Question

(a) Top Income Inequality

(b) Top Wealth Inequality

• In U.S. past 40 years have seen (Piketty, Saez, Zucman & coauthors)
 • rapid rise in top income inequality
 • rise in top wealth inequality (rapid? gradual?)

• Why?
Question

- **Main fact** about top inequality (since Pareto, 1896): upper tails of income and wealth distribution follow **power laws**

- Equivalently, top inequality is **fractal**
 1. ... top 0.01% are X times richer than top 0.1%,... are X times richer than top 1%,... are X times richer than top 10%,...
 2. ... top 0.01% share is fraction Y of 0.1% share,... is fraction Y of 1% share, ... is fraction Y of 10% share,...
Evolution of “Fractal Inequality”

- \(\frac{S(p/10)}{S(p)} \) = fraction of top p\% share going to top (p/10)\%
- e.g. \(\frac{S(0.1)}{S(1)} \) = fraction of top 1\% share going to top 0.1\%
- Paper: same exercise for wealth
This Paper

- **Starting point:** existing theories that explain top inequality at point in time
 - differ in terms of underlying economics
 - but share basic mechanism for generating power laws: *random growth*

- **Our ultimate question:** which specific economic theories can also explain observed *dynamics* of top inequality?
 - income: e.g. falling income taxes? superstar effects?
 - wealth: e.g. falling capital taxes (rise in after-tax $r - g$)?

- **What we do:**
 - study *transition dynamics* of cross-sectional distribution of income/wealth in theories with random growth mechanism
 - contrast with data, *rule out* some theories, *rule in* others
Main Results

- Transition dynamics of standard random growth models **too slow** relative to those observed in the data
 - analytic formula for speed of convergence
 - transitions particularly slow in **upper tail** of distribution
 - jumps cannot generate fast transitions either
- Two parsimonious deviations that generate **fast transitions**
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices
- Both only consistent with particular economic theories
- Rise in top **income** inequality due to
 - simple tax stories, stories about $\text{Var(permanent earnings)}$
 - rise of “superstar” entrepreneurs or managers
- Rise in top **wealth** inequality due to
 - increase in $r-g$ due to falling capital taxes
 - rise in saving rates/RoRs of super wealthy
Literature: Inequality and Random Growth

- **Income distribution**
 - Champernowne (1953), Simon (1955), Mandelbrot (1961), Nirei (2009), Toda (2012), Kim (2013), Jones and Kim (2013), Aoki and Nirei (2014), ...

- **Wealth distribution**

- **Dynamics** of income and wealth distribution
 - Blinder (1973), but no Pareto tail
 - Aoki and Nirei (2014)

- **Power laws are everywhere** ⇒ results useful there as well
 - firm size distribution (e.g. Luttmer, 2007)
 - city size distribution (e.g. Gabaix, 1999)
 - ...
Plan

1. **Random growth theories** of top inequality
 - a simple theory of top income inequality
 - stationary distribution

2. **Slow transitions** in the baseline model

3. Models that generate **fast transitions**
 - heterogeneous mean growth rates
 - “superstar shocks” to skill prices

- **Today’s presentation:** focus on top income inequality
- **Paper:** analogous results for top wealth inequality
A Random Growth Theory of Income Dynamics

- Continuous time
- Continuum of workers, heterogeneous in human capital h_{it}
- Die/retire at rate δ, replaced by young worker with h_{i0}
- Wage is $w_{it} = \omega h_{it}$
- Human capital accumulation involves
 - investment
 - luck
- “Right” assumptions \Rightarrow wages evolve as
 \[d \log w_{it} = \mu dt + \sigma dZ_{it} \]
 - growth rate of wage w_{it} is **stochastic**
 - μ, σ depend on model parameters
 - $Z_{it} = $ Brownian motion, i.e. $dZ_{it} \equiv \lim_{\Delta t \to 0} \epsilon_{it} \sqrt{\Delta t}, \epsilon_{it} \sim \mathcal{N}(0, 1)$
- A number of alternative theories lead to same reduced form
Stationary Income Distribution

- **Result:** The stationary income distribution has a Pareto tail

\[
\Pr(\tilde{w} > w) \sim C w^{-\zeta}
\]

- ... with tail exponent

\[
\zeta = \frac{-\mu + \sqrt{\mu^2 + 2\sigma^2 \delta}}{\sigma^2}
\]

