turns out that the algorithm we develop for this model is quite easily adapted to the analysis of a wide variety of other learning technologies. In Section VI, we make use of this fact and explore three alternative learning technologies. The first variation we consider is one in which agents learn from an outside idea source as well as from others in the economy. One might describe this as a combination of “innovation” and “imitation,” but we will show that the asymptotic behavior of the productivity distribution in the modified model is observationally equivalent to that in our simpler, benchmark model. Next we consider a substantively more interesting model in which there are limits to learning in the sense that recipients of ideas can learn from donors only if their knowledge levels are not too different. Finally, we explore an alternative assumption regarding the symme-
try of meetings, that is, who can learn what from whom depending on who initiated a meeting. It turns out that the properties of equilibrium allocations are quite sensitive to these last two variations, which is to say that different assumptions on technology diffusion that cannot be tested by direct observation may have very different implications for the behavior of observables.¹ For example, with limits to learning, unproductive individuals no longer exert more search effort than productive ones, and search effort is now a nonmonotonic function of productivity.

Relation to literature.—The distinctive feature of this paper and the focus of our analysis is the simultaneous determination of individual behavior and the evolution of the agents’ learning environment. We know of just two papers that share this feature. Perla and Tonetti (2014, in this issue) analyze an endogenous growth model similar to ours. They assume Pareto-distributed knowledge and compatible assumptions on technology and derive explicit formulas describing growth behavior. We will return to their illuminating example below, when our own model is on the table. The other paper is Jovanovic and MacDonald’s (1990, 1994) analysis of technological change in a competitive industry, which involves the same kind of simultaneous determination of behavior and the environment that ours uses. Theirs is not a growth model, however, and its mathematical structure is very different from ours.²

More generally, our paper builds on a vast literature on endogenous growth. The early models of Arrow (1962) and Shell (1966) emphasized external effects very similar to those we analyze here. The learning-by-doing models of Arrow (1962) and Stokey (1988) describe economies that move up a preexisting list of possible goods, ordered by quality. The successful production of each new good creates the knowledge that makes possible the production of the next one on the “ladder.” Both teachers and learners are agents in the same economy, but the knowledge they create is a pure public good, a nonrival good in the sense of Romer (1990). No one has an incentive to invest in knowledge creation, but no one needs to for creation to take place. In Romer’s study and related work by Grossman and Helpman (1991) and others, people allocate time to innovation or imitation, viewed as activities that take time

¹ Age-earnings (or experience-earnings) profiles are one such observable. For instance, Lagakos et al. (2012) document that the wage increase associated with increasing worker experience is lower for poorer countries, which is consistent with there being greater limits to learning in these countries. Similarly, Comin, Dmitriev, and Rossi-Hansberg (2011) argue that technologies diffuse slowly, not only across but also within countries. And diffusion is particularly uneven in developing countries, with rural areas experiencing the lowest penetration (World Bank 2008).

² In their environment, less productive agents always exert more search effort (see proposition 5 in Jovanovic and MacDonald [1994]). This is the case in our benchmark model, but not for the alternative learning technologies explored in Sec. VI.
away from production, but for this to occur they must be rewarded with a monopoly right to the use of the knowledge they produce. The knowledge itself is immediately available to everyone.

All these papers capture aspects of behavior that we think is important in economic life, but the abstraction of “common knowledge” places a severe limitation on the kinds of interactions that we can analyze. Intellectual property plays a role, but in most sectors a very modest one. Yet people do allocate time specifically toward knowledge creation. Here we go to the opposite pole from common to private knowledge, knowledge that is in the head of some individual person, a part of his “human capital.” As in Jovanovic and Rob (1989), new knowledge is “produced” from meetings of individuals whose knowledge differs. Our technical starting point is taken from Kortum (1997) and Eaton and Kortum (1999), who treat the distribution of individual knowledge holdings as a state variable and model meetings as Poisson arrivals of new ideas from this distribution. The mathematics is closely related to papers by Gabaix (1999), Luttmer (2007, 2012), Rossi-Hansberg and Wright (2007), and others that study the evolution of distributions with Pareto tails. Luttmer (2012), in particular, suggests an elegant alternative to our assumption that the stock of ideas is never exhausted (or that there is innovation in the form of draws from an outside idea source as in Sec. VI.A), namely, that individual productivities are subject to small Brownian noise. He shows that the interplay of such randomness and diffusion leads to a balanced growth path, much as in the present paper.

In Lucas (2009), these dynamics lead to a model of on-the-job learning that is capable of generating sustained growth in a closed economy in which younger workers benefit from and build on the knowledge obtained from older workers. König, Lorenz, and Zilibotti (2012) add a choice between “imitation” and “innovation” to a similar environment. But in these models, search and learning are simply by-products of producing. Agents do not have to choose between producing and learning. In the present paper we add such a choice, following the classic papers on on-the-job learning of Ben-Porath (1967), Heckman (1976), and Rosen (1976). The control problem we introduce is modeled closely on this work (though we do not here introduce a cohort structure) in the sense that agents must choose between these two activities. The math-

3 A different approach to a set of questions similar to those in our paper is pursued by Fogli and Veldkamp (2011), who model the diffusion of knowledge among individuals in a network. Finally, see also Bental and Peled (1996).

4 In their framework, the stochastic process of learning depends on the choice between imitation and innovation. But both activities are costless, and so this choice is a static maximization problem. It is therefore very different from our time allocation problem, in particular because it does not give rise to a simultaneous equations problem like the one studied here.
The mathematical formulation we use is a Bellman equation that is familiar from the job search literature.

It is worth noting that with the decentralized vision of knowledge we have adopted, there is always an incentive to seek more knowledge. In much existing endogenous growth theory, in contrast, knowledge is “nonrival” in the sense that it can be costlessly replicated and used by any number of people simultaneously. As first noted by Romer (1990), an immediate implication of nonrivalry is that under perfect competition, no one would invest in knowledge creation. In our setup, in contrast, knowledge is partially rival: it is “rival” in the short run because people who want to access better knowledge must exert effort and have the good luck to run into the right people; but knowledge is “nonrival” in the long run in the sense that it is in no way diminished when it spreads from one person to another. Agents exert positive search effort even under perfect competition because the search friction precludes the immediate diffusion of existing knowledge. This seems to us a step toward descriptive realism. (Of course, to say that the private return to search is positive is not to say that it equals the social return.)

II. A Model Economy

There is a constant population of infinitely lived agents of measure one. We identify each person at each date as a realization of a draw \(\tilde{z} \) from a productivity distribution, described by its cumulative distribution function (cdf)

\[
F(z, t) = \Pr\{\tilde{z} \leq z \text{ at date } t\},
\]

or equivalently by its density function \(f(z, t) \). This function \(f(\cdot, t) \) fully describes the state of the economy at \(t \).

Every person has one unit of labor per year. He allocates his time between a fraction \(1 - s(z, t) \) devoted to goods production and \(s(z, t) \) devoted to improving his production-related knowledge. His goods production is

\[
[1 - s(z, t)]z.
\]

5 See, e.g., Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992). Also see the survey by Jones (2005) and references therein.

6 Using a somewhat different terminology, we may say that knowledge is “embodied” in individual people in the short run but “disembodied” in the long run because it outlives any one individual. Romer (1990) noted that knowledge that is tied to a specific person (human capital) is necessarily rival because that person cannot be in more than one place at the same time. Elsewhere, Romer also listed as an attribute of a purely nonrival good that it can be costlessly replicated. In our setup, in contrast, replication requires costly search effort.
Per capita production in the economy is

\[Y(t) = \int_0^\infty [1 - s(z, t)] zf(z, t) dz. \]

(2)

Individual preferences are

\[V(z, t) = \mathbb{E}_t \left\{ \int_t^\infty e^{-\alpha(\tau - t)} [1 - s(\tilde{z}(\tau), \tau)] \tilde{z}(\tau) d\tau | \tilde{z}(t) = z \right\}. \]

(3)

We model the evolution of the distribution \(f(z, t) \) as a process of individuals meeting others from the same economy, comparing ideas, improving their own productivity. The details of this meeting and learning process are as follows.\(^7\) A person \(z \) allocating the fraction \(s(z, t) \) to learning observes the productivity \(z' \) of one other person with probability \(\alpha |s(z, t)| \Delta \) over an interval \((t, t + \Delta) \), where \(\alpha \) is a given function. He compares his own productivity level \(z \) with the productivity \(z' \) of the person he meets and leaves the meeting with the best of the two productivities, \(\max(z, z') \). (These meetings are not assumed to be symmetric: \(z \) learns from and perhaps imitates \(z' \) but \(z' \) does not learn from \(z \), and in fact, he may not be searching himself at all.)

We assume that everyone in the economy behaves in this way, though the search effort \(s(z, t) \) varies over time and across individuals at a point in time. If one thinks of \(F(z, t) \) as the fraction of people with productivity below \(z \) at date \(t \), this behavior results in a law of motion for \(F \) as follows:

\[F(z, t + \Delta) = \Pr\{ \text{productivity below } z \text{ at } t \text{ and} \]
\[\text{no higher productivity found in } (t, t + \Delta) \}\]
\[= \int_0^z f(y, t) \Pr\{ \text{no higher productivity than } z \}
\[\text{found in } (t, t + \Delta) | y \} dy \]
\[= \int_0^z f(y, t)[1 - \alpha(s(y, t))\Delta + \alpha(s(y, t))F(z, t)\Delta] dy \]
\[= F(z, t) - \Delta[1 - F(z, t)] \int_0^z \alpha(s(y, t))f(y, t) dy. \]

\(^7\) The process assumed here is an adaptation of ideas in Kortum (1997), Eaton and Kortum (1999), Alvarez, Buera, and Lucas (2008), and Lucas (2009).
Then
\[
\frac{F(z, t + \Delta) - F(z, t)}{\Delta} = -[1 - F(z, t)] \int_0^z \alpha(s(y, t))f(y, t)dy,
\]
and letting \(\Delta \to 0 \) gives
\[
\frac{\partial F(z, t)}{\partial t} = -[1 - F(z, t)] \int_0^z \alpha(s(y, t))f(y, t)dy. \tag{4}
\]
Differentiating with respect to \(z \), we obtain
\[
\frac{\partial f(z, t)}{\partial t} = -\alpha(s(z, t))f(z, t) \int_0^\infty f(y, t)dy
+ f(z, t) \int_0^z \alpha(s(y, t))f(y, t)dy. \tag{5}
\]
Equation (5) can also be motivated by considering the evolution of the density at \(z \) directly, as follows. Some agents who have productivity \(z \) will adopt a high productivity \(y \geq z \) and so there will be an outflow of these agents. Other agents who have productivity \(y \leq z \) will adopt productivity \(z \) and there will be an inflow of these agents. Hence we can write
\[
\frac{\partial f(z, t)}{\partial t} = \frac{\partial f(z, t)}{\partial t} \bigg|_{\text{out}} + \frac{\partial f(z, t)}{\partial t} \bigg|_{\text{in}}.
\]
Consider first the outflow. The \(f(z, t) \) agents at \(z \) have meetings at the rate \(\alpha(s(z, t))f(z, t) \). A fraction \(1 - F(z, t) = \int_0^z f(y, t)dy \) of these draws satisfy \(y > z \) and these agents leave \(z \). Hence
\[
\frac{\partial f(z, t)}{\partial t} \bigg|_{\text{out}} = -\alpha(s(z, t))f(z, t) \int_0^\infty f(y, t)dy.
\]
Next, consider the inflow. Agents with productivity \(y \leq z \) have meetings at the rate \(\alpha(s(y, t))f(y, t) \). Each of these meetings yields a draw \(z \) with probability \(f(z, t) \). Hence
\[
\frac{\partial f(z, t)}{\partial t} \bigg|_{\text{in}} = f(z, t) \int_0^z \alpha(s(y, t))f(y, t)dy.
\]
Combining, we obtain (5). This type of equation is known in physics as a Boltzmann equation.

