Introduction to Econometrics (4th Updated Edition)

by

James H. Stock and Mark W. Watson

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 19

(This version September 18, 2018)
19.1. (a) The regression in the matrix form is

\[Y = X\beta + U \]

with

\[
Y = \begin{pmatrix}
\text{TestScore}_1 \\
\text{TestScore}_2 \\
\vdots \\
\text{TestScore}_n
\end{pmatrix}, \quad
X = \begin{pmatrix}
1 & \text{Income}_1 & \text{Income}_1^2 \\
1 & \text{Income}_2 & \text{Income}_2^2 \\
\vdots & \vdots & \vdots \\
1 & \text{Income}_n & \text{Income}_n^2
\end{pmatrix}
\]

\[
U = \begin{pmatrix}
U_1 \\
U_2 \\
\vdots \\
U_n
\end{pmatrix}, \quad
\beta = \begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\hat{\beta}_2
\end{pmatrix}
\]

(b) The null hypothesis is

\[R\beta = r \]

versus \(R\beta \neq r \) with

\[R = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \text{ and } r = 0. \]

The heteroskedasticity-robust \(F \)-statistic testing the null hypothesis is

\[
F = (R\hat{\beta} - r)' \left[R\Sigma R' \right]^{-1} (R\hat{\beta} - r) / q
\]

With \(q = 1 \). Under the null hypothesis,

\[F \xrightarrow{d} F_{q,\infty}. \]

We reject the null hypothesis if the calculated \(F \)-statistic is larger than the critical value of the \(F_{q,\infty} \) distribution at a given significance level.
19.3. (a)

\[
\text{Var}(Q) = E[(Q - \mu_Q)^2] \\
= E[(Q - \mu_Q)(Q - \mu_Q)'] \\
= E[(c'W - c'\mu_w)(c'W - c'\mu_w)'] \\
= c'E[(W - \mu_w)(W - \mu_w)']c \\
= c' \text{var}(W)c = c'\Sigma_w c
\]

where the second equality uses the fact that \(Q \) is a scalar and the third equality uses the fact that \(\mu_Q = c'\mu_w \).

(b) Because the covariance matrix \(\Sigma_w \) is positive definite, we have \(c'\Sigma_w c > 0 \) for every non-zero vector from the definition. Thus, \(\text{var}(Q) > 0 \). Both the vector \(c \) and the matrix \(\Sigma_w \) are finite, so \(\text{var}(Q) = c'\Sigma_w c \) is also finite. Thus, \(0 < \text{var}(Q) < \infty \).
19.5. \(P_X = X (X'X)^{-1} X' \), \(M_X = I_n - P_X \).

(a) \(P_X \) is idempotent because

\[
P_X P_X = X (X'X)^{-1} X X (X'X)^{-1} X' = X (X'X)^{-1} \hat{X} = P_X.
\]

\(M_X \) is idempotent because

\[
M_X P_X = (I_n - P_X) (I_n - P_X) = I_n - P_X - P_X + P_X P_X = I_n - 2P_X + P_X = I_n - P_X = M_X
\]

\(P_X M_X = 0_{n \times n} \) because

\[
P_X M_X = P_X (I_n - P_X) = P_X - P_X P_X = P_X - P_X = 0_{n \times n}
\]

(b) Because \(\hat{\beta} = (X'X)^{-1} X'Y \), we have

\[
\hat{Y} = X \hat{\beta} = X (X'X)^{-1} X'Y = P_X Y
\]

which is Equation (19.27). The residual vector is

\[
\hat{U} = Y - \hat{Y} = Y - P_X Y = (I_n - P_X) Y = M_X Y.
\]

We know that \(M_X X \) is orthogonal to the columns of \(X \):

\[
M_X X = (I_n - P_X) X = X = P_X X = X + X (X'X)^{-1} X' X - X = 0
\]

so the residual vector can be further written as

\[
\hat{U} = M_X Y = M_X (X \beta + U) = M_X X \beta + M_X U = M_X U
\]

which is Equation (19.28).

