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Plan for today

1. Speeding things up while making them more robust

1.1 Use the “implicit method” to somewhat bring back the
contraction property

1.2 Make use of sparsity

2. Set up a continuous time heterogenous agents model and
show how to solve it

3. Kolmogorov Forward equation

4. Equilibrium



Why is the contraction property lost?

I Consider the deterministic Ramsey growth model again

v(k) = max
c
{u(c) + (1− ρ)v(f (k) + (1− δ)k − c)}.

I In discrete time we iterate as

vn+1(k) = max
c
{u(c) + (1− ρ)vn(f (k) + (1− δ)k − c)},

I This is a contraction mapping and we know that vn → v .



Why is the contraction property lost?

I Let’s, heuristically, convert this into continuous time

vn+1(k) = max
c
{∆u(c) + (1−∆ρ)vn(k + ∆(f (k)− δk − c))}.

0 = max
c
{u(c) +

vn(k + ∆(f (k)− δk − c))− vn+1(k)

∆
− ρvn(k + ∆(f (k)− δk − c))}.

Taking limits and rearranging

ρvn(k) = max
c
{u(c)

+ lim
∆→0

vn(k + ∆(f (k)− δk − c))− vn+1(k)

∆
}.



Why is the contraction property lost?

I Problem

lim
∆→0

vn(k + ∆(f (k)− δk − c))− vn+1(k)

∆
6= v ′n(k)(f (k)− δ − c)

I The right hand side of the HJB equation contains vn+1

and that’s a major issue



How to get it back

I Back to discrete time

vn+1(k) = max
c
{u(c) + (1− ρ)vn(f (k) + (1− δ)k − c)},

I Call the optimal choice cn (it’s really a function of k but
I’m saving some space)

I Howard’s Improvement Algorithm says that we can then
iterate on

vh+1
n+1 (k) = u(cn) + (1− ρ)vh

n+1(f (k) + (1− δ)k − cn)},

with v 0
n+1 = vn.

I Until vh+1
n+1 ≈ vh

n+1. This can speed things up considerably,
and preserves the contraction property



How to get it back

I Suppose that it holds exactly vh+1
n+1 = vh

n+1, and let’s just
call this function vn+1. Then it must satisfy

vn+1(k) = max
c
{u(cn)+(1−ρ)vn+1(f (k)+(1−δ)k−cn)},

I In ∆ units of time

vn+1(k) = ∆u(cn) + (1−∆ρ)vn+1(k + ∆(f (k)− δk − cn)).



How to get it back

Rearrange

0 = u(cn) +
vn+1(k + ∆(f (k)− δk − cn))− vn+1(k)

∆
− ρvn+1(k + ∆(f (k)− δk − cn))}.

and take limits

ρvn+1(k) = u(cn) + v ′n+1(k)(f (k)− δk − cn),



How to get it back

ρvn+1(k) = u(cn) + v ′n+1(k)(f (k)− δk − cn),

I Now the awkward discrepancy between vn+1 and vn is
gone!

I But the problem looks a bit hard to solve!

I Turns out it is not!

I This is where the “implicit method” comes in.



The implicit method

1. Start with a grid for capital k = [k1, k2, . . . , kN ].

2. For each grid point for capital you have a guess for v0(ki),
∀ki ∈ k

3. So you have a vector of N values of v0. Call this v0

4. You should also have a difference operator (an N × N
matrix) D such that

Dv ≈ v′(k), ∀ki ∈ K



The implicit method

5. Optimal consumption choice given by FOC

u′(c0) = Dv0

reasonable to call this c(v0) – an N × 1 vector

6. This implies another N × 1 vector of savings

s0 = (f (k)− δk− c(v0))

(This vector can be used to improve on D – more on that
in a second).

7. Create the N × N matrix S0 = diag(s0)



The implicit method

That is

S =


s1 0 . . . 0
0 s2 . . . 0
...

. . . . . .
...