- Tail inequality \(\eta = 1/\zeta \) increasing in \(\mu, \sigma \), decreasing in \(\delta \)
Other Theories of Top Inequality

- We confine ourselves to theories that generate power laws
 - random growth
 - models with superstars (assignment models) – more later

- Example of theories that do not generate power laws, i.e. do not generate **fractal feature** of top income inequality:
 - theories of rent-seeking (Benabou and Tirole, 2015; Piketty, Saez and Stantcheva, 2014)
 - someone should write that “rent-seeking \Rightarrow power law” paper!
Transitions: The Thought Experiment

- $\sigma \uparrow$ leads to increase in stationary tail inequality
- But what about dynamics? Thought experiment:
 - suppose economy is in Pareto steady state
 - at $t = 0$, $\sigma \uparrow$. Know: in long-run \rightarrow higher top inequality

![Graph showing log density vs. log income/wealth](image)

1. average speed of convergence?
2. transition in upper tail?
Transitions: Tools

• Convenient to work with $x_{it} = \log w_{it}$

$$dx_{it} = \mu dt + \sigma dZ_{it}$$

• Need additional “friction” to ensure existence of stat. dist.
 • income application: death/retirement at rate δ
 • alternative: reflecting barrier

• Distribution $p(x, t)$ satisfies

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \delta_0$$

where $\delta_0 =$ Dirac delta function (point mass at $x = 0$)

• Useful to write in terms of differential operator A^*

$$p_t = A^* p + \delta \delta_0, \quad A^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p$$

• A^* = “transition matrix” for continuous-state process
Average Speed of Convergence

- **Proposition:** \(p(x, t) \) converges to stationary distrib. \(p_\infty(x) \)

\[||p(x, t) - p_\infty(x)|| \sim ke^{-\lambda t} \]

- without reflecting barrier, rate of convergence is

\[\lambda = \delta \]

- with reflecting barrier, rate of convergence is

\[\lambda = \frac{1}{2} \frac{\mu^2}{\sigma^2} 1_{\{\mu<0\}} + \delta \]

- For given amount of top inequality \(\eta \), speed \(\lambda(\eta, \sigma, \delta) \) satisfies

\[\frac{\partial \lambda}{\partial \eta} \leq 0, \quad \frac{\partial \lambda}{\partial \sigma} \geq 0, \quad \frac{\partial \lambda}{\partial \delta} > 0 \]

- **Observations:**
 - **high inequality** goes hand in hand with **slow transitions**
 - half life is \(t_{1/2} = \ln(2)/\lambda \Rightarrow \) precise quantitative predictions

- **Rough idea:** \(\lambda = 2\text{nd eigenvalue of “transition matrix” } \mathcal{A}^* \)
Rough Idea of Proof

- To understand, suppose $x_{it} =$ finite-state Poisson process

 - $x_{it} \in \{x_1, \ldots, x_N\} \Rightarrow$ distribution = vector $p(t) \in \mathbb{R}^N$

 - dynamics

 $$ \dot{p}(t) = A^T p(t), $$

 where $A = N \times N$ (diagonolizable) transition matrix

 - Denote eigenvalues by $0 = |\lambda_1| < |\lambda_2| < \ldots < |\lambda_N|$ and corresponding eigenvectors by (v_1, \ldots, v_N)

 - **Theorem:** $p(t)$ converges to stationary dist. at rate $|\lambda_2|$

 - Proof sketch: decomposition

 $$ p(0) = \sum_{i=1}^{N} c_i v_i \quad \Rightarrow \quad p(t) = \sum_{i=1}^{N} c_i e^{\lambda_i t} v_i $$

 - Example: symmetric two-state Poisson process with intensity ϕ

 $$ A = \begin{bmatrix} -\phi & \phi \\ \phi & -\phi \end{bmatrix}, \quad \Rightarrow \quad \lambda_1 = 0, \quad |\lambda_2| = 2\phi $$

 Intuitively, speed $|\lambda_2|$ \nearrow in switching intensity ϕ
Rough Idea of Proof

- Here: generalize this idea to continuous-state process
- Consider Kolmogorov Forward equation for x_{it}-process

$$p_t = \mathcal{A}^* p + \delta \delta_0, \quad \mathcal{A}^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p$$