Now consider the behavior of a single agent with current productivity \(z \), acting in an environment characterized by a given density path \(f(z, t) \),
all \(z, t \geq 0 \). The agent wants to choose a policy \(s(z, t) \) so as to maximize the discounted, expected value of his earnings stream, expression (3). The Bellman equation for this problem is

\[
\rho V(z, t) = \max_{s \in [0, 1]} \left\{ (1 - s)z + \frac{\partial V(z, t)}{\partial t} + \alpha(s) \int \left[V(y, t) - V(z, t) \right] f(y, t) dy \right\},
\]

(6)

The system (5) and (6) is an instance of what Lasry and Lions (2007) have called a "mean-field game." We summarize our discussion of the economy as follows.

Definition. An equilibrium, given the initial distribution \(f(z, 0) \), is a triple \((f, s, V)\) of functions on \(\mathbb{R}^2_+ \) such that (i) given \(s \), \(f \) satisfies (5) for all \((z, t)\); (ii) given \(f \), \(V \) satisfies (6); and (iii) \(s(z, t) \) attains the maximum for all \((z, t)\).

As is well known, there do not exist anything like general existence and uniqueness theorems for systems of partial differential equations, and we do not attempt to prove these properties here. Furthermore, a complete analysis of this economy would require the ability to calculate solutions for all initial distributions. This would be an economically useful project to carry out, but we limit ourselves in this paper to the analysis of a set of particular solutions on which the growth rate and the distribution of relative productivities are both constant over time.

Definition. A balanced growth path (BGP) is a number \(\gamma \) and a triple of functions \((\phi, \sigma, \nu)\) on \(\mathbb{R}^+ \) such that

\[
f(z, t) = e^{-\gamma t} \phi(ze^{-\gamma t}),
\]

(7)

\[
V(z, t) = e^{\gamma t} \nu(ze^{-\gamma t}),
\]

(8)

and

\[
s(z, t) = \sigma(ze^{-\gamma t})
\]

(9)

for all \((z, t)\), and \((f, s, V)\) is an equilibrium with the initial condition \(f(z, 0) = \phi(z) \).

Intuitively, a BGP is simply a path for the distribution function along which all productivity quantiles grow at the same rate \(\gamma \). That is, on a BGP the productivity cdf satisfies \(F(z, t) = \Phi(ze^{-\gamma t}) \), and therefore, the \(q \)th quantile, \(z_q(t) \), satisfies \(\Phi(z_q(t)e^{-\gamma t}) = q \) or

\[
z_q(t) = e^{\gamma t} \Phi^{-1}(q).
\]
Another way of describing a BGP is that the productivity distribution evolves as a “traveling wave” with stable shape. That the value and policy functions take the forms in (8) and (9) is then immediately implied.

The analysis of balanced growth is facilitated by restating (5) and (6) in terms of relative productivities \(x = ze^{-\gamma t} \). From (7), we have

\[
\frac{\partial f(z, t)}{\partial t} = -\gamma e^{-\gamma t} \phi(ze^{-\gamma t}) - e^{-\gamma t} \phi'(ze^{-\gamma t}) \gamma ze^{-\gamma t},
\]

which from (5) and (9) implies

\[
-\phi(x)\gamma - \phi'(x)\gamma x = \phi(x) \int_0^x \alpha(\sigma(y)) \phi(y) dy
\]

\[
-\alpha(\sigma(x)) \phi(x) \int_x^\infty \phi(y) dy.
\]

The Bellman equation (6) becomes

\[
(\rho - \gamma) v(x) + v'(x) \gamma x
\]

\[
= \max_{\sigma \in [0, 1]} \left\{ (1 - \sigma)x + \alpha(\sigma) \int_x^\infty [v(y) - v(x)] \phi(y) dy \right\}.
\]

Total production on a BGP is

\[
Y(t) = e^{\gamma t} \int_0^\infty [1 - \sigma(x)] x \phi(x) dx,
\]

provided that the integral converges. Hence total production grows at the rate \(\gamma \).

If all agents in this economy had the same productivity level \(\tilde{z} \), say, then no one would have any motive to search and everyone would simply produce \(\tilde{z} \) forever. Such a trivial equilibrium could be called a BGP with \(\gamma = 0 \), but our interest is in BGPs with \(\gamma > 0 \). To ensure that this is a possibility, we will need to add more structure. For this purpose, we add the following assumption.

Assumption 1. The initial productivity distribution, \(F(z, 0) \), has a Pareto tail. That is, there are \(k, \theta > 0 \) such that

\[
\lim_{z \to \infty} \frac{1 - F(z, 0)}{z^{-1/\theta}} = k.
\]

\(^8\) This is the terminology used by Luttmer (2012) and König et al. (2012) to describe the fact that on a BGP the distribution of the logarithm of productivity \(\tilde{z} = \log z \) satisfies \(F(\tilde{z}, t) = \Psi(\tilde{z} - \gamma t) \).
This condition is sufficient to ensure that sustained growth at some rate \(\gamma > 0 \) is possible, as we show in the following lemma. We discuss its interpretation momentarily.

Lemma 1. Under assumption 1, there exists a nondegenerate BGP with growth rate

\[
\gamma = \theta \int_0^\infty \alpha(x) \phi(y) \, dy.
\]

(12)

Proof. \(F(z, t) \) satisfies (4). Along a BGP, \(F(z, t) = \Phi(z e^{-\gamma}) \), and therefore,

\[
-\gamma \Phi'(x) x = -[1 - \Phi(x)] \int_0^x \alpha(x) \phi(y) \, dy.
\]

(13)

Under assumption 1,

\[
\lim_{x \to \infty} [1 - \Phi(x)] / x^{-1/\theta} = k
\]

and

\[
\lim_{x \to \infty} \Phi'(x) / [(1/\theta) x^{-1/\theta - 1}] = k.
\]

Therefore, for large \(x \), (13) is

\[
-\gamma \frac{1}{\theta} k x^{-1/\theta} = -k x^{-1/\theta} \int_0^\infty \alpha(x) \phi(y) \, dy.
\]

Rearranging yields (12). QED

The interpretation of assumption 1 is that the stock of good ideas waiting to be discovered is inexhaustible. Taken literally, it means that all knowledge already exists at time 0. Because some readers may struggle with this literal interpretation, in Section VI.A, we work out an alternative interpretation that we argue is observationally equivalent: knowledge at time 0 is bounded but new knowledge arrives at arbitrarily low frequency. These “innovations” ensure that growth remains positive. In that section we also describe an alternative approach for introducing innovation proposed by Luttmer (2012).

Finally, we make some assumptions on the primitives of our model. We assume that the learning technology function \(\alpha : [0, 1] \to \mathbb{R}_+ \) satisfies

\[
\alpha(s) \geq 0, \, \alpha'(s) > 0, \, \alpha''(s) < 0, \quad \text{all } s,
\]

and

\[
\alpha(1) > 0, \, \alpha'(1) > 0, \lim_{s \to 0} \alpha'(s) = \infty.
\]

(14)
The discount rate ρ satisfies

$$\rho \geq \theta \alpha(1).$$ (15)

This will ensure that the preferences in (3) are well defined.

III. Calculation and Analysis of Balanced Growth Paths

In this section we describe the algorithm we use to calculate BGPs—
functions (ϕ, σ, v) and a number γ satisfying (10), (11), and (12)—given
a specified function α, values for the parameters ρ and θ, and a value

$$k = \lim_{z \to \infty} \left[1 - F(z, 0) \right] / z^{-1/\theta}$$

for the tail of the initial productivity distribution.

We begin an iteration with initial guesses (f_0, g_0) for (f, g). Then for
$n = 0, 1, 2, \ldots$, we follow two steps.

Step 1. Given (f_n, g_n), use (11) to calculate v_n and σ_n.
Step 2. Given σ_n, solve (10) and (12) jointly to generate a new guess
$(\phi_{n+1}, \gamma_{n+1})$.

When these steps are completed, $(\phi_{n+1}, \gamma_{n+1})$ and (v_n, σ_n) have been
calculated. When $(\phi_{n+1}, \gamma_{n+1})$ is close enough to (ϕ_n, γ_n), we call $(\phi_n, \gamma_n, v_n, \sigma_n)$ a BGP equilibrium. Steps 1 and 2 themselves involve iterative
procedures, which we describe in turn.

For step 1, consider the Bellman equation (11). Define the function

$$S(x) = \int_x^\infty \left[v(y) - v(x) \right] \phi(y) dy.$$

Then the first-order condition for σ is

$$S(x) \alpha'(\sigma) \geq x \quad \text{with equality if } \sigma < 1. \quad (16)$$

Under our assumptions on α, this condition can be solved for a
unique $\sigma(x) \in (0, 1]$ that satisfies $\sigma'(x) < 0$ as long as $\sigma(x) < 1$. There will
be a unique value \hat{x} that satisfies

$$\alpha'(1) = \frac{\hat{x}}{S(\hat{x})}.$$

Agents with relative productivities x above \hat{x} will divide their time be-
tween producing and searching; agents at or below \hat{x} will be searching
full-time. For $x \leq \hat{x}$, $v(x)$ is constant at $v(\hat{x})$, and thus $S(x)$ is constant at
$S(\hat{x})$. The value function v will satisfy $v(x) > 0$, $v'(x) \geq 0$, $\lim_{x \to x^+} v(x) = \infty$, and
The last condition motivates a boundary condition for the integro-differential equation (11). All these conclusions hold for any density ϕ and $\gamma > 0$.

The computation of (ν_n, σ_n) given (ϕ_n, γ_n) follows itself an iterative procedure. We begin an iteration with an initial guess v_0^n for v_n.\footnote{We use $v_0^n(x) = x/(\rho - \gamma_n)$.} Then for $j = 0, 1, 2, \ldots$, we follow two steps.

Step 1a. Given $v_j^n(x)$, compute $S_j^n(x)$ from (3) and $\sigma_j^n(x)$ from (16).

Step 1b. Given $\sigma_j^n(x)$, solve (11) together with the boundary condition (17) for $v_{j+1}^n(x)$. To carry out these calculations, we applied a finite difference method on a grid (x_1, x_2, \ldots, x_I) of I values. Details are provided in Appendix B, Section A.

When v_{j+1}^n and v_j^n are sufficiently close, we set $(v_n, \sigma_n) = (v_j^n, \sigma_j^n)$. This completes step 1.