(c) From the hint, rank \((P_X) = \text{trace}(P_X) = \text{trace}[X (X'X)^{-1} X'] = \text{trace}[(X'X)^{-1} X' X] = \text{trace}(I_{k+1}) = k+1\). The result for \(M_X \) follows from a similar calculation.
19.7. (a) We write the regression model, \(Y_i = \beta_1 X_i + \beta_2 W_i + u_i \), in the matrix form as

\[
Y = X\beta_1 + W\beta_2 + U
\]

with

\[
Y = \begin{pmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{pmatrix}, \quad X = \begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{pmatrix}, \quad W = \begin{pmatrix}
W_1 \\
W_2 \\
\vdots \\
W_n
\end{pmatrix}, \quad U = \begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix},
\]

The OLS estimator is

\[
\begin{pmatrix}
\hat{\beta}_1 \\
\hat{\beta}_2
\end{pmatrix} = \left(X'X \quad X'W \right) \left(X'Y \right)
\]

\[
= \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \left(\frac{1}{n} X'X \quad \frac{1}{n} X'W \right)^{-1} \left(\frac{1}{n} X'U \right)
\]

\[
= \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \quad \frac{1}{n} \sum_{i=1}^{n} X_i W_i \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i u_i \right)
\]

By the law of large numbers, \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{d} E(X^2) \); \(\frac{1}{n} \sum_{i=1}^{n} W_i^2 \xrightarrow{d} E(W^2) \);

\(\frac{1}{n} \sum_{i=1}^{n} X_i W_i \xrightarrow{d} E(XW) = 0 \) (because \(X \) and \(W \) are independent with means of zero);

\(\frac{1}{n} \sum_{i=1}^{n} X_i u_i \xrightarrow{d} E(Xu) = 0 \) (because \(X \) and \(u \) are independent with means of zero);

\(\frac{1}{n} \sum_{i=1}^{n} X_i u_i \xrightarrow{d} E(Xu) = 0 \)

Thus

\[
\begin{pmatrix}
\hat{\beta}_1 \\
\hat{\beta}_2
\end{pmatrix} \xrightarrow{d} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \left(\frac{1}{n} X'X \quad 0 \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i u_i \right)
\]

\[
= \begin{pmatrix}
\beta_1 \\
\beta_2
\end{pmatrix} + \frac{E(Wu)}{E(W^2)}.
\]
(b) From the answer to (a) \(\hat{\beta}_2 \xrightarrow{d} \beta_2 + \frac{E(Wu)}{E(W^2)} \neq \beta_2 \) if \(E(Wu) \) is nonzero.

(c) Consider the population linear regression \(u_i \) onto \(W_i \):

\[
u_i = \lambda W_i + a_i
\]

where \(\lambda = E(Wu)/E(W^2) \). In this population regression, by construction, \(E(aW) = 0 \). Using this equation for \(u_i \) rewrite the equation to be estimated as

\[
Y_i = X_i \beta_1 + W_i \beta_2 + u_i \\
= X_i \beta_1 + W_i (\beta_2 + \lambda) + a_i \\
= X_i \beta_1 + W_i \theta + a_i
\]

where \(\theta = \beta_2 + \lambda \). A calculation like that used in part (a) can be used to show that

\[
\left(\frac{\sqrt{n}(\hat{\beta}_1 - \beta_1)}{\sqrt{n}(\hat{\beta}_2 - \theta)} \right) \xrightarrow{d} \left[\begin{pmatrix} 1 \frac{\sum W_i^2}{n} \frac{\sum X_i W_i}{n} \\ \frac{\sum W_i}{n} \sum X_i W_i \frac{\sum W_i}{n} \sum W_i^2 \frac{\sum W_i}{n} \sum W_i a_i \end{pmatrix} \right]^{-1} \begin{pmatrix} \frac{1}{n} \sum X_i W_i a_i \\ \frac{1}{n} \sum W_i a_i \end{pmatrix}
\]

\[
\xrightarrow{d} \begin{pmatrix} E(X^2) & 0 \\ 0 & E(W^2) \end{pmatrix}^{-1} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}
\]

where \(S_1 \) is distributed \(N(0, \sigma_a^2 E(X_2)) \). Thus by Slutsky’s theorem

\[
\sqrt{n}(\hat{\beta}_1 - \beta_1) \xrightarrow{d} N \left(0, \frac{\sigma_a^2}{E(X^2)} \right)
\]

