
Monte Carlo Results: 
 
Experiments: 
 
T = 260  
r  = 0.5 
q = 12 
 
Breaks in levels: 
 
xt = µt + ut  where µt is the level of the process, which is allowed to change discretely 
over the sample period and ut is a Gaussian bcd process.   
 
The µt process follows a martingale with increments that are non-zero with probability p.  
 

Specifically Δµt = stδt  where st is Bernoulli(p), δ t ~ iid
+δ  with probablity 0.5
−δ  with probability 0.5
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Break Model 1: In this experiment ut is I(0).  Note that this is the local-level model (b ≠ 
0, c = 0, and d = 1), with non-gaussian increments in the I(d) component.  In this sense 
the experiment investigates the accuracy of the Gaussian asymptotic approximation used 
in the Bayes and MN predictive sets. 
 
Break Model 2: In this experiment ut follows an AR(1) process with AR coefficient = 
0.98.  In the asymptotic experiment, xt is the sum of an I(1) process (µ) and a LTU 
process (u) with c = 5.2 ( = 260×(1−0.98)).  Note that this model is not nested in the bcd 
framework, so this experiment tests both the accuracy of the Gaussian asymptotic 
approximation (because µ is non-Gaussian) and the ability of the bcd-predictive sets 
control coverage in this non-bcd model. 
 
Calibration: We carry out experiments with p = 1/40 and p = 1/260. 
 
For each model and value of p we choose two values of δ, a “small” and “large” value.  
 
For the first model, these values were chosen to capture level shifts in a time series like 
the growth rate labor-productivity in the post-WWII U.S.  The sample mean of this series 
is 2.2% and the estimated long-run standard deviation is 3.7%.  For this experiment we 
set σu = 3.7 and chose δ so that the IQR range of µT − µ0 was 0.5% (small value of δ) or 
1.5% (large value of δ).  
 
For the second model, these values were chosen to capture level shifts in a time series 
like nominal interest rates in the post-WWII U.S. The estimated standard deviation of 

  (1− 0.98L)Rt
10YearTreasuryBond is 0.46 (with long-run standard deviation 0.55). For this 



experiment we set var(ut − 0.98ut-1) = 0.46  and chose δ so that the IQR range of µT − µ0 
was 2.0 (small value of δ) or 4.0 (large value of δ). 
 

Values of δ  
δ IQR 

a. p = 1/40 
0.0625 0.25 
0.1250 0.50 
0.1875 0.75 
0.375 1.5 
0.5 2.0 
0.75 3.0 

1 4.0 
2 8.0 

c. p = 1/260 
0.125 0.25 
0.25 0.50 
0.375 0.75 
0.75 1.5 

1 2.0 
1.50 3.0 
2.0 4.0 
4.0 8.0 

 
 
 
Breaks in Volatility: 
 
We consider two models.  The first, allows the volatility of the series to shift discretely, 
capturing phenomenon like the “Great Moderation”.  The second allows the variance and 
relative variance of components in a local level model to shift.  This changes both the 
variability and persistence in the process and captures phenomenon such as “anchoring” 
and “unanchoring” of inflation evident in the post-WWII U.S. 
 
Volatility Experiment 1: 
 

Model:  yt = σtut  where ln(σt) follows a martingale Δln(σt) = stεt and these follow the 
same process as above and ut is I(0). 
 



Calibration: p is chosen as 1/40 or 1/260 as above.  δ is chosen so that the IQR of 
ln(σT/σ0) is 0.25 (small δ) or 0.75 (large δ).  These values can be read from the table 
above. 
 
 

 
Volatility Experiment 2:  
 

Model: yt = ult  + σtu2t, where ln(σt) follows a martingale Δln(σt) = stεt and these 
follow the same process as above and u1t is I(0) and u2t is I(1). 
 
Note: With σt constant, (1-L)yt = (1−θL)et, where θ depends on the relative variance 
of the two components and σe depends on the values of the variances.  Thus, in this 
experiment, changes in σt change both the persistent and volatility of the process.   
 
Calibration: We set var(ult) = var(Δu2t) = 1 and choose σ0 so that the θ0 = 0.5, where 
θt denotes the time t value of the MA coefficient from the IMA(1,1) representation of 
the model.  We choose δ so the IQR of θT is 0.5 (small δ) or 0.8 (large δ). 
 

 
δ IQR for θT 25th perc for θT 75th perc for θT 

a. p = 1/40 
0.407 0.50 0.732 0.232 
0.806 0.80 0.869 0.069 

b. p = 1/260 
0.814 0.50 0.732 0.232 
1.612 0.80 0.869 0.069 

 
 
 



  
 