- Exact generalization of finite-state $\dot{p}(t) = \mathbf{A}^T p(t)$

Proof has two steps:

1. realization that speed = second eigenvalue of operator \mathcal{A}^*
2. analytic computation: $|\lambda_2| = \frac{1}{2} \frac{\mu^2}{\sigma^2} 1_{\{\mu < 0\}} + \delta$
Transition in Upper Tail

- So far: **average** speed of convergence of whole distribution
- But care in particular about speed in **upper tail**
- Show: transition can be much **slower** in upper tail
Instructive Special Case: Steindl Model

- The special case $\sigma = 0, \mu > 0$ can be solved cleanly
 - x_t grows at rate μ, gets reset to $x_0 = 0$ at rate δ
 - stationary distribution $p(x) = \zeta e^{-\zeta x}, \zeta = \delta/\mu$

- Can show: for $t, x > 0$ density satisfies

$$ \frac{\partial p(x, t)}{\partial t} = -\mu \frac{\partial p(x, t)}{\partial x} - \delta p(x, t), \quad p(x, 0) = \alpha e^{-\alpha x} \quad (*)$$

- **Result:** the solution to $(*)$ is

$$ p(x, t) = \zeta e^{-\zeta x} \mathbf{1}_{\{x \leq \mu t\}} + \alpha e^{-\alpha x + (\alpha - \zeta)t} \mathbf{1}_{\{x > \mu t\}} $$

where $\mathbf{1}_{\{\cdot\}} = \text{indicator function}$
Observations:

1. Transition is slower in upper tail: it takes time $\tau(x) = x/\mu$ for the local PL exponent to converge to its steady state value ζ.

2. Initially, tail exhibits parallel shift.
Transition in Tail: General Case

- Distribution $p(x, t)$ satisfies a Kolomogorov Forward Equation

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \delta_0 \quad (\ast)$$

- Can solve this, but not particularly instructive

- Instead, use so-called “Laplace transform” of p

$$\hat{p}(\xi, t) := \int_{-\infty}^{\infty} e^{-\xi x} p(x, t) \, dx = \mathbb{E} \left[e^{-\xi x} \right]$$

- \hat{p} has natural interpretation: $-\xi$th moment of income/wealth

$$w_{it} = e^{x_{it}}$$

 - e.g. $\hat{p}(-2, t) = \mathbb{E}[w_{it}^2]$
Transition in Upper Tail

- **Proposition:** The Laplace transform of p, \hat{p} satisfies

 \[\hat{p}(\xi, t) = \hat{p}_\infty(\xi) + (\hat{p}_0(\xi) - \hat{p}_\infty(\xi)) e^{-\lambda(\xi)t} \]

 with moment-specific speed of convergence

 \[\lambda(\xi) = \mu \xi - \frac{\sigma^2}{2} \xi^2 + \delta \]

- Hence, for $\xi < 0$, the higher the moment $-\xi$, the slower the convergence (for high enough $|\xi| < \zeta$)

- **Key step:** Laplace transform transforms PDE (*) into ODE

 \[\frac{\partial \hat{p}(\xi, t)}{\partial t} = -\xi \mu \hat{p}(\xi, t) + \xi^2 \frac{\sigma^2}{2} \hat{p}(\xi, t) - \delta \hat{p}(\xi, t) + \delta \]
Transition in Upper Tail

Moment under Consideration (equiv. Weight on Tail), $-\xi$

Half Life $t_{1/2}(\xi)$ in Years

$\sigma^2 = 0.025$
$\sigma^2 = 0.02$
$\sigma^2 = 0.03$
Dynamics of Income Inequality

- Recall process for log wages
 \[d \log w_{it} = \mu dt + \sigma dZ_{it} + \text{death at rate } \delta \]

- \(\sigma^2 = \text{Var(permanent earnings)} \)

- **Literature:** \(\sigma \) has increased over last forty years
 - documented by Kopczuk, Saez and Song (2010), DeBacker et al. (2013), Heathcote, Perri and Violante (2010) using PSID
 - but Guvenen, Ozkan and Song (2014): \(\sigma \) flat/decreasing in SSA data

- **Can increase in \(\sigma \) explain increase in top income inequality?**
Dynamics of Income Inequality: Model vs. Data