For step 2, we express (10) as

$$-\phi(x)\gamma - \phi'(x)\gamma x = \phi(x)\psi(x) - \alpha(\sigma(x))\phi(x)[1 - \Phi(x)],$$

where ψ and Φ are defined by

$$\psi(x) = \int_0^x \alpha(\sigma(y))\phi(y) dy \quad \text{and} \quad \Phi(x) = \int_0^x \phi(y) dy.$$

Then

$$\psi'(x) = \alpha(\sigma(x))\phi(x),$$

$$\Phi'(x) = \phi(x).$$

We further have

$$\lim_{x \to 0} \phi(x)/[(1/\theta)x^{-1/\theta - 1}] = k,$$

$$\lim_{x \to \infty} [1 - \Phi(x)]/x^{-1/\theta} = k.$$

Finally, equation (12) can be written as $\lim_{x \to \infty} \psi(x) = \gamma/\theta$. The computation of $(\phi_{n+1}, \gamma_{n+1})$ given (ν_n, σ_n) again follows an iterative procedure. We begin an iteration with an initial guess γ_n^0 for γ_{n+1}. Then for $j = 0, 1, 2, \ldots$, we follow two steps.
Step 2a. Given γ_{n+1}^j and σ_n, solve for functions $\phi_{n+1}^j(x)$, $\Phi_{n+1}^j(x)$, and $\psi_{n+1}^j(x)$ by solving the system of ordinary differential equations (18)–(20) on a grid (x_1, x_2, \ldots, x_I) of I values with boundary conditions

\[
\phi_{n+1}^j(x_i) = \frac{k}{\theta} x_i^{-(1/\theta) - 1}, \\
\Phi_{n+1}^j(x_i) = 1 - k x_i^{-1/\theta}, \\
\psi_{n+1}^j(x_i) = \frac{\gamma_{n+1}^j}{\theta}.
\]

We again use a finite difference method with details provided in Appendix B, Section C.

Step 2b. Given ϕ_{n+1}^j, γ_{n+1}^j, and σ_n, update

\[
\gamma_{n+1}^{j+1} = \xi \theta \int_0^\infty \alpha(\sigma_n(x)) \phi_{n+1}^j(x) \, dx + (1 - \xi) \gamma_{n+1}^j,
\]

where $\xi \in (0, 1]$ is a relaxation parameter.

When γ_{n+1}^j and γ_{n+1}^{j+1} are sufficiently close, we set $(\phi_n^j, \gamma_n^j) = (\phi_{n+1}^j, \gamma_{n+1}^j)$. This completes step 2. For the initial guess we use a growth rate $\gamma_0 = \alpha(1)$ and a Frechet distribution with parameters k and θ, $\Phi_0(x) = \exp(-k x^{-1/\theta})$.\(^{10}\) For the function α we used

\[
\alpha(s) = \alpha_0 s^\eta, \quad \eta \in (0, 1).
\]

The computational procedure is outlined in more detail in Appendix B.

The mathematics of each of the steps just described, the solution to a Bellman equation, the solution to an ordinary differential equation with given boundary conditions, and the solution to a fixed-point problem in the growth parameter γ are all well understood. We have not been able to establish the existence or uniqueness of a BGP with $\gamma > 0$, but the algorithm we have described calculates solutions to a high degree of accuracy for the Frechet productivity distribution that we use as an initial guess and a variety of reasonable parameter values.

Figures 1–4 report the results of one simulation of this model and provide some information on the sensitivity of the policy function to changes in parameters. Figure 5 provides some typical sample paths to illustrate the kind of changes over time an individual’s choices and earnings will exhibit along the BGP we have computed. The figures are intended to illustrate the qualitative properties of the model, and the calibration of parameters will depend on the application and available data. But there is a good deal of closely related research that uses time series on aggregate growth rates and cross-section data on individual

\(^{10}\) A Frechet distribution has a Pareto tail: \(\lim_{x \to \infty} [1 - \exp(-k x^{-1/\theta})]/x^{-1/\theta} = k\) (using L’Hôpital’s rule).
FIG. 1.—Optimal time allocation, $\sigma(x)$, for $\theta = 0.5$ and $\theta = 0.8$

FIG. 2.—Productivity density for $\theta = 0.5$
Fig. 3.—Income and value Lorenz curves for $\theta = 0.5$

Fig. 4.—Optimal time allocation, for various η values
agents to estimate parameters related to our parameters θ and η, and it will be useful to describe how the numbers we use are related to this evidence.

The growth rate of per capita GDP in the United States and other OECD countries has fluctuated around 2 percent at least since World War II. This fact supports the application of models that have a BGP equilibrium and suggest the value $\gamma = .02$. The parameter ν has interpretations both as a tail parameter and as a log variance parameter. Thinking of agents in the model as individual workers as we have done suggests using the variance of log earnings to estimate ν. Lucas (2009), using a model with constant search effort, finds $\nu = 0.5$ to be consistent with US census earnings data. Luttmer (2007), Gabaix (2009), and others who identify agents (in our sense) with firms estimate $\nu = 1$ (Zipf’s law) as a good tail parameter based on the size distribution of firms. Eaton and Kortum (2002) associate costs of any specific good with an entire country and obtain estimates of θ less than one, using international relative prices. Here we use the value $\theta = 0.5$; results for $\theta = 0.8$ are also shown in figure 1. Then given a choice of θ and a value for the parameter η, we can choose the constant α_0 so that $\int_0^\infty \alpha(\sigma(y))\phi(y)dy = .02/\theta$, that is, (12) is satisfied.

None of the studies cited above provides evidence on h, which measures the elasticity of search intensity with respect to the time spent searching. To obtain information on h, we need evidence on the tech-

Fig. 5.—Two sample paths
nology of on-the-job human capital accumulation, such as that used by Ben-Porath (1967), Heckman (1976), Rosen (1976), and Hause (1980). Rosen (1976) used a parameter similar to our η. He assigned the value $\eta = 0.5$, in part to get a functional form that was easy to work with. We used $\eta = 0.3$. Perla and Tonetti (2014) use a model similar to ours in which $\alpha(s)$ is linear in s, so that workers work full-time above a productivity threshold and search full-time otherwise. Our model approaches this situation as $\eta = 1$, although the Perla and Tonetti model is not a special case of ours. See figure 4 for experiments at η values 0.3, 0.6, and 0.9.

Figure 1 plots the equilibrium time allocation function, $\sigma(x)$, against relative productivity levels, x, for the two θ values 0.5 and 0.8. The units on the productivity axis are arbitrary (they are governed by the free parameter k). We normalized productivity by dividing by median productivity for each value of θ. A higher θ value (higher variance, fatter tail) induces a higher return to search. At either θ value the least productive people search full-time; the most productive work almost full-time.

Figure 2 plots the productivity density for $\theta = 0.5$, superimposed on a plot of a Pareto density with tail parameter $1/\theta = 2$. The two curves coincide for large productivity levels. Again, units are relative to the median value under the equilibrium density.

Figure 3 plots two equilibrium Lorenz curves for the same case $\theta = 0.5$. The curve furthest from the diagonal (the one with the most inequality) plots the fraction of current production $[1 - \sigma(x)]x$ attributed to workers with productivity less than x. This is the standard income flow Lorenz curve. The other curve, the one with less inequality, plots the fraction of total discounted expected earnings $\nu(x)$ accounted for by people with current productivity less than x. Here $\nu(x)$ is the value function calculated in our algorithm. This value Lorenz curve takes into account the effects of mobility along with the effect of current productivity. In dynamic problems such as the one we study, it will be more informative to examine present value rather than flow Lorenz curves.

Figure 4 plots the time allocation functions for three η values with θ set at 0.5. The $\eta = 0.3$ curve coincides with the $\theta = 0.5$ curve in figure 1.

Figure 5 shows various aspects of two randomly generated sample paths. Agents in our model are infinitely lived. A particular productivity sample path will never decrease—knowledge in our model is never lost—but on a BGP, relative productivities x will wander forever with

11 Ben-Porath and Rosen suggested that any particular human capital path could be interpreted as a property of an occupation, in which case one could view a person’s time allocation choices as implied by an initial, one-time occupational choice. This appealing interpretation is open to us as well, as long as the path is interpreted as a productivity-contingent stochastic process.
long-run averages described by the cdf \(\Phi(x) \). This means, for example, that every sample path will be in the interval \([0, \bar{x}]\) for a fraction of time \(\Phi(\bar{x}) \), where \(\bar{x} \) is the productivity level (defined below eq. [16]) below which it is not worthwhile to work. It will return to \([0, \bar{x}]\) infinitely often. (We can make the same statement about any \(x \) value, but \(\bar{x} \) is chosen here for a reason.) We can get a good sense of an individual sample path by thinking of each return to \([0, \bar{x}]\) as a death or retirement, where the departing worker is replaced by a new potential worker who begins with some productivity \(x_0 \leq \bar{x} \). Like a school child, this entrant starts with some work-relevant knowledge and can begin to acquire more right away, but it may be some time before his knowledge level has a market value. In the same way, some older workers, even very knowledgeable ones, will find that the market value of their accumulated knowledge has fallen to zero, not because they forget what they once knew but because the number of others who know more has grown.

IV. An Optimally Planned Economy

Neither the equilibrium conditions (5) and (6) for the decentralized economy nor their BGP counterparts describe an economically efficient allocation. Each agent allocates his time to maximize his own present value but assigns no value to the benefits that increasing his knowledge will have for others. Yet we are studying an economy in which learning from others is the sole engine of technological change.

In this section, we ask how a hypothetical, beneficent planner would allocate resources. In our model economy, such a planner’s instruments are the time allocations of agents at different productivity levels, and his objective is to maximize the expected value, discounted at \(\rho \), of total production. The state variable for this problem is the density \(f(z, t) \): a point in an infinite-dimensional space. We denote the value function, which maps a space of densities into \(\mathbb{R}_+ \), by \(W \). The problem is then to choose a function \(s: \mathbb{R}_+^2 \rightarrow [0, 1] \) to solve

\[
W[f(\cdot, t)] = \max_{s(\cdot)} \int_0^\infty e^{-\rho(t-\tau)} \int_0^\infty [1 - s(z, \tau)]zf(z, \tau)dzd\tau
\]

subject to the law of motion for \(f \):

\[
\frac{\partial f(z, \tau)}{\partial \tau} = -\alpha(s(z, \tau))f(z, \tau) \int_0^\infty f(y, \tau)dy + f(z, \tau) \int_0^\bar{x} \alpha(s(y, \tau))f(y, \tau)dy
\]

and with \(f(\cdot, t) \) given.
One of the contributions of this paper is to show how such a dynamic programming problem, in which the state variable is a distribution, can be brought into a manageable form. Because our strategy also works for more general formulations of dynamic programming problems than (21)–(22), we first present our result for the more general case. Consider the problem of choosing a function \(s: \mathbb{R}^2 \rightarrow \mathbb{R} \) to solve

\[
W[f(\cdot, t)] = \max_{s(\cdot)} \int_{t}^{\infty} e^{-q(t-\tau)} \left[\int H(z, s(z, \tau)) f(z, \tau) dz \right] d\tau
\]

subject to the law of motion for \(f \):

\[
\frac{\partial f(z, \tau)}{\partial \tau} = T[f(\cdot, \tau), s(\cdot, \tau)](z), \quad \tau \geq t, \tag{24}
\]

and with \(f(\cdot, t) \) given.