Now consider the regression that omits \(W \), which can be written as:

\[
Y_i = X_i \beta_1 + d_i
\]

where \(d_i = W_i \theta + a_i \). Calculations like those used above imply that

\[
\sqrt{n}(\hat{\beta}_1 - \beta_1) \xrightarrow{d} N \left(0, \frac{\sigma_d^2}{E(X^2)} \right)
\]

Since \(\sigma_d^2 = \sigma_a^2 + \theta^2 E(W^2) \), the asymptotic variance of \(\hat{\beta}_1^* \) is never smaller than the asymptotic variance of \(\hat{\beta}_1 \).
19.9. (a)

\[\hat{\beta} = (X'M_wX)^{-1}X'M_wY \]
\[= (X'M_wX)^{-1}X'M_w(X\beta + Wy + U) \]
\[= \beta + (X'M_wX)^{-1}X'M_wU. \]

The last equality has used the orthogonality \(M_W = 0 \). Thus

\[\hat{\beta} - \beta = (X'M_wX)^{-1}X'M_wU = (n^{-1}X'M_wX)^{-1}(n^{-1}X'M_wU). \]

(b) Using \(M_W = I_n - P_W \) and \(P_W = W(W'W)^{-1}W' \) we can get

\[n^{-1}X'M_wX = n^{-1}X'(I_n - P_W)X \]
\[= n^{-1}XX - n^{-1}XP_WX \]
\[= n^{-1}XX - (n^{-1}X'W)(n^{-1}W'W)^{-1}(n^{-1}W'X). \]

First consider \(n^{-1}X'X = \frac{1}{n} \sum_{i=1}^{n} X_iX_i' \). The \((j, l)\) element of this matrix is

\(\frac{1}{n} \sum_{i=1}^{n} X_{ji}X_{li} \). By Assumption (ii), \(X_i \) is i.i.d., so \(X_{ji}X_{li} \) is i.i.d. By Assumption (iii) each element of \(X_i \) has four moments, so by the Cauchy-Schwarz inequality \(X_{ji}X_{li} \) has two moments:

\[E(X_{ji}^2X_{li}^2) \leq \sqrt{E(X_{ji}^4) \cdot E(X_{li}^4)} < \infty. \]

Because \(X_{ji}X_{li} \) is i.i.d. with two moments, \(\frac{1}{n} \sum_{i=1}^{n} X_{ji}X_{li} \) obeys the law of large numbers, so

\[\frac{1}{n} \sum_{i=1}^{n} X_{ji}X_{li} \xrightarrow{p} E(X_{ji}X_{ji}). \]

This is true for all the elements of \(n^{-1}X'X \), so

\[n^{-1}X'X = \frac{1}{n} \sum_{i=1}^{n} X_iX_i' \xrightarrow{p} E(X_iX_i') = \Sigma_{XX}. \]

Applying the same reasoning and using Assumption (ii) that \((X_i, W_i, Y_i) \) are i.i.d. and Assumption (iii) that \((X_i, W_i, u_i) \) have four moments, we have
\[n^{-1} WW = \frac{1}{n} \sum_{i=1}^{n} W_i W_i' \Rightarrow E(W_i W_i') = \Sigma_{ww}, \]
\[n^{-1} X W = \frac{1}{n} \sum_{i=1}^{n} X_i W_i' \Rightarrow E(X_i W_i') = \Sigma_{xw}, \]
and
\[n^{-1} W' X = \frac{1}{n} \sum_{i=1}^{n} W_i' X_i' \Rightarrow E(W_i' X_i') = \Sigma_{wx}. \]

From Assumption (iii) we know \(\Sigma_{xx}, \Sigma_{ww}, \Sigma_{xw}, \) and \(\Sigma_{wx} \) are all finite non-zero, Slutsky’s theorem implies
\[n^{-1} X'M_w X = n^{-1} X'X - (n^{-1} X'W)(n^{-1} W'W)^{-1}(n^{-1} W'X) \]
\[\Rightarrow \Sigma_{xx} - \Sigma_{xw} \Sigma_{ww}^{-1} \Sigma_{wx} \]
which is finite and invertible.

