
Computer Performance Evaluation Workshop
Position Statement

Mark Oskin
Dept. of Computer Science and Engineering

University of Washington

Detailed cycle-by-cycle simulation has enabled a heightened level of empiricalness to the science
of computer architecture. Recent work has been disturbing, however, in examining the
faithfulness of the simulation approach. In [1] it was shown that the widely used "constant
delay" memory interface was a gross simplification of the memory hierarchy. This was
followed by [2, 3] where it was shown that a compounding collection of modeling errors lead to
inaccuracies. In [4] it was demonstrated that the entire SPECint95 benchmark suite could be
eerily summarized into a handful of statistical control parameters. Finally, in this position paper
I present some new evidence that the metrics commonly used (cycles, IPC) deserve a closer
inspection. After this, I briefly discuss a range of simulation topics.

The IPC / cycles / execution-time juggernaut

Figures 1,2 and 3, depict percent of total execution time as a function of instructions per cycle
(IPC). This data was collected by modifying the SimpleScalar toolkit to track instruction
completions every ten cycles. The result is a graph of the amount of time the superscalar
processor spends performing well (completing many instructions per cycle) and performing
poorly. The often-used "IPC" benchmark is really an average of microscopic execution
performance. The analogy one can draw is that, reporting IPC for an application is like saying
when you roll a ball down a U-shaped incline it will come to a complete stop at the bottom of the
U instantaneously. We all recognize that the ball will roll down one side and up the other and
eventually through friction come to rest at the bottom. A microprocessor, when viewed on a
microscopic timescale, really fluctuates like this and reporting IPC as a single number masks this
behavior. Unfortunately, reporting execution time also hides these microscopic fluctuations.

The focus on average IPC is problematic. On the one hand, we strive to design architectures that
make applications execute faster. So it seems logical to study application execution time, or
some corollary such as average IPC. On the other hand, the application-architecture interaction
is extremely complex and simply looking at these gross metrics of performance can make proper
interpretation difficult.

Currently, sensitivity analysis is key

So if average IPC/execution-time is problematic, what kind of metrics should we use? Until
some useful way of transforming simulation results on microscopic timescales into meaningful
understanding is developed, sensitivity analysis of IPC and its corollaries (domain-specific
performance metrics) are useful. Sensitivity analysis is indirectly suggestive of microscopic
behavior. It is difficult to generalize across domains, but to highlight a few (of many available)
examples: Sazeides and Smith [5] explored data-predictability broken down by the sources and
terminations of such predictability. Evers et al [6] explored the sources of branch predictability



with prediction accuracy relative to history length. Lam et al [7] explored the locality of
algorithms using cache miss rate against blocking factors (among other features). Finally,
Brooks and Martonosi [8] explored the correlation between average power and other
architectural metrics such as fetch and cache hit rates.

The decaying relevance of baseline comparisons (Value=e-kT)

A significant challenge with architecture research that looks forward ten to fifteen years is
devising a scientifically sound exploration methodology. With some, arguable, degree of error
we are able to predict the future (silicon) technological landscape. However, with far less
accuracy we know what the architecture and application comparison points should be. Perhaps
the best we can do is to use SPEC2000 and compare against a supped up super-scalar or VLIW.
But, what is the quantitative value in this approach?

An interesting historical study may be to characterize the change in architectures, technology,
and applications over the past 15 years and devise a function for the cumulative rate of change.
This (exponentially compounding) rate can be inverted to place value on baseline comparisons.
Returning to metrics, studies that examine sensitivity to parameters seem more appropriate for
understanding. However, a token baseline comparison (a "straw man") may be required for
acceptance of radically new architectures.

The need for accuracy is relative

Not all architecture research needs absolute accuracy. Research that seeks to advance the current
state of the art should rely on a high degree of absolute accuracy that can be verified. On the
other hand, due to the inherent inaccuracy in the technology and application projections, research
that looks forward ten to fifteen years should strive for relative accuracy. In both cases,
however, the current focus in constructing simulation infrastructure is on absolute accuracy.
How might striving for relative accuracy change things? Here is a list of ideas that might be
appropriate in certain circumstances: use random cache replacement policies instead of tracking
precise LRU, replace 64 bit counters with 32 bit counters that normalize against each-other every
100000 cycles, cut all the delay constants by a factor of 2 and kludge around those with a delay
of 1, for parallel systems relax the synchronization precision. Depending upon the architectural
system being explored, even more obscene hybrid cycle-by-cycle/model techniques can be
employed: replace the memory hierarchy with statistical access-delay models, replace the
execution core with a pipeline model, or replace the application itself with a statistical code
model.

It's the ideas that matter

Simulation creates a wealth of empirical results. Translating these results into useful
understanding requires that the metrics are meaningful, the applications are representative, the
assumptions are valid, and the simulation bug-free. These are real challenges with simulation,
but certainly there are other mechanisms to explore architectural ideas. Are we seduced by the
perceived precision of simulation into not exploring alternative methods?



[1] V. Cuppu, B. Jacob, B. Davis, and T. Mudge.A Performance Comparison of Contemporary
DRAM Architectures.International Symposium on Computer Architecture (ISCA), 1999.

[2] R. Desikan, D.C. Burger, and S.W. Keckler.Measuring Experimental Error in
Microprocessor Simulation.International Symposium on Computer Architecture (ISCA), 2001.

[3] R. Desikan, D.C. Burger, S.W. Keckler, L. Cruz, F. Latorre, A. Gonzalez, and M. Valero.
Errata on "Measuring Experimetnal Error in Microprocessor Simulation".2001.

[4] M. Oskin, F. Chong, and M. Farrens,HLS: Combining Statistical and Symbolic Simulation to
Guide Microprocessor Designs.International Symposium on Computer Architecture (ISCA),
2000.

[5] Y. Sazeides and J. Smith,Modeling Program Predictability. International Symposium on
Computer Architecture (ISCA), 1998.

[6] M. Evers and T. Yeh,Understanding Branches and Designing Branch Predictors for High
Performance Microprocessors.Submitted to the Proceedings of IEEE.

[7] M. Lam, E. Rothberg and M. Wolf,The Cache Performance and Optimizations of Blocked
Algorithms. Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 1991.

[8] D. Brooks and M. Martonosi,Dynamic Thermal Management for High-Performance
Microprocessors. International Symposium on High-Performance Computer Architecture, 2001.



Figure 1

xlisp

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

IPC

P
er

ce
nt

to
ta

l

Figure 2

Vortex

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

IPC

P
er

ce
nt

to
ta

l

Figure 3

Perl

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

IPC

P
er

ce
nt

to
ta

l