The problem (21)–(22) is the special case with objective function and transition dynamics

\[
H(z, s) = (1 - s)z,
\]

\[
T[f, s](z) = -\alpha(s(z)) f(z) \int_{z}^{\infty} f(y) dy + f(z) \int_{0}^{z} \alpha(s(y)) f(y) dy.
\]

Instead of attempting to solve the planner’s Bellman equation directly, we will use it to derive a much simpler equation for the marginal social value of a type \(z \) individual, which we denote by \(\bar{w}(z, t) \). This marginal value is more formally defined in Appendix A, but the idea is as follows. First, define by \(\tilde{w}(z, f) \) the marginal value of one type \(z \) individual if the distribution is any function \(f \):

\[
\tilde{w}(z, f) = \frac{\delta W[f]}{\delta f(z)}.
\]

Here \(\delta W[f] \) is the “functional derivative” of the planner’s objective with respect to \(f \) at point \(z \), the analogue of the partial derivative \(\partial W(f)/\partial f \) for the case in which \(z \) is discrete and hence the distribution \(f \) takes values in \(\mathbb{R}^n \). See Appendix A, Section A, for a rigorous definition of such a derivative. Note that the function \(\tilde{w}(z, f) \) is defined over the entire state space, the space of all possible density functions \(f \).

Now we define \(w(z, t) \) as the marginal value along the optimal trajectory of the distribution, \(f(z, t) \):
thereby reducing the planner’s problem from an infinite-dimensional to a two-dimensional problem.

Proposition 1. Consider the problem (23)–(24). Define the marginal social value of a type \(z \) individual as

\[
w(z, t) = \frac{\delta W[f(\cdot, t)]}{\delta f(z, t)}.
\]

This marginal value and the optimal policy function \(s^*(z, t) \) satisfy the Bellman equation and first-order condition:

\[
\rho w(z, t) = H(z, s^*(z, t)) + \frac{\partial w(z, t)}{\partial t} + \frac{\delta}{\delta f(z, t)} \int w(y, t) T[f(\cdot, t), s^*(\cdot, t)](y) dy,
\]

\[
0 = \frac{\partial}{\partial s} H(z, s^*(z, t)) f(z, t) + \frac{\delta}{\delta s(z, t)} \int w(y, t) T[f(\cdot, t), s^*(\cdot, t)](y) dy.
\]

Corollary 1. Consider the problem (21)–(22). The marginal social value of a type \(z \) individual, \(w(z, t) \), satisfies the Bellman equation

\[
\rho w(z, t) = \max_{s \in [0,1]} \left\{ (1 - s)z + \frac{\partial w(z, t)}{\partial t} + \alpha(s) \int [w(y, t) - w(z, t)] f(y, t) dy \right\}
\]

\[
- \int_0^z \alpha(s(y, t))[w(y, t) - w(z, t)] f(y, t) dy.
\]

This result is intuitive. It states that the flow value \(\rho w(z, t) \) contributed by one type \(z \) individual is a sum of three terms. The first term is simply the output produced by this individual. The second term is the expected value from improvements in type \(z \)'s future productivity to some \(y > z \). We refer to this term as the “internal benefit from search”: It takes the same form here as in the problem of an individual stated in (6), with private continuation values replaced by the planner’s “social” values. Finally, the third term is the expected value from improvements in the productivity of other types \(y < z \) to \(z \) in case they should meet \(z \). It is only in this term, which we refer to as the “external benefit from search,” that the planning problem differs from the individual optimi-
zation problem in the decentralized equilibrium. That is, individuals internalize the benefit from search to themselves, but not the benefit to others.

The planner’s optimal choice of search intensity satisfies

\[z = \alpha'(s(z, t)) \int_z^\infty [w(y, t) - w(z, t)] f(y, t) dy. \quad (29) \]

The planner trades off costs and benefits from changing individual search intensities, \(s(z, t) \). Increasing \(s(z, t) \) has three effects. First, production decreases by \(z \). Second, the outflow of people at \(z \) increases by \(\alpha'(s(z, t)) \), corresponding to a loss

\[-\alpha'(s(z, t)) w(z, t) \int_z^\infty f(y, t) dy. \]

Third, the inflow of people into \(y > z \) increases by \(\alpha'(s(z, t)) \). This corresponds to a gain

\[\alpha'(s(z, t)) \int_z^\infty w(y, t) f(y, t) dy. \]

Note that the integral on the right-hand side of (29) is taken only over \(y \geq z \). The reason is that from (22), changing \(s(z, t) \) has no direct effect on the distribution at \(y < z \), which depends only on the search intensities, \(s(y, t) \), of those individuals with productivities \(y < z \).

As in the decentralized allocation, the Bellman equation here for the marginal value \(w(z, t) \) (28) and the law of motion for the distribution (22) constitute a system of two integro-differential equations that completely summarize the necessary conditions for a solution to the planning problem.

A BGP for the planning problem is defined in the same way as in the decentralized equilibrium:

\[f(z, t) = e^{-\gamma t} \phi(ze^{-\gamma t}), \quad w(z, t) = e^{\gamma t} \omega(ze^{-\gamma t}). \]

Again, restating (22) and (28) in terms of relative productivities \(x = ze^{-\gamma t} \), we obtain a BGP Bellman equation

\[(\rho - \gamma) \omega(x) + \omega'(x) \gamma x = \max_{\alpha \in [0,1]} \left\{ (1 - \alpha) x \right. \]

\[+ \alpha(\sigma) \int_x^\infty [\omega(y) - \omega(x)] \phi(y) dy \]

\[- \int_0^x \alpha(\zeta(y)) [\omega(y) - \omega(x)] \phi(y) dy \quad (30) \]
and an equation for the BGP distribution, (10). It is important to note
that while the equation for the distribution is the same as in the de-
centralized equilibrium, the planner will generally choose a different
time allocation, \(\zeta(x) \), and hence different arrival rates, \(\alpha(\zeta(x)) \), implying
a different BGP distribution. Here and below we use the notation \(\zeta(x) \)
for the planner’s policy function to distinguish it from the policy func-
tion \(\sigma(x) \) chosen by individual agents. Finally, the parameter \(\gamma \) is given
by (12) evaluated using the planner’s time allocation, \(\zeta(x) \).

Figure 6 compares the time allocation, \(\zeta(x) \), chosen by the planner
with the outcome of the decentralized equilibrium. Not surprisingly, the
planner assigns a higher fraction of time spent searching to all in-
dividuals so as to internalize the external benefit from search discussed
above. This implies a higher growth rate \(\gamma \) in the planning problem vis-
à-vis the decentralized economy.

Figures 7 and 8 compare the Lorenz curves for flow income and the
present value of future income in the decentralized equilibrium and
planning problem. An immediate implication of more time allocated
toward search is a higher degree of income inequality in the planning
problem. This effect is, however, much more muted if we instead mea-

Fig. 6.—Optimal time allocation, \(\sigma(x) \), in decentralized equilibrium and \(\zeta(x) \) in the
planning problem.
V. Tax Implementation of the Optimal Allocation

In this section we propose and illustrate a Pigovian tax structure that implements the optimal allocation by aligning the private and social returns to search. In this model a flat tax on income will be neutral; it will have identical effects on both sides of the first-order condition (16). We use such a tax to finance a productivity-related subsidy $\tau(z,t)$ to offset the opportunity cost z of search time s. The flat tax τ_0 satisfies the government budget constraint

$$\int_0^\infty \tau(z,t)s(z,t)zf(z,t)dz = \tau_0 \int_0^\infty [1 - s(z,t)]zf(z,t)dz.$$

Under this tax structure, the individual Bellman equation becomes

$$\rho V(z,t) = \max_{s \in [0,1]} \left\{ (1 - \tau_0)(1 - s)z + \tau(z,t)zs + \frac{\partial V(z,t)}{\partial t} \right\}$$

$$+ \alpha(s) \int_s^\infty [V(y,t) - V(z,t)]f(y,t)dy \right\}.$$
The law of motion for the distribution (5) and the expression for aggregate output (2) are unchanged.

Let $v_n(x)$ (n for “net”) be the present value of an individual’s earnings, net of subsidies and taxes, and replace the equation defining the value function on a BGP (8) by

$$V(z, t) = (1 - \tau_0) e^{\gamma t} v_n(z e^{-\gamma t}).$$

In addition, $\tau(z, t) = (1 - \tau_0) \tau(z e^{-\gamma t})$. This function $v_n(x)$ satisfies

$$(\rho - \gamma) v_n(x) + v'_n(x) \gamma x = \max_{\sigma \in [0, 1]} \left\{ (1 - \sigma) x + \tau(x) x \sigma + \alpha(\sigma) \int_x^\infty [v_n(y) - v_n(x)] \phi(y) dy \right\},$$

where both the density ϕ and the growth rate γ are taken from the planning problem.

As before, we let

$$S_n(x) = \int_x^\infty [v_n(y) - v_n(x)] \phi(y) dy.$$
The first-order condition is

\[[1 - \tau(x)]x \leq \alpha'(\sigma)S_n(x) \quad \text{with equality if } \sigma < 1. \]

The agent takes \(\tau(x) \) as given and chooses \(\sigma(x) = \varsigma(x) \), the time allocation that the planner has already decided on. This choice is then

\[[1 - \tau(x)]x = \alpha'(\varsigma(x))S_n(x) \quad \text{(31)} \]

provided that \(\varsigma(x) < 1 \). At the highest value \(\tilde{x} \) at which \(\varsigma(x) = 1 \), \(\tau(\tilde{x}) \) is the rate at which the agent is indifferent between working a small amount and not working at all. For \(x > \tilde{x} \), the equality in (31) gives the subsidy rate that maintains indifference as productivity decreases from \(\tilde{x} \). Of course, any higher subsidy rate in the nonproducing range would have the same effect.

The Bellman equation under the tax policy just described is

\[
(r - \gamma)v_n(x) + v'_n(x)\gamma x = x - \varsigma(x)\alpha'(\varsigma(x))S_n(x) \\
+ \alpha(\varsigma(x))\int_x^\infty [v_n(y) - v_n(x)]\phi(y)dy.
\]

With the function \(\alpha(\sigma) = a_{0}\sigma^n \) that we use,

\[
\alpha(\sigma) - \sigma\alpha'(\sigma) = a_{0}\sigma^n - \sigma\eta a_{0}\sigma^{\eta-1} = (1 - \eta)\alpha(\sigma),
\]

and so

\[
(r - \gamma)v_n(x) + v'_n(x)\gamma x \\
= x + (1 - \eta)\alpha(\varsigma(x))\int_x^\infty [v_n(y) - v_n(x)]\phi(y)dy \quad \text{(32)}
\]

on \((\tilde{x}, \infty)\). On \([0, \tilde{x}]\), \(v_n(x) = v_n(\tilde{x}) \).

Given \(\varsigma(x) \) and \(\gamma \) from the planning problem, (32) can be solved for \(v_n(x) \) and \(S_n(x) \), applying the algorithm used earlier. The tax rate \(\tau(x) \) can then be computed using (31). Figure 9 plots the two policy functions \(\sigma(x) \) and \(\varsigma(x) \) and the subsidy rate \(\tau(x) \). On the interval A on the figure, agents choose \(\sigma = 1 \) in both the decentralized and planned cases, so no tax is needed to encourage more search. On the interval B, the planner wants everyone to search full-time, so \(\tau(x) \) is chosen to induce agents to prefer this to doing any production. The agents with the lowest productivity on the interval B choose to work in the decentralized economy, but the planned allocation implemented by the tax improves their return from search enough that no additional tax incentive is needed. On the interval C, the planner wants to increase everyone’s search: com-
pare \(\sigma(x) \) to \(\zeta(x) \). The opportunity cost of search increases without limit as \(x \to \infty \). This requires that \(\tau(x) \) be an increasing function on \(C \).