(a) Top 1% Labor Income Share

(b) Pareto Exponent

- Experiment $\sigma^2 \uparrow$ from 0.01 in 1973 to 0.025 in 2014 (Heathcote, Perri and Violante, 2010)

- Note: PL exponent $\eta = 1 + \log_{10} \frac{S(0.1)}{S(1)}$ (from $\frac{S(0.1)}{S(1)} = 10^{\eta-1}$)
Jumps Don’t Help Either

- Standard random growth model: income innovations are log-normally distributed
- Recent research: not a good description of the data, e.g. Guvenen-Karahan-Ozkan-Song:

![Graph showing log density](image)

- Natural question: can jumps generate fast transitions?
- Answer: no! While useful descriptively, jumps do not increase the speed of convergence
Jumps Don’t Help Either

- Extend income process to
 \[dx_{it} = \mu dt + \sigma dZ_{it} + \text{jumps with intensity } \phi \text{ drawn from } f \]

- **Proposition:** With jumps, speed of convergence is
 \[\lambda(\xi, \phi) := \xi \mu - \xi^2 \frac{\sigma^2}{2} + \delta - \phi(\hat{f}(\xi) - 1) \]
 \[\hat{f}(\xi) := \int_{-\infty}^{\infty} e^{-\xi g} f(g) dg, \]

 Jumps have no effect whatsoever on average speed of convergence
 \[\lambda = \delta \]

 and they slow down the speed of convergence in the tail
 \[\xi < 0 \quad \Rightarrow \quad \lambda(\xi, \phi) \text{ decreasing in } \phi \]
OK, so what drives top inequality then?

Two candidates:

1. heterogeneity in mean growth rates
2. deviations from Gibrat’s law, e.g. due to changes in skill prices
Heterogeneity in Mean Growth Rates

(A) Mean earnings by age

- Guvenen, Kaplan and Song (2014): between age 25 and 35
 - earnings of top 0.1% of lifetime inc. grow by $\approx 25\%$ each year
 - and only $\approx 3\%$ per year for bottom 99%
Heterogeneity in Mean Growth Rates

- Two regimes: H and L

 \[dx_{it} = \mu_H dt + \sigma_H dZ_{it} \]
 \[dx_{it} = \mu_L dt + \sigma_L dZ_{it} \]

- Assumptions
 - $\mu_H > \mu_L$
 - fraction θ enter labor force in H-regime
 - switch from H to L at rate ψ, $L =$ absorbing state
 - retire at rate δ

- See Luttmer (2011) for similar model of firm dynamics

- **Proposition:** The dynamics of $\hat{\rho}(x, t) = \mathbb{E}[e^{-\xi x}]$ satisfy

 \[\hat{\rho}(\xi, t) - \hat{\rho}_\infty(\xi) = c_H(\xi) e^{-\lambda_H(\xi)t} + c_L(\xi) e^{-\lambda_L(\xi)t} \]

 \[\lambda_H(\xi) := \xi \mu_H - \xi^2 \frac{\sigma_H^2}{2} + \psi + \delta \gg \lambda_L(\xi) \]

 and $c_L(\xi), c_H(\xi) = \text{constants}$
“Superstar shocks” to skill prices

- Second candidate for fast transitions: $x_{it} = \log w_{it}$ satisfies

\[x_{it} = \chi_t y_{it} \]
\[dy_{it} = \mu dt + \sigma dZ_{it} \]

i.e. $w_{it} = (e^{y_{it}})^{\chi_t}$ and $\chi_t = \text{stochastic process} \neq 1$

- Note: implies deviations from Gibrat’s law

\[dx_{it} = \mu dt + x_{it} dS_t + \sigma dZ_{it}, \quad S_t := \log \chi_t \neq 0 \]

- Call χ_t (equiv. S_t) “superstar shocks”

- **Proposition:** The process (*) has an infinitely fast speed of adjustment: $\lambda = \infty$. Indeed

\[\zeta_t^x = \zeta_t^y / \chi_t \quad \text{or} \quad \eta_t^x = \chi_t \eta_t^y \]

where ζ_t^x, ζ_t^y are the PL exponents of incomes x_{it} and y_{it}.