0 . . . 0 sN

 ,



The implicit method

8. Then our HJB equation can now be written as

ρv1 = u(c(v0)) + S0Dv1

9. Manipulate

(ρI− S0D)v1 = u(c(v0))

10. Lastly

v1 = (ρI− S0D)−1u(c(v0))

11. Generally

vn+1 = (ρI− SnD)−1u(c(vn))



The implicit method

Or even more generally

vn+1 = ((ρ + 1/Γ)I− SnD)−1[u(c(vn)) + vn/Γ]

for Γ very large (my experience: Γ =∞ is fastest, but set
lower if convergence issues arise)

I In matlab always use backslash operator to calculate
x = A−1b. I.e. x = A\b

We are talking very substantial speed/robustness gains here.
Perhaps by a factor of 1,000.



The implicit method: Improvement trick I

I Yesterday we created the matrix D as central differences

I We can do better. In particular, sn tells us where the
economy is drifting for each ki ∈ k

I So trick one is to use forward differences for all

{ki ∈ k : si > 0}

I and backward differences for all

{ki ∈ k : si < 0}

I This leads to

vn+1 = ((ρ + 1/Γ)I− SnDn)−1[u(c(vn)) + vn/Γ]



The implicit method: Improvement trick II

I Inspect the matrix

((ρ + 1/Γ)I− SnDn),

and notice that all matrices are super sparse!

I So declaring them as sparse will free up a lot of memory
and give you enormous speed gains too (this is
particularly true for problems with N > 200 or so. Below
that it doesn’t really matter).

I Never declare any of these matrices as anything else than
sparse! Use commands as speye and spdiags

I Don’t be too concerned about loops. That doesn’t seem
to be what can clog these systems.



The Aiyagari Model in Continuous Time

I The rest of today’s lecture will be to apply our knowledge
thus far to the Aiyagari model in continuous time.

I This will also be today’s exercise

1. Households’ problem

2. Firms problem

3. Equilibrium



Households

I Households can be employed or unemployed

I When employed they receive income wt(1− τt)
I When unemployed they receive unemployment benefits

equal to µwt

I An employed individual becomes unemployed with
probability λe .

I An unemployed individual becomes employed with
probability λu

I In an Aiyagari model prices are constant: rt = r and
wt = w ∀t



Households

I Dynamics of aggregate unemployment

et+1 = (1− λe)et + λuut

ut+1 = λeet + (1− λu)ut

I ∆ units of time

et+∆ = (1−∆λe)et + ∆λuut

ut+∆ = ∆λeet + (1−∆λu)ut

I Rearrange and take limits

ėt = −λeet + λuut

u̇t = λeet − λuut



Households

I System

ṡt = Tst

with

T =

(
−λe λu
λe −λu

)
I Stationary equilibrium

0 = Ts

I Thus s is an eigenvector associated with a zero
eigenvalue, with the eigenvector normalised to sum to
one.



Households

I Can be solved as a regular eigenvalue problem

I But since the eigenvector is only defined up to a scalar we
can use the following trick

1. Create vector

b =

(
1
0

)
and matrix T̂ =

(
1 0
λe −λu

)
2. Find ŝ as ŝ = T̂−1b.
3. Normalise ŝ to sum to one to find s.

I The first element of s is then the stationary employment
rate, and the second the stationary unemployment rate.



Households

I Government runs a balanced budget, so not deficits

I The tax rate then solves uµw = eτw

I Or just τ = u
e
µ



Households

I Bellman equation for an employed agent

v(at , e) = max
ct
{u(ct) + (1− ρ)×

[(1− λe)v(wt(1− τt) + (1 + rt)at − ct , e)

+ λev(wt(1− τt) + (1 + rt)at − ct , u)]}

subject to at ≥ φ ∀t.