In the example shown in figure 9, the only agents with positive earnings are those on the interval \(C \). All of them pay the flat tax \(\tau_0 \) on earnings and receive offsetting subsidies designed to encourage search. These subsidy rates increase with earnings, making the tax system as a whole regressive. It is worth emphasizing that this is a feature of a tax system that has the single purpose of encouraging productivity innovation. Considerations of distorting taxes and distribution, central to much of tax analysis, have simply been set aside.

VI. Alternative Learning Technologies

All of the analysis so far has been carried out under the learning technology described in Section II. Even under the limits of a one-dimensional model of knowledge, however, there are many other models of learning that might be considered. It turns out that the algorithm we describe in Section III is not difficult to adapt to some alternatives. Ultimately, which of these and other alternatives are substantively interesting will depend on the evidence we are trying to understand. In this section, we simply illustrate some theoretical possibilities with three examples.
A. Exogenous Knowledge Shocks

In our analysis of the benchmark model, we postulated that all productivity levels that anyone would ever attain were already represented by some individual alive at date \(t = 0\). This we expressed as the restriction that the initial productivity density has a Pareto tail with tail parameter \(1/\beta\) (assumption 1). Although this assumption led us to asymptotic behavior in good agreement with the sustained growth we observe, some feel this must be for the wrong reasons, that we are denying the possibility of innovation or discovery. In this subsection we offer a seemingly different learning technology, one that admits ideas that are genuinely “new,” and show that the asymptotic behavior of the resulting productivity distribution is observationally equivalent to the benchmark model we described in Section II.

To present the argument at its simplest, we consider only the special case of a constant arrival rate \(a\). In this case, the cdf in a closed economy evolves according to

\[
\frac{\partial F(z, t)}{\partial t} = -\alpha [1 - F(z, t)]F(z, t),
\]

which is the special case of (4) with constant \(\alpha\). Under the assumption maintained in our benchmark model that \(F(z, 0)\) has a Pareto tail with tail parameter \(1/\beta\), the growth rate on a BGP will be \(\gamma = \alpha \beta\) and the density function of relative productivities will be

\[
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + kx^{-1/\beta}}.
\]

This is the constant-\(\alpha\) version of our benchmark model. (See App. C for this and other essential details.)

Now let us add a second source of ideas—we could call them undiscovered ideas—in the form of a cdf \(G(z)\). Assume that people access this second idea source at a constant rate \(\beta\). The evolution of \(F\) is now described by\(^{12}\)

\[
\frac{\partial F(z, t)}{\partial t} = -\alpha [1 - F(z, t)]F(z, t) - \beta [1 - G(z)]F(z, t).
\]

(33)

As in the case in which \(\beta = 0\), the solution to (33) can be written out on sight, and its asymptotic behavior is straightforward to analyze (again see App. C).

This modification offers several possibilities. If neither \(F(z, 0)\) nor \(G(z)\) has a Pareto tail, there is no growth in the long run and for any \(\gamma > 0\)

\(^{12}\) Alvarez et al. (2008, last equation on p. 9) derive the same law of motion but for cost, \(z^{-1/\beta}\), rather than productivity, \(z\).
\[
\lim_{t \to \infty} F(xe^{\gamma t}, t) = 1,
\]
meaning that all individuals have productivity less than \(xe^{\gamma t}\), for all \(x > 0\). This is a possibility that we ruled out by assumption in Section II.

A second possibility is that \(F(z, 0)\) has a fatter tail than \(G(z)\), in which case the process converges to a BGP with growth rate \(\gamma = \alpha \theta\) and the asymptotic distribution satisfies

\[
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + kx^{-1/\theta}},
\]
where, as before, \(1/\theta\) is the tail parameter of \(F(z, 0)\) and \(k\) is a positive constant. In this case the external idea source becomes irrelevant as \(t \to \infty\) and asymptotic behavior is the same as in the benchmark case in which \(\beta = 0\).

A third possibility arises in the reverse case in which \(G(z)\) has a fatter tail than \(F(z, 0)\). With the tail parameter of \(G(z)\) denoted by \(1/\xi\), the process converges to a BGP with growth rate \(\gamma = \alpha \xi\) and the asymptotic distribution satisfies

\[
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + (\beta/\alpha)mx^{-1/\xi}},
\]
where \(m > 0\). Note that this case also allows for the possibility that the initial distribution of knowledge is bounded above by some finite number.

For completeness we add the case in which \(G(z)\) and \(F(z, 0)\) have the common tail parameter \(1/\theta\) and the process converges to a BGP with growth rate \(\gamma = \alpha \theta\) and the asymptotic distribution satisfies

\[
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + [k + (\beta/\alpha)m]x^{-1/\theta}}.
\]

The identity of asymptotic behavior in the last three cases is what we mean by observational equivalence. Note too that in all three cases it is the matching parameter \(\alpha\) that combines with a tail parameter to determine the long-run growth rate. If there were no diffusion, \(\alpha = 0\), the asymptotic growth rate would be zero. Finally, note that there is no condition on the frequency at which innovations arrive, \(\beta\), except that it is positive. That is, “innovations” can be very rare without impairing long-term growth. This is true even if the initial knowledge distribution \(F(z, 0)\) is bounded above. Furthermore, the frequency at which innovations arrive, \(\beta\), does not affect the growth rate, \(\gamma\). In this sense, diffusion rather than innovation is the engine for growth in this economy.
Luttmer (2012) provides another approach for introducing innovation into a framework like ours: instead of adding an external source of ideas, he adds randomness in the form of small Brownian shocks to the evolution of each individual’s productivity. These shocks continuously expand the range of productivities represented along an equilibrium path, even when the economy starts from a bounded initial productivity distribution. In Luttmer’s model, the Brownian productivity shocks generate a Pareto tail for the productivity distribution (as in the papers by Gabaix [1999] and Luttmer [2007]) while diffusion keeps the distribution from fanning out too much. These two forces interact in just the right way to generate long-run growth. The fat-tailed productivity distribution becomes an implication of the theory rather than an imposed axiom as in our paper.

B. Limits to Learning

In the theory we have considered so far, a person’s current productivity level determines his ability to produce goods but has no effect on his ability to acquire new knowledge. The outcome of a search by agent z who meets an agent y > z is y, regardless of the value of his own productivity z. But it is easy to think of potential knowledge transfers that cannot be carried out if the “recipient’s” knowledge level is too different from that of the “donor.” To explore this possibility, we make use of an appropriate “kernel” to modify the law of motion for the distribution (5). Assume, for example, that if an agent at z meets another agent at y, he can adopt y with probability \(k(y/z) \); with probability \(1 - k(y/z) \) he cannot do this and retains his previous productivity z. Then the law of motion for the distribution becomes

\[
\frac{\partial F(z, t)}{\partial t} = -\alpha F(z, t)[1 - F(z, t)] + \frac{\nu}{2} \left[z \frac{\partial F(z, t)}{\partial z} + \frac{1}{z} \frac{\partial^2 F(z, t)}{\partial z^2} \right].
\]

This is eq. (10) in Luttmer’s paper (his analysis is in terms of the distribution of \(\log z \) rather than \(z \)). Luttmer further shows that the long-run growth rate that is attained from a bounded initial distribution equals \(\gamma = \sqrt{2\alpha} \), a formula that illustrates nicely the interplay between innovation, \(\nu \), and diffusion, \(\alpha \).

\[14\] Or in terms of the cdf, analogous to (4),

\[
\frac{\partial F(z, t)}{\partial t} = -\int_0^\infty \alpha(s(y, t))f(y, t) \int_s^\infty f(v, t)k(v/y)dvdy.
\]
\[
\frac{\partial f(z, t)}{\partial t} = f(z, t) \int_0^z \alpha(s(y, t)) f(y, t) k(y/z) dy - \alpha(s(z, t)) f(z, t) \int_z^\infty f(y, t) k(y/z) dy.
\]

We find it convenient to work with the functional form

\[
k\left(\frac{y}{z}\right) = \delta + (1 - \delta) \left(\frac{y}{z}\right)^{-\kappa},
\]

where \(\kappa > 0 \) is the rate at which learning probabilities fall off as knowledge differences increase and \(\delta \in (0, 1] \). We can think of this kernel as reflecting an ordering in the learning process or some limits to intellectual range. An equivalent interpretation of this kernel is that meeting probabilities depend on the distance between different productivity types, so that each person has a higher chance of meeting those with a knowledge level close to his own. In this interpretation, the parameter \(\kappa \) captures the degree of socioeconomic segregation or stratification in a society.

To illustrate the range of possibilities of our framework, we additionally assume that individuals have logarithmic utility functions rather than linear ones as in the theory considered so far (any other concave utility function can also be incorporated). The Bellman equation of an individual is then

\[
\rho V(z, t) = \max_{s \in [0,1]} \left\{ \log[(1 - s)z] + \frac{\partial V(z, t)}{\partial t} + \alpha(s) \int_z^\infty [V(y, t) - V(z, t)] k(y/z) f(y, t) dy \right\}.
\]

We can derive the following expressions for the law of motion for the distribution along a BGP:

\[
- \phi(x) \gamma - \phi'(x) \gamma x = \phi(x) \int_0^x \alpha(\sigma(y)) \phi(y) k(x/y) dy - \alpha(\sigma(x)) \phi(x) \int_x^\infty \phi(y) k(y/x) dy.
\]

\[\text{Jovanovic and Nyarko (1996) suggested the following rationale for such limits to learning: different productivity types, } z, \text{ correspond to different activities and human capital is partially specific to a given activity. When an agent switches to a new activity, he loses some of this human capital, and more so the more different the new activity is.}\]
Using an analogous argument as in lemma 1, the growth rate of the economy is

\[\gamma = \theta \delta \int_0^\infty \alpha'(y) \phi(y) dy. \] (35)

Analogously, the corresponding Bellman equation is

\[
(r - \gamma) v(x) + v'(x) \gamma x = \max_{\sigma \in [0,1]} \left\{ \log[(1 - \sigma)x] \right. \\
+ \alpha(\sigma) \int_x^\infty [v(y) - v(x)] k(y/x) \phi(y) dy \right\}.
\]

The combination of limits to learning and diminishing marginal utility changes individuals’ search behavior dramatically relative to our benchmark model. Figure 10 plots the optimal time allocation, \(\sigma(x) \), for various values of the parameter measuring the limits to learning, \(\kappa \). With higher \(\kappa \), both low- and high-productivity types are discouraged from search, resulting in search intensity being a hump-shaped function of current productivity. The reason for this is that the benefit from search

\[S(x) = \int_x^\infty [v(y) - v(x)] \phi(y) k(y/x) dy \]

is no longer very high for low-productivity types. Because low-productivity types also have a low probability of benefiting from a meeting with a high-productivity type, their expected payoff from search is low and their search effort is discouraged. The growth rate of the economy, \(\gamma \), also declines as the limits to learning, \(\kappa \), increase. As can be seen in figure 10, all productivity types allocate less time toward search. Because the growth rate of the economy is an average of individual search intensities, this depresses growth.