- **Intuition:** if power χ_t jumps up, top inequality jumps up
A Microfoundation for “Superstar Shocks”

- χ_t term can be microfounded with changing skill prices in assignment models (Sattinger, 1979; Rosen, 1981)
- Here adopt Gabaix and Landier (2008)
 - continuum of firms of different size $S \sim$ Pareto($1/\alpha_t$).
 - continuum of managers with different talent T, distribution
 \[
 T(n) = T_{\text{max}} - \frac{B}{\beta} n^{\beta_t}
 \]
 where n: rank/quantile of manager talent
- Match generates firm value: constant $\times TS^{\gamma_t}$
- Can show: $w(n) = e^{a_t} n^{-\chi_t}$ ($= e^{a_t + \chi_t y_{it}}$, $y_{it} = -\log n_{it}$)
 \[
 \chi_t = \alpha_t \gamma_t - \beta_t
 \]
- Increase in χ_t due to
 - β_t, γ_t: (perceived) importance of talent in production, e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)
- Other assignment models (e.g. with rent-seeking, inefficiencies) would yield similar microfoundation
Empirical Evidence on “Superstar shocks”

1. Acemoglu and Autor (2011): “convexification” of skill prices

\[dx_{it} = \mu dt + x_{it} dS_t + \sigma dZ_{it}, \quad S_t := \log \chi_t \neq 0 \]

2. Recall

Parker and Vissing-Jorgenson (2009) and Guvenen (2014) find evidence of \(S_t \) shocks at business cycle frequencies
Revisiting the Rise in Income Inequality

- Casual evidence: very rapid income growth rates since 1980s (Bill Gates, Mark Zuckerberg)
- Jones and Kim (2015): in IRS/SSA data, average growth rate in upper tail of the growth rate distribution ↑ since late 1970s
- Experiment in model with het. growth rates: in 1973 growth rate of H-types ↑ by 8%

(a) Top 1% Labor Income Share

(b) Pareto Exponent
Wealth Inequality and Capital Taxes

- A simple model of top wealth inequality based on Piketty and Zucman (2015, HID), Piketty (2015, AERPP), ...

\[dw_{it} = [y + (r - g - \theta)w_{it}]dt + \sigma w_{it}dZ_{it} \]
\[r = (1 - \tau)^\ddot{r}, \quad \sigma = (1 - \tau)^\ddot{\sigma} \]

- \(y \): labor income
- \(R_{it} dt = r dt + \sigma dZ_{it} \): after-tax return on wealth
- \(\tau \): capital tax rate
- \(g \): economy-wide growth rate
- \(\theta \): MPC out of wealth

- Stationary top inequality

\[\eta = \frac{1}{\zeta} = \frac{\sigma^2/2}{\sigma^2/2 - (r - g - \theta)} \]

- Can \(r - g \) explain observed dynamics of wealth inequality?
Wealth Inequality and Capital Taxes

- Compute $r_t - g_t = \tilde{r}_t (1 - \tau_t) - g_t$ with details
 - \tilde{r}_t from Piketty and Zucman (2014)
 - τ_t = capital tax rates from Auerbach and Hassett (2015)
 - g_t = smoothed growth rate from PWT

- $\sigma = 0.3$ = upper end of estimates from literature
- θ calibrated to match inequality in 1978
Dynamics of Wealth Inequality

(a) Top 1% Wealth Share

(b) Power Law Exponent

Note: PL exponent $\eta = 1 + \log_{10} \frac{S(0.1)}{S(1)}$ (from $\frac{S(0.1)}{S(1)} = 10^{\eta-1}$)
OK, so what drives top wealth inequality then?

- Rise in *rate of returns* of super wealthy relative to wealthy (top 0.01 vs. top 1%)
 - better investment advice?
 - better at taking advantage of “tax loopholes”?
 - Kacperczyk, Nosal and Stevens (2015) provide some evidence

- Rise in *saving rates* of super wealthy relative to wealthy
 - Saez and Zucman (2014) provide some evidence
Conclusion

- Transition dynamics of standard random growth models too slow relative to those observed in the data

- Two parsimonious deviations that generate fast transitions
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices

- Rise in top income inequality due to
 - simple tax stories, stories about Var(permanent earnings)
 - rise in superstar growth (and churn) in two-regime world
 - “superstar shocks” to skill prices

- Rise in top wealth inequality due to
 - increase in $r-g$ due to falling capital taxes
 - rise in saving rates/RoRs of super wealthy