I ∆ units of time

v(at , e) = max
ct
{∆u(ct) + (1−∆ρ)×

[(1−∆λe)v(∆(wt(1− τt) + rtat − ct) + at , e)

+ ∆λev(∆(wt(1− τt) + rtat − ct) + at , u)]}



Households

I Rearrange and divide by ∆

0 = max
ct
{u(ct)

+
v(∆(wt(1− τt) + rtat − ct) + at , e)− v(at , e)

∆
− (ρ + λe + ∆ρλe)v(∆(wt(1− τt) + rtat − ct) + at , e)

+ λev(∆(wt(1− τt) + rtat − ct) + at , u)]}

I Take limits and rearrange

ρv(a, e) = max
c
{u(c) + va(a, e)(w(1− τ) + ra − c)

− λe(v(a, e)− v(a, u))}



Households

So households’ problem is given by the two HJB equations

ρv(a, e) = max
c
{u(c) + va(a, e)(w(1− τ) + ra − c)

− λe(v(a, e)− v(a, u))}

ρv(a, u) = max
c
{u(c) + va(a, u)(wµ + ra − c)

− λu(v(a, u)− v(a, e))}

Let’s be smart in solving them!



Households

1. Start with a linearly spaced grid for assets
a = [a1, a2, . . . , aN ]. Let da = a(n + 1)− a(n).

2. For each grid for assets guess a for v0(ai , j), ∀ai ∈ a, and
j ∈ {e, u}. This gives us v0,e and v0,u

3. Call the stacked 2N × 1 vector (v0,e , v0,u)′ for v0.



Households

4. Create two N × N difference operators as

Df =


−1/da 1/da 0 . . . 0

0 −1/da 1/da 0
... 0

. . . . . .
...

... . . . −1/da 1/da
0 . . . 0 −1



Db =


1 0 0 . . . 0

−1/da 1/da 0
... −1/da 1/da

. . .
...

... 0
. . . . . .

...
... . . . −1/da 1/da





Households

5. Create one 2N × 2N matrix as

B =



−λe 0 . . . 0 λe 0 . . . 0
0 −λe 0 . . . 0 λe . . . 0
...

...
. . . . . .

... . . .
. . .

...
0 0 0 −λe 0 . . . . . . λe
λu 0 . . . 0 −λu 0 . . . 0
0 λu 0 . . . 0 −λu . . . 0
... 0

. . . . . .
... . . .

. . .
...

0 0 0 λu 0 0 . . . −λu


will be used later



Households

6. Calculate the derivative of the value functions using both
forward and backward differences

v′f (a, e) = Dfv0,e , v′b(a, e) = Dbv0,e ,

v′f (a, u) = Dfv0,u, v′b(a, u) = Dbv0,u,

7. Set the first elements of v′b(a, e) = u′(w(1− τ) + rφ)
and v′b(a, u) = u′(wµ + rφ), and the last elements of
v′f (a, e) = u′(w(1− τ) + raN) and
v′f (a, u) = u′(wµ + raN)

8. Find optimal consumption through

u′(ce,f ) = Dfv0,e , u′(ce,b) = Dbv0,e ,

u′(cu,f ) = Dfv0,u, u′(cu,b) = Dbv0,u,



Households

9. Find optimal savings as

se,f = w(1− τ) + ra− ce,f , se,b = w(1− τ) + ra− ce,b,

su,f = wµ + ra− cu,f , su,b = wµ + ra− cu,b

10. Create indicator vectors

Ie,f = (I1,e,f , I2,e,f , . . . , IN,e,f )′, Ie,b = (I1,e,b, I2,e,f , . . . , IN,e,b)′,

Iu,f = (I1,u,f , I2,u,f , . . . , IN,u,f )′, Iu,b = (I1,u,f , I2,u,f , . . . , IN,u,f )′,

where Ii ,j ,f = 1 if si ,j ,f > 0 and Ii ,j ,b = 1 if si ,j ,b < 0, for
i = 1, . . . ,N and j ∈ {e, u}.