To obtain information on our parameter \(\kappa \), our theory suggests studying the speed of on-the-job human capital accumulation and the degree of social mobility in a society. With regard to the former, Lagakos et al. (2012) examine experience-earnings profiles across countries and document that the wage increase associated with increasing worker experience is lower for poorer countries. This is consistent with there being greater limits to learning in these countries. With regard to the latter, evidence on both intra- and intergenerational mobility is informative, even though our theory does not distinguish between the two. In Section III, we have already cited some studies on on-the-job human capital accumulation and the slope of earnings profiles. There are also many studies examining the correlation in lifetime income be-
between parents and children (e.g., Solon 1992) or intergenerational transition probabilities between different income quantiles (e.g., Zimmer- man 1992).16

C. Symmetric Meetings

Another feature of the learning technology applied in Sections I–V is the fact that meetings between two agents \(z \) and \(y \) are completely asymmetric. Agents could upgrade their knowledge only through active search while the other party to the meeting gains nothing and can well be unaware that he is being met.

Depending on the specific application, this may not be the best assumption. For example, Arrow (1969, 33) argues that “the diffusion of an innovation [is] a process formally akin to the spread of an infectious disease.” This description of meetings has a symmetric component: a person can get “infected” even when he did not actively search for the “disease.” The model can easily be extended to encompass the case in

16 See Becker and Torne (1979), Benabou (2002), and Benhabib, Bisin, and Zhu (2011) for alternative theories of the relationship between inequality and the degree of intragenerational mobility.
which meetings are symmetric, as we now show. To capture symmetric meetings, we assume that even if \(y \) initiated the meeting, \(z \) can learn from \(y \) with probability \(b \). Therefore, \(b \) parameterizes how strong passive spillovers are: \(b = 0 \) corresponds to our benchmark model; \(b = 1 \) is the case of perfectly symmetric meetings. Under this assumption, we obtain the new law of motion

\[
\frac{\partial f(z,t)}{\partial t} = -f(z,t) \int_{z}^{\infty} \left[\alpha(s(z,t)) + \beta \alpha(s(y,t)) \right] f(y,t) \, dy + f(z,t) \int_{0}^{z} \left[\alpha(s(y,t)) + \beta \alpha(s(z,t)) \right] f(y,t) \, dy.
\]

The main difference from the asymmetric law of motion (5) is that here the search intensities \(s(z,t) \) and \(s(y,t) \) enter in a symmetric fashion. Agents at \(z \) now have opportunities to upgrade their productivities even if another agent \(y \) initiated the meeting. These opportunities arrive at rate \(\alpha(s(z,t)) + \beta \alpha(s(y,t)) \) rather than just \(\alpha(s(z,t)) \). The Bellman equation now becomes

\[
\rho V(z,t) = \max_{s \in [0,1]} \left\{ (1-s)z + \frac{\partial V(z,t)}{\partial t} + \int_{z}^{\infty} \left[\alpha(s) + \beta \alpha(s(y,t)) \right] [V(y,t) - V(z,t)] f(y,t) \, dy \right\}.
\]

The corresponding equations along a BGP are found as above. Figures 11 and 12 report the optimal time allocation and productivity density for various values of the parameter measuring the amount of passive spillovers, \(\beta \). The more knowledge that can be acquired without actively searching, the lower agents’ incentive to search. Since the economywide growth rate is still an average of individual search intensities, this “free riding” implies that the growth rate is actually lower the higher spillovers \(\beta \) are. At the same time, a higher \(\beta \) implies that the BGP distribution places more mass on high-productivity types (fig. 12). Figures 13–15 compare the decentralized equilibrium just described to the allocation chosen by a social planner when meetings are symmetric.

The time allocation chosen by the social planner now differs dramatically from that in the decentralized equilibrium. The planner makes the most productive agents search full-time, the high opportunity cost notwithstanding. He views them as even more valuable as “teachers,” reaching out to meet less productive agents, increasing the probability that less productive agents will learn from them. After such an unproductive agent becomes productive, he searches full-time for a while, but as his relative productivity declines (as in panel \(b \) of fig. 5), he resumes
Fig. 11.—Optimal time allocation, $\sigma(x)$, for various β values

Fig. 12.—Productivity densities for various β values
Fig. 13.—Optimal time allocation with symmetric meetings

Fig. 14.—Income Lorenz curves, symmetric meetings
working. While period-by-period income is more unequally distributed under the planner’s time (fig. 14), this is no longer true for the present value of income. The Lorenz curves in figure 15 cross, meaning that in parts of the distribution the decentralized equilibrium features too little mobility relative to the planning problem.

VII. Conclusion

We have proposed and studied a new model of economic growth in which individuals differ only in their current productivity, and the state of the economy is fully described by the probability distribution of productivities. The necessary conditions for equilibrium in the model take the form of a Bellman equation describing individual decisions on the way to allocate time between producing and searching for new ideas and a law of motion for the economywide productivity distribution. With the right kind of initial conditions, these forces can interact to generate sustained growth. We show that among these possibilities is a balanced growth path, characterized by a constant growth rate and a stable Lorenz curve describing relative incomes. We provide an algorithm for calculating solutions along this path.

This solution is the outcome of a decentralized system in which each agent acts in his own interest. But the new knowledge obtained by any
one agent benefits others by enriching their intellectual environment and raising the return to their own search activities. We then formulate the problem of a hypothetical planner who can allocate people’s time so as to internalize this external effect. We show how the decentralized algorithm can be adapted to compute the planning solution as well and compare it to the decentralized solution. We then consider tax structures that implement an optimal solution. Finally, we provide three examples of alternative learning technologies and show that the properties of equilibrium allocations are quite sensitive to these variations.

All of this is carried out in a starkly simple context in order to reveal the economic forces involved and the nature of their interactions and to build up our experience with a novel and potentially useful mathematical structure. But we also believe that the external effects we study here are centrally important to the understanding of economic growth and would like to view our analysis as a step toward a realistically quantitative picture of the dynamics of production and distribution.17

Appendix A

Proof of Proposition 1

A. Mathematical Preliminaries

The value function of the planner \(W[f(\cdot, t)] \) is a functional, that is, a map from a space of functions to the real numbers, or, informally, a "function of a function." The planner chooses a function \(f(z, t) \) to maximize this functional, which is the prototypical problem in the calculus of variations. The concept of a functional derivative is helpful in solving this problem.

Definition. The functional derivative of \(W \) with respect to \(f \) at point \(y \) is

\[
\frac{\delta W[f]}{\delta f(y)} = \lim_{\varepsilon \to 0} \frac{W[f(z) + \varepsilon \delta(z - y)] - W[f(z)]}{\varepsilon},
\]

where \(\delta(\cdot) \) is the Dirac delta function.

The functional derivative is the natural generalization of the partial derivative. Thus, consider the case in which \(z \) is discrete and takes on \(n \) possible values, \(z \in \{z_1, \ldots, z_n\} \). The corresponding distribution function is then simply a vector \(f \in \mathbb{R}^n \) and the planner’s value function is an ordinary function of \(n \) variables, \(W: \mathbb{R}^n \to \mathbb{R} \). The partial derivative in this case is defined as

\[
\frac{\partial W(f)}{\partial f_i} = \lim_{\varepsilon \to 0} \frac{W(f_1, \ldots, f_i + \varepsilon, \ldots, f_n) - W(f_1, \ldots, f_i, \ldots, f_n)}{\varepsilon}.
\]

17 In this regard, see also Choi (2011).
If we denote by $\delta(i) \in \mathbb{R}^n$ the vector that has elements $\delta(i) = 1$ and $\delta(j) = 0$ for all $i \neq j$, then (A2) can be written as
\[
\frac{\partial W(f)}{\partial f_i} = \lim_{\varepsilon \to 0} \frac{W(f + \varepsilon \delta(i)) - W(f)}{\varepsilon} = \frac{d}{d\varepsilon} W(f + \varepsilon \delta(i)) \big|_{\varepsilon=0}.
\]
It can be seen that the functional derivative in (A1) is defined in the exact same way.

B. Proof of Proposition 1

The problem (23)–(24) can be written recursively:
\[
\rho W[f] = \max_s \int H(z, s)f(z)dz + \int \delta W[f] \frac{\delta}{\delta f(y)} T[f, s](y)dy. \tag{A3}
\]

The first-order condition is
\[
0 = \delta \frac{\partial}{\partial s} \int H(z, s)f(z)dz + \frac{\delta}{\partial s} \frac{\delta W[f]}{\delta f(y)} T[f, s](y)dy
= \frac{\partial}{\partial s} H(z, s)[f(z)] + \frac{\delta}{\partial s} \frac{\delta W[f]}{\delta f(y)} T[f, s](y)dy. \tag{A4}
\]

This gives rise to some policy function $s^*(z) = S[f](z)$ so that (A3) is
\[
\rho W[f] = \int H(z, s^*(z))f(z)dz + \int \frac{\delta W[f]}{\delta f(y)} \frac{\delta}{\delta f(y)} T[f, s^*](y)dy.
\]

Differentiating with respect to $f(z)$ gives
\[
\rho \frac{\delta W[f]}{\delta f(z)} = H(z, s^*(z)) + \frac{\delta}{\delta f(z)} \int \frac{\delta W[f]}{\delta f(y)} T[f, s^*](y)dy
= H(z, s^*(z)) + \frac{\delta^2 W[f]}{\delta^2 f(z)} T[f, s^*](y)dy + \int \frac{\delta W[f]}{\delta f(y)} \frac{\delta}{\delta f(z)} T[f, s^*](y)dy.
\]

Here we have appealed to a version of the envelope theorem: differentiation with respect to f involves differentiating with respect to $s^* = S[f]$ and then applying the chain rule. But the first-order condition (A4) implies that the derivative with respect to s^* is zero. To proceed, note that since $\frac{\delta^2 W[f]}{\delta f(z)\delta f(y)}$ is the generalization of a cross-partial derivative from the case in which z is discrete to the case in which z is continuous, we have that
\[
\frac{\delta^2 W[f]}{\delta f(z)\delta f(y)} = \frac{\delta^2 W[f]}{\delta f(y)\delta f(z)}.
\]
Defining \(\dot{w}(z, f) = \delta W[f]/\delta f(z) \), we have

\[
\rho \dot{w}(z, f) = H(z, s^*(z)) + \int \frac{\delta \dot{w}(z, f)}{\delta f(y)} T[f, s^*](y) dy + \int \dot{w}(y, f) \frac{\delta}{\delta f(z)} T[f, s^*](y) dy. \tag{A5}
\]

In turn, defining

\[
w(z, t) = \dot{w}(z, f(\cdot, t)) = \frac{\delta W[f(\cdot, t)]}{\delta f(z, t)},
\]

we have

\[
\frac{\partial w(z, t)}{\partial t} = \int \frac{\delta \dot{w}(z, f(\cdot, t))}{\delta f(y, t)} T[f(\cdot, t), s^*(\cdot, t)](y) dy.
\]

Therefore, evaluating (A5) along the optimal trajectory \(f(\cdot, t) \) and further using that

\[
\int w(y, t) \frac{\delta}{\delta f(z, t)} T[f(\cdot, t), s^*(\cdot, t)](y) dy = \frac{\delta}{\delta f(z, t)} \int w(y, t) T[f(\cdot, t), s^*(\cdot, t)](y) dy
\]

implies (26). Similarly, evaluation of (A4) along the optimal trajectory implies (27). QED

C. Proof of Corollary 1

The problem (21)–(22) is the special case of (23)–(24) with \(H \) and \(T \) as in (25).