(c) The conditional expectation
\[
E(U|X, W) = \begin{pmatrix}
E(u_1|X, W) \\
E(u_2|X, W) \\
\vdots \\
E(u_n|X, W)
\end{pmatrix} = \begin{pmatrix}
E(u_1|X_1, W_1) \\
E(u_2|X_2, W_2) \\
\vdots \\
E(u_n|X_n, W_n)
\end{pmatrix}
= \begin{pmatrix}
W_1' \delta \\
W_2' \delta \\
\vdots \\
W_n' \delta
\end{pmatrix} = \begin{pmatrix}
W_1' \\
W_2' \\
\vdots \\
W_n'
\end{pmatrix} \delta = W \delta.
\]
The second equality used Assumption (ii) that \((X_i, W_i, Y_i)\) are i.i.d., and the third equality applied the conditional mean independence assumption (i).
(d) In the limit

\[n^{-1}X'M_wU \xrightarrow{p} E(X'M_wU|X, W) = X'M_wE(U|X, W) = X'M_wW\delta = 0 \]

because \(M_wW = 0 \).

(e) \(n^{-1}X'M_wX \) converges in probability to a finite invertible matrix, and
\(n^{-1}X'M_wU \) converges in probability to a zero vector. Applying Slutsky’s theorem,

\[\hat{\beta} - \beta = (n^{-1}X'M_wX)^{-1} (n^{-1}X'M_wU) \xrightarrow{p} 0. \]

This implies

\[\hat{\beta} \xrightarrow{p} \beta. \]
19.11. (a) Using the hint \(C = [Q_1 \ Q_2] \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} [Q_1^\prime \ Q_2^\prime] \), where \(Q^\prime Q = I \). The result follows with \(A = Q_1 \).

(b) \(W = A^\prime V \sim N(A^\prime 0, A^\prime I_n A) \) and the result follows immediately.

(c) \(V^\prime CV = V^\prime AA^\prime V = (A^\prime V)(A^\prime V) = W^\prime W \) and the result follows from (b).
19.13. (a) This follows from the definition of the Lagrangian.

(b) The first order conditions are

\[
(*) \ X'(Y - X \hat{\beta}) + R' \lambda = 0
\]

and

\[
(**) \ R \hat{\beta} - r = 0
\]

Solving (*) yields

\[
(***) \hat{\beta} = \beta + (XX)^{-1}R' \lambda.
\]

Multiplying by \(R \) and using (**) yields \(r = R \hat{\beta} + R(XX)^{-1}R' \lambda \), so that

\[
\lambda = -[R(XX)^{-1}R']^{-1}(R \hat{\beta} - r).
\]

Substituting this into (***) yields the result.

(c) Using the result in (b), \(Y - X \hat{\beta} = (Y - X \hat{\beta}) - X(XX)^{-1}R' [R(XX)^{-1}R']^{-1}(R \hat{\beta} - r) \), so that

\[
(Y - X \hat{\beta})'(Y - X \hat{\beta}) = (Y - X \hat{\beta})'(Y - X \hat{\beta}) + (R \hat{\beta} - r)' [R(XX)^{-1}R']^{-1}(R \hat{\beta} - r)
\]

\[
+ 2(Y - X \hat{\beta})' X(XX)^{-1}R' [R(XX)^{-1}R']^{-1}(R \hat{\beta} - r).
\]

But \((Y - X \hat{\beta})' X = 0 \), so the last term vanishes, and the result follows.