Households

11. Find consumption as

ce = Ie,f · ce,f + Ie,b · ce,b

cu = Iu,f · cu,f + Iu,b · cu,b

12. Find savings as

se = Ie,f · se,f + Ie,b · se,b
su = Iu,f · su,f + Iu,b · su,b

13. And matrices SeDe and SuDu as

SeDe = diag(Ie,f · se,f )Df + diag(Ie,b · se,b)Db

SuDu = diag(Iu,f · su,f )Df + diag(Iu,b · su,b)Db



Households

14. Lastly find the 2N × 2N matrix S0D0 as

S0D0 =

(
SeDe 0

0 SuDu

)
15. And the matrix P0 as

P0 = S0D0 + B



Households

Using the implicit method the households’ problem is given by
the two HJB equations

ρvn+1(a, e) = u(cn) + va,n+1(a, e)(w(1− τ) + ra − cn)

− λe(vn+1(a, e)− vn+1(a, u))

ρvn+1(a, u) = u(cn) + va,n+1(a, u)(wµ + ra − c)

− λu(vn+1(a, u)− vn+1(a, e))



Households

I These can now be written as

ρvn+1 = u(cn) + Pnvn+1

with cn = (cn,e , cn,u).

I So we iterate on

vn+1 = [(ρ + 1/Γ)I− Pn]−1[u(cn) + vn/Γ]

until convergence



Firms

I Firms fact the standard static optimisations problem

Πt = max{Kα
t N

1−α
t − wtNt − (rt + δ)Kt}

I With first order conditions

rt = α

(
Kt

Nt

)α−1

− δ, wt = (1− α)

(
Kt

Nt

)α
I In a stationary equilibrium this implies

r = α

(
K

(1− u)

)α−1

− δ, w = (1− α)

(
r + δ

α

) α
α−1



Stationary distribution

I What is the evolution of the endogenous stationary
distribution of wealth and employment status?

I Denote the CDF as Gt+1(a, e). This must satisfy

Gt+1(a, e) = (1− λe)Gt(a
e
−1, e) + λuGt(a

u
−1, u),

where aj−1 denotes “where you came from” from optimally
setting at+1 = a in employment status j ∈ {e, u}.

I In ∆ units of time approximate this as ae−1 = a−∆se and
a −∆su. Thus

Gt+∆(a, e) = (1−∆λe)Gt(a −∆se , e) + ∆λuGt(a −∆su, u),



Stationary distribution

Gt+∆(a, e) = (1−∆λe)Gt(a −∆se , e) + ∆λuGt(a −∆su, u),

I Subtract Gt(a, e) from both sides and divide by ∆

Gt+∆(a, e)− Gt(a, e)

∆
=

Gt(a −∆se , e)− Gt(a, e)

∆
− λeGt(a −∆se , e) + λuGt(a −∆su, u),

I Take limits

Ġt(a, e) = −gt(a, e)se(a)− λeGt(a, e) + λuGt(a, u),



Stationary distribution/Kolmogorov Forward

Equation

Ġt(a, e) = −gt(a, e)se(a)− λeGt(a, e) + λuGt(a, u),

I Differentiate with respect to a

ġt(a, e) = −∂[gt(a, e)se(a)]

∂a
− λegt(a, e) + λugt(a, u),

I Thus the law of motion for the endogenous distribution is

ġt(a, e) = −∂[gt(a, e)se(a)]

∂a
− λegt(a, e) + λugt(a, u),

ġt(a, u) = −∂[gt(a, u)su(a)]

∂a
− λugt(a, u) + λegt(a, e)



Stationary distribution/Kolmogorov Forward

Equation

I Remember the matrix

Pn = SnDn + B.

I When converged

P = SD + B

I Turns out that

ġt = P′gt

I Where gt is the stacked vector (gt(a, e), gt(a, u))′



Solving the Aiyagari model

1. Guess for an interest rate rn. Find wn as

wn = (1− α)

(
rn + δ

α

) α
α−1

2. Find v such that

v = [(ρ + 1/Γ)I− P]−1[u(c(v)) + v/Γ]

3. Find g by solving

0 = P′g

and normalise to sum to one (remember how we found s
above)



Solving the Aiyagari model

4. Find Kn as

Kn = g′
(

a
a

)
5. Find r̂ as

r̂ = α

(
Kn

(1− u)

)α−1

− δ

6. If r̂ > r set rn+1 > rn, else set rn+1 < rn.

7. Repeat until r̂ ≈ rn.


	Introduction