The transition dynamics can be written as

\[
T[f, s](z) = f(z) \int A(s(z), s(y)) f(y) dy,
\]

where

\[
A(s(z), s(y)) = \begin{cases}
-\alpha(s(z)), & y > z \\
\alpha(s(y)), & y < z.
\end{cases}
\]

Consider the last term in (26). We have that

\[
\int w(y) T[f, s](y) dy = \int \int f(y) w(y) A(s(y), s(x)) f(x) dx dy. \tag{A6}
\]

This is a quadratic form in \(f \). Differentiating with respect to \(f \) gives
\[
\frac{\delta}{\delta f(z)} \int w(y) T[f, s](y) dy = \int f(y) w(y) A(s(y), s(z)) dy + w(z) \int A(s(z), s(y)) f(y) dy = \alpha(s(z)) \int_0^\infty [w(y) - w(z)] f(y) dy - \int_0^\infty \alpha(s(y))[w(y) - w(z)] f(y) dy.
\]

Further, using \(H(z, s) = (1 - s)z \) and evaluating at \(f(\cdot, t) \) and \(s^*(\cdot, t) \), (26) is
\[
\rho w(z, t) = [1 - s^*(z, t)] z + \frac{\partial w(z, t)}{\partial t} + \alpha(s^*(z, t)) \int_0^\infty [w(y, t) - w(z, t)] f(y, t) dy - \int_0^\infty \alpha(s^*(y, t))[w(y, t) - w(z, t)] f(y, t) dy.
\]

Next consider the second term in (27): \(\int w(y) T[f, s](y) dy \) is still given by (A6). Therefore,
\[
\frac{\delta}{\delta s(z)} \int w(y) T[f, s](y) dy = \frac{d}{ds} \int f(y) w(y) A(s(y), s(z)) dy + \frac{\partial w(z, t)}{\partial t} + \int f(y) w(y) A_i(s(y), s(x)) \delta(y - z) f(x) dx dy
\]
\[
= \int \int f(y) w(y) A_i(s(y), s(x)) \delta(y - z) f(x) dx dy + \int \int f(y) w(y) A_2(s(y), s(x)) \delta(x - z) f(x) dx dy
\]
\[
= \int f(z) w(z) A_i(s(z), s(x)) f(x) dx + \int f(y) w(y) A_2(s(y), s(z)) f(z) dy
\]
\[
= \alpha'(s(z)) f(z) \int_0^\infty [w(y) - w(z)] f(y) dy,
\]
where \(A_i \) and \(A_2 \) denote the derivatives of \(A(s(y), s(z)) \) with respect to its first and second arguments. Using this, (27) can be written as
Finally, (A7) and (A8) can be summarized as (28). QED

Appendix B

Computation

A. Step 1: Solution to Bellman Equation—Decentralized Equilibrium

The BGP Bellman equation (11) can be rewritten as

\[
(\rho - \gamma)v(x) = [1 - \sigma(x)]x - \gamma \sigma v(x) + \alpha[\sigma(x)]S(x),
\]

where \(S(x)\) is defined as

\[
S(x) = \int_x^\infty [v(y) - v(x)]\phi(y)dy = \int_x^\infty v(y)\phi(y)dy - v(x)[1 - \Phi(x)]
\]

and \(\Phi(x) = \int_0^x \phi(y)dy\), that is, the cdf corresponding to \(\phi\). The optimal choice \(\sigma(x)\) is defined implicitly by the first-order condition (16). We further have a boundary condition (17).

We solve these equations using a finite difference method that approximates the function \(v(x)\) on a finite grid, \(x \in \{x_1, \ldots, x_I\}\). We use the notation \(v_i = v(x_i)\), \(i = 1, \ldots, I\).\(^{18}\) We approximate the derivative of \(v\) using a backward difference

\[
v'(x_i) \approx \frac{v_i - v_{i-1}}{h_i},
\]

where \(h_i\) is the distance between grid points \(x_i\) and \(x_{i-1}\). The boundary condition (17) then implies

\[
0 = v'(x_1) \approx \frac{v_1 - v_0}{h_1} \Rightarrow v_0 = v_1.
\]

Similarly, we approximate \(S(x)\) by

\[
S_i = S(x_i) \approx \sum_{l=1}^I v_i\phi_l h_l - v_l(1 - \Phi_l).
\]

Further, denote by \(\sigma_i = \sigma(x_i)\) and \(\alpha_i = \alpha[\sigma(x_i)]\) the optimal time allocation and search intensity.

We proceed in an iterative fashion: we guess \(v_0\) and then, for \(j = 0, 1, 2, \ldots\), form \(v^{j+1}\) as follows. Form \(S_j\) as in (B2), and obtain \(\sigma_j\) and \(\alpha_j\) from the first-order condition (16). Write the Bellman equation as

\(^{18}\) A useful reference is Candler (1999).
\((\rho - \gamma) v^{i+1} = (1 - \sigma_i)x_i - \gamma x_i v^{i+1} - v^{i-1} + \alpha_i \left[\sum_{i=1}^{I} v^{i+1}_i\phi_i h_i - v^{i+1}_i(1 - \Phi_i) \right], \quad i = 1, \ldots, I. \) (B3)

Given \(v^j \) and hence \(a^j \) and \(\alpha^j \), and using the boundary condition \(v^i_0 = v^i \), (B3) is a system of \(I \) equations in \(I \) unknowns, \((v^{i+1}_1, \ldots, v^{i+1}_I) \), that can easily be solved for the updated value function, \(v^{i+1} \). Using matrix notation

\[
A^j v^{i+1} = b^j, \quad b^j = (1 - \sigma_j)x_j, \quad A^j = B^j - C^j,
\]

where

\[
B^j = \\
\begin{bmatrix}
\rho - \gamma + \alpha^j_1(1 - \Phi_1) & 0 & 0 & \cdots & 0 \\
-\frac{\gamma x_2}{h_2} & \rho - \gamma + \alpha^j_2(1 - \Phi_2) & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & -\frac{\gamma x_I}{h_I} & \rho - \gamma + \alpha^j_I(1 - \Phi_I) \\
& & & + \frac{\gamma x_i}{h_i} & \end{bmatrix}
\]

\[
C^j = \\
\begin{bmatrix}
\alpha_1\phi_1 h_1 & \alpha_2\phi_2 h_2 & \alpha_3\phi_3 h_3 & \cdots & \alpha_I\phi_I h_I \\
0 & \alpha_1\phi_1 h_1 & \alpha_2\phi_2 h_2 & \cdots & \alpha_I\phi_I h_I \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \alpha_{I-1}\phi_{I-1} h_I \\
0 & 0 & \cdots & 0 & \alpha_I\phi_I h_I \\
\end{bmatrix}
\]

Solve the system of equations and iterate until \(v^{i+1} \) is close to \(v^j \).

B. Step 1: Solution to the Bellman Equation—Planning Problem

The Bellman equation for the planning problem (30) can be written as

\[
(\rho - \gamma)\omega(x) + \omega'(x)\gamma x = [1 - \sigma(x)]x + \alpha[\sigma(x)]S(x) + Q(x),
\]

This follows from rearranging the Bellman equation as

\[
\left[\rho - \gamma + \alpha^j_1(1 - \Phi_1) + \frac{\gamma x_i}{h_i} \right] v_i^{i+1} - \frac{\gamma x_i}{h_i} v_i^{i-1} - \alpha^j_1 \sum_{j=1}^{I} \phi_j x_i v_i^{i+1} = (1 - \sigma^j_i)x_i
\]

and then rewriting it in matrix notation.
where

\[S(x) = \int_x^\infty [\omega(y) - \omega(x)]\phi(y) \, dy \]
\[= \int_x^\infty \omega(y)\phi(y) \, dy - \omega(x)[1 - \Phi(x)], \]

\[Q(x) = -\int_0^x \alpha[\sigma(y)][\omega(y) - \omega(x)]\phi(y) \, dy \]
\[= -\int_0^x \alpha[\sigma(y)]\omega(y)\phi(y) \, dy + \omega(x)\psi(x), \]

\[\psi(x) = \int_0^x \alpha[\sigma(y)]\phi(y) \, dy, \]

and the optimal choice \(\sigma(x) \) is defined implicitly by the first-order condition

\[x \geq \alpha'[\sigma(x)]S(x). \quad (B4) \]

We use the same finite difference approximation as above, that is, approximate \(\omega(x) \) on a finite grid \(x \in \{ x_1, \ldots, x_I \} \). We again approximate the functions \(S(x) \), \(\sigma(x) \), and \(\alpha[\sigma(x)] \) as in \((B2)\), and the functions \(Q(x) \) and \(\psi(x) \) as

\[Q_i = Q(x_i) \approx -\sum_{l=1}^i \alpha_l \omega_i \phi_i h_l + \omega_i \psi_i, \]
\[\psi_i = \psi(x_i) \approx \sum_{l=1}^i \alpha_l \phi_i h_l. \quad (B5) \]

We again impose the boundary condition

\[0 = \omega'(x_i) \approx \frac{\omega_1 - \omega_0}{h_1} \Rightarrow \omega_1 = \omega_0. \]