(d) The result in (c) shows that \((R \hat{\beta} - r)' [R(XX)^{-1}R']^{-1}(R \hat{\beta} - r) = SSR_{Restricted} - SSR_{Unrestricted} \). Also \(s_u^2 = SSR_{Unrestricted}/(n - k_{Unrestricted} - 1) \), and the result follows immediately.
19.15. (a) This follows from exercise (19.6).

(b) \(\hat{Y}_i = \hat{X}_i \beta + \hat{u}_i \), so that

\[
\hat{\beta} - \beta = \left(\sum_{i=1}^{n} \hat{X}_i' \hat{X}_i \right)^{-1} \sum_{i=1}^{n} \hat{X}_i' \hat{u}_i
\]

\[
= \left(\sum_{i=1}^{n} \hat{X}_i' \hat{X}_i \right)^{-1} \sum_{i=1}^{n} X_i' M' Mu_i
\]

\[
= \left(\sum_{i=1}^{n} \hat{X}_i' \hat{X}_i \right)^{-1} \sum_{i=1}^{n} X_i' M' u_i
\]

\[
= \left(\sum_{i=1}^{n} \hat{X}_i' \hat{X}_i \right)^{-1} \sum_{i=1}^{n} \hat{X}_i' u_i
\]

(c) \(\hat{Q}_X = \frac{1}{n} \sum_{i=1}^{n} (T^{-1} \sum_{t=1}^{T} (X_{it} - \bar{X}_i)^2) \), where \((T^{-1} \sum_{t=1}^{T} (X_{it} - \bar{X}_i)^2) \) are i.i.d. with mean \(Q_X \) and finite variance (because \(X_{it} \) has finite fourth moments). The result then follows from the law of large numbers.

(d) This follows the the Central limit theorem.

(e) This follows from Slutsky’s theorem.

(f) \(\eta_i^2 \) are i.i.d., and the result follows from the law of large numbers.

(g) Let \(\hat{\eta}_i = T^{-1/2} \hat{X}_i' \hat{u}_i = \eta_i - T^{-1/2} (\hat{\beta} - \beta) \hat{X}_i' \hat{X}_i \). Then

\[
\hat{\eta}_i^2 = T^{-1/2} \hat{X}_i' \hat{u}_i = \eta_i^2 + T^{-1} (\hat{\beta} - \beta)^2 (\hat{X}_i' \hat{X}_i)^2 - 2T^{-1/2} (\hat{\beta} - \beta) \eta_i \hat{X}_i' \hat{X}_i
\]

and

\[
\frac{1}{n} \sum_{i=1}^{n} \hat{\eta}_i^2 - \frac{1}{n} \sum_{i=1}^{n} \eta_i^2 = T^{-1} (\hat{\beta} - \beta)^2 \frac{1}{n} \sum_{i=1}^{n} (\hat{X}_i' \hat{X}_i)^2 - 2T^{-1/2} (\hat{\beta} - \beta) \frac{1}{n} \sum_{i=1}^{n} \eta_i \hat{X}_i' \hat{X}_i
\]

Because \((\hat{\beta} - \beta) \xrightarrow{p} 0 \), the result follows from (a) \(\frac{1}{n} \sum_{i=1}^{n} (\hat{X}_i' \hat{X}_i)^2 \xrightarrow{p} E[(\hat{X}_i' \hat{X}_i)^2] \) and (b) \(\frac{1}{n} \sum_{i=1}^{n} \eta_i \hat{X}_i' \hat{X}_i \xrightarrow{p} E(\eta_i \hat{X}_i' \hat{X}_i) \). Both (a) and (b) follow from the law of large numbers; both (a) and (b) are averages of i.i.d. random variables.

Completing the proof requires verifying that \((\hat{X}_i' \hat{X}_i)^2 \) has two finite moments.
and $\eta_i \tilde{X}_i', \tilde{X}_i$ has two finite moments. These in turn follow from 8-moment assumptions for (X_{it}, u_{it}) and the Cauchy-Schwartz inequality. Alternatively, a “strong” law of large numbers can be used to show the result with finite fourth moments.
19.17 The results follow from the hints and matrix multiplication and addition.