We again proceed in an iterative fashion: we guess \(\omega_0 \) and then, for \(j = 0, 1, 2, \ldots \), form \(\omega_{i+1}^j \) as follows. Form \(S_j^i \) and \(Q_j^i \) as in \((B2)\) and \((B5)\), and obtain \(s_j^i \) and \(\alpha_j^i \) from the first-order condition \((B4)\). Write the Bellman equation as

\[(\rho - \gamma)\omega_{i+1}^j = (1 - \sigma_j^i) x_i - \gamma x_i \frac{\omega_i^j - \omega_i^{j+1}}{h_i} \]
\[+ \alpha_j^i \left[\sum_{l=1}^i \omega_{i+1}^j \phi_i h_l - \omega_{i+1}^j (1 - \Phi_i) \right] \]
\[- \sum_{l=1}^i \alpha_j^i \omega_i^{j+1} \phi_i h_l + \omega_i^{j+1} \psi_i. \quad (B6) \]
Given ω^j and hence α^j and σ^j, this is again a system of I equations in I unknowns $(\omega_i^{j+1}, \ldots, \omega_I^{j+1})$ that we can solve for the value function at the next iteration ω^{j+1}. We again write (B6) in matrix notation as

$$A^j \omega^{j+1} = b^j, \quad b^j_i = (1 - \sigma_i) x_i, \quad A^j = B^j - C^j + D^j,$$

where

$$B^j = (\rho - \gamma) I + \begin{bmatrix} \alpha_i'(1 - \Phi_i) - \psi_i & 0 & 0 & \cdots & 0 \\ -\frac{\gamma x_i}{h} & \alpha_i'(1 - \Phi_i) - \psi_i + \frac{\gamma x_i}{h} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & -\frac{\gamma x_I}{h} & \alpha_I'(1 - \Phi_I) - \psi_I + \frac{\gamma x_I}{h} \end{bmatrix},$$

$$C^j = \begin{bmatrix} \alpha_1\phi_1 h_1 & \alpha_1\phi_2 h_2 & \alpha_1\phi_3 h_3 & \cdots & \alpha_1\phi_I h_I \\ 0 & \alpha_2\phi_2 h_2 & \alpha_2\phi_3 h_3 & \cdots & \alpha_2\phi_I h_I \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \alpha_{I-1}\phi_I h_I \\ 0 & 0 & \cdots & 0 & \alpha_I\phi_I h_I \end{bmatrix},$$

$$D^j = \begin{bmatrix} \alpha_1\phi_1 h_1 & 0 & \cdots & \cdots & 0 \\ \alpha_2\phi_1 h_1 & \alpha_2\phi_2 h_2 & 0 & \cdots & 0 \\ \alpha_1\phi_1 h_1 & \alpha_1\phi_2 h_2 & \alpha_1\phi_3 h_3 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \alpha_1\phi_1 h_1 & \alpha_2\phi_2 h_2 & \cdots & \alpha_{I-1}\phi_{I-1} h_{I-1} & \alpha_I\phi_I h_I \end{bmatrix}.$$
functions on \(n \) (the main iteration). We approximate these functions on a finite grid \((x_1, \ldots, x_I)\) of \(I \) values. We approximate the derivatives in (18)–(20) by

\[
(\phi^j)'(x_i) \approx \frac{\phi^j_i - \phi^j_{i-1}}{h_i},
\]

\[
(\Phi^j)'(x_i) \approx \frac{\Phi^j_i - \Phi^j_{i-1}}{h_i},
\]

\[
(\psi^j)'(x_i) \approx \frac{\psi^j_i - \psi^j_{i-1}}{h_i},
\]

so the finite difference approximation to (18)–(19) is

\[
-\phi^j_i \gamma - \gamma \frac{\phi^j_i - \phi^j_{i-1}}{h_i} x_i = \phi^j_i \psi^j_i - \alpha(\sigma) \phi^j_i (1 - \Phi^j_i),
\]

\[
\frac{\psi^j_i - \psi^j_{i-1}}{h_i} = \alpha(\sigma) \phi^j_i,
\]

\[
\frac{\Phi^j_i - \Phi^j_{i-1}}{h_i} = \phi^j_i,
\]

with boundary conditions

\[
\phi^j_I = \frac{k}{\theta} \gamma^{-1/(\eta - 1)}, \quad \Phi^j_I = 1 - k \gamma^{-1/(\eta - 1)}, \quad \psi^j_i = \gamma^j_i.
\]

This is a simple terminal value problem, which we solve by running the system backward from \(x_I \).

Appendix C

Derivations for Section VI.A: Exogenous Knowledge Shocks

Lemma 1. The solution to (33) satisfies

\[
\frac{1}{F(z, t)} = e^{[\alpha + \beta (1 - G(z))]/t} \left\{ \frac{1}{F(z, 0)} - \frac{\alpha}{\alpha + \beta [1 - G(z)]} \right\} + \frac{\alpha}{\alpha + \beta [1 - G(z)]}.
\]

(C1)

Proof. Let \(w(t) = F(z, t) \) and \(u = 1 - G(z) \). Then (33) is

\[
\frac{\partial w(t)}{\partial t} = -\alpha w(t)[1 - w(t)] - \beta uw(t).
\]

Let \(v(t) = 1/w(t) \). Then

\[
\frac{\partial v(t)}{\partial t} = -\frac{1}{w^2} \frac{\partial w}{\partial t} = \frac{1}{w(t)^2} \{ \alpha w(t)[1 - w(t)] + \beta uw(t) \}
\]

\[
= v(t) \{ \alpha[1 - w(t)] + \beta u \} = \alpha[v(t) - 1] + \beta uv(t)
\]

\[
= (\alpha + \beta u)v(t) - \alpha.
\]
The solution is

\[v(t) = e^{(\alpha + \beta u)t} \left(v_0 - \frac{\alpha}{\alpha + \beta u} \right) + \frac{\alpha}{\alpha + \beta u}. \]

Using the definitions of \(v(t) \), \(w(t) \), and \(u \), we obtain (C1). QED

In Section VI.A, we ask whether the distribution in (C1) converges to a BGP. The answer to this question depends on the properties of the initial productivity distribution, \(F(z, 0) \), and the external source distribution, \(G(z) \). There are four cases:

i. Neither \(F(z, 0) \) nor \(G(z) \) has a Pareto tail; that is, for all \(\xi > 0 \),

\[\lim_{z \to \infty} \frac{1 - F(z, 0)}{z^{-1/\xi}} = \lim_{z \to \infty} \frac{1 - G(z)}{z^{-1/\xi}} = 0. \]

ii. The distribution \(F(z, 0) \) has a fatter tail than \(G(z) \); that is, there exist \(\theta > 0, k > 0 \) such that

\[\lim_{z \to \infty} \frac{1 - F(z, 0)}{z^{-1/\theta}} = k \quad \text{but} \quad \lim_{z \to \infty} \frac{1 - G(z)}{z^{-1/\theta}} = 0. \]

iii. The distribution \(G(z) \) has a fatter tail than \(F(z, 0) \); that is, there exist \(\xi > 0, m > 0 \) such that

\[\lim_{z \to \infty} \frac{1 - G(z)}{z^{-1/\xi}} = m \quad \text{and} \quad \lim_{z \to \infty} \frac{1 - F(z, 0)}{z^{-1/\xi}} = 0. \]

iv. Both \(F(z, 0) \) and \(G(z) \) have equally fat tails; that is, there exist \(\theta > 0, k > 0, m > 0 \) such that

\[\lim_{z \to \infty} \frac{1 - F(z, 0)}{z^{-1/\theta}} = k \quad \text{and} \quad \lim_{z \to \infty} \frac{1 - G(z)}{z^{-1/\theta}} = m. \]

PROPOSITION 2. The asymptotic behavior of the process described by (33) depends on the properties of the initial productivity distribution \(F(z, 0) \) and the external source of ideas, \(G(z) \). In particular:

i. There is no growth in the long run and

\[\lim_{t \to \infty} F(x e^{\gamma t}, t) = 1 \quad \text{(C2)} \]

for all \(x > 0 \) and \(\gamma > 0 \). That is, the limiting distribution is degenerate and is concentrated at \(x = 0 \).

\[\frac{\partial v(t)}{\partial t} = (\alpha + \beta u)e^{(\alpha + \beta u)t} \left(v_0 - \frac{\alpha}{\alpha + \beta u} \right) \]

\[= (\alpha + \beta u) \left(v(t) - \frac{\alpha}{\alpha + \beta u} \right) \]

\[= (\alpha + \beta u)v(t) - \alpha. \]

\[\]
ii. The process converges to a BGP with growth rate $\gamma = \alpha \theta$ and the asymptotic distribution satisfies

$$
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + kx^{-1/\theta}}.
$$

(C3)

iii. The process converges to a BGP with growth rate $\gamma = \alpha \xi$ and the asymptotic distribution satisfies

$$
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + (\beta/\alpha) mx^{-1/\xi}}.
$$

(C4)

iv. The process converges to a BGP with growth rate $\gamma = \alpha \theta$ and the asymptotic distribution satisfies

$$
\lim_{t \to \infty} F(xe^{\gamma t}, t) = \frac{1}{1 + [k + (\beta/\alpha) m] x^{-1/\theta}}.
$$

(C5)

Proof. Consider the limit $\lim_{t \to \infty} F(xe^{\gamma t}, t)$ for some positive γ that is yet to be determined. We have

$$
\lim_{t \to \infty} \frac{1}{F(xe^{\gamma t}, t)} = \lim_{t \to \infty} e^{(a + [1 - G(xe^{\gamma t})])t} \left\{ \frac{1}{F(xe^{\gamma t}, 0)} - \frac{\alpha}{\alpha + \beta [1 - G(xe^{\gamma t})]} \right\} + \frac{\alpha}{\alpha + \beta [1 - G(xe^{\gamma t})]}.
$$

Using that $z = xe^{\gamma t}$ and hence $t = \log(z/x)/\gamma$, we have that

$$
e^{(a + [1 - G(xe^{\gamma t})])t} = \left(\frac{z}{x} \right)^{a/\gamma + [1 - G(x)]}
$$

when $z = xe^{\gamma t}$. Therefore,

$$
\lim_{t \to \infty} \frac{1}{F(xe^{\gamma t}, t)} = \lim_{t \to \infty} \left(\frac{z}{x} \right)^{a/\gamma + [1 - G(x)]} \left\{ \frac{1}{F(z, 0)} - \frac{\alpha}{\alpha + \beta [1 - G(z)]} \right\} + \frac{\alpha}{\alpha + \beta [1 - G(z)]}

= \lim_{t \to \infty} \left(\frac{z}{x} \right)^{a/\gamma} \left\{ \frac{1}{F(z, 0)} - \frac{\alpha}{\alpha + \beta [1 - G(z)]} \right\} + 1

= \lim_{t \to \infty} \left(\frac{z}{x} \right)^{a/\gamma} \frac{\alpha [1 - F(z, 0)] + \beta [1 - G(z)]}{F(z, 0) [\alpha + \beta [1 - G(z)]]} + 1

= \lim_{t \to \infty} \left(\frac{z}{x} \right)^{a/\gamma} \left\{ 1 - F(z, 0) + (\beta/\alpha) [1 - G(z)] \right\} + 1

= x^{-a/\gamma} \lim_{t \to \infty} \frac{1 - F(z, 0) + (\beta/\alpha) [1 - G(z)]}{z^{-a/\gamma}} + 1.
$$

(C6)

We can now go through cases i–iv to further characterize this limit:
i. For any $\gamma > 0$

$$\lim_{z \to \gamma} \frac{1 - F(z, 0) + (\beta/\alpha)[1 - G(z)]}{z^{-\alpha/\gamma}} = 0.$$

Therefore, the growth rate is zero and from the last line in (C6), we obtain (C2).

ii. Let $\gamma = \alpha \theta$. Then

$$\lim_{z \to \gamma} \frac{1 - F(z, 0) + (\beta/\alpha)[1 - G(z)]}{z^{-\alpha/\gamma}} = k.$$

Therefore, the growth rate is $\gamma = \alpha \theta$ and from the last line in (C6), we obtain (C3).

iii. Let $\gamma = \alpha \xi$. Then

$$\lim_{z \to \gamma} \frac{1 - F(z, 0) + (\beta/\alpha)[1 - G(z)]}{z^{-\alpha/\gamma}} = (\beta/\alpha)m.$$

Therefore, the growth rate is $\gamma = \alpha \xi$ and from the last line in (C6), we obtain (C4).

iv. Let $\gamma = \alpha \theta$. Then

$$\lim_{z \to \gamma} \frac{1 - F(z, 0) + (\beta/\alpha)[1 - G(z)]}{z^{-\alpha/\gamma}} = k + (\beta/\alpha)m.$$

Therefore, the growth rate is $\gamma = \alpha \theta$ and from the last line in (C6), we obtain (C5).

References

