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DFM:
Xi=ANFi+tuw
OL)F: = Gn
Question: Identify "structural" shocks in 77; and their effects on {X;}

And how 1s this related to the analogous question in VARSs

Start with discussion of VAR and then return to DFM



SVAR
Y:1s an nx1 vector of observables (7 typically 'small’)

VAR dynamics: E(Y:|lagsof Y)=A1Y1+ ... + AyYio.

sothat Yi=A41Yi1+ ... + A,Y, + 1 or A(L)Y: = 1.
17: = 1-period ahead forecast error. (Note change of notation from DFM.)
No constant term for notational convenience.
VMA representation:
Y:=C(L)'n, where C(L)=A(L)"!

Note: C(L)=Co+CiL + CoL?+ ... and Co=1



SVAR (Sims (1980)): Why do we make forecast errors?

1: = H& where & are 'structural’ shocks. (Shocks interpretable 1n the
context of particular theoretical economic models).

=C(L)n:= C(L)Hg = D(L)é& 1s structural MA
and with B(L) = H'A(L)
B(L)Yt = &1 SVAR

From SMA: Y;,=Dog+Dig-1 +... with Dy=C/H

oY . .
Note: —2** =Dy ;. (These are "impulse responses” or "dynamic causal

o€ .
Jt

effects" or 'dynamic multipliers' ... )




Issues:
1. E(Y:|lags1f Y)=A41Y1 + ... + A,Y;,. Reasonable?
2. C(L) = A(L)!; when is this a well-defined one-sided inverse?

3. Estimation of A(L) and C(L). When do usual large-sample linear
properties obtain?

4. n: = Hg with H non-singular. Reasonable?
5. Identification of H.

6. Properties of C H .



Issues:
1. E(Y:|lags1f Y)=A41Y1 + ... + A,Y;,. Reasonable?
2. C(L) = A(L)!; when is this a well-defined one-sided inverse?

3. Estimation of A(L) and C(L). When do usual large-sample linear
properties obtain.

"Hayashi": Roots of A(L) outside unit circle (difference equation 1s
stable). 7; are MDS with appropriate moments.



Issue: n: = Hg with H non-singular. Reasonable?

In some cases NO:

Non-invertibility: Static problem H 1s ny X n,. Whatif n,>ny?
Dynamics:

Invertibility (required here): Can I determine & from current and lagged Y.

'Recoverability' (Chahrour and Jurado (2017), Plagbor-Moller and Wolf (2018)): Can I
determine & from current, lagged and future Y.



Simplist example:

— Ogi-1
t—1
g,=)0'Y +0', (soinvertible when |0 < 1).
j=0
Also

-1
£ = _9—129—JYHJ. +07"¢e,

(so recoverable as long as |0| # 1)



More complicated example:
(Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007))

Vir1 = Cxr + Dwe

Xt+1 — A)Ct + BWt+1

Invertibilty: eigenvalues of (A — BD™'C) are less than 1 in modulus.

oo

J:—OO

(Recoverability): When 1s V&I‘(Wt |{ yt—i—j} ): 0 ? (Exercise)
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Issue 5: Identification of H
n=He = %,,=HX . H

2y estimable from data, so question 1s whether their a unique solution for
H and X from X,,=HX.H'"

'Order condition' .. count equations and unknowns.
e n(n+1)/2 elements 1n 2, (number of equations)

e n> + n(n+1)/2 in H and X, (number of unknowns) .. n* too many
parameters

o Uncorrelated Structural Shocks: Restrict X, to be diagonal: n* + n
unknowns .. n(n+1)/2 too many parameters.
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o Scale normalization
scalar model: 7:=Hg (‘units' of & are not 1dentified)
2 normalizations: (1) o= 1

2)H=1 (orH!'=1)
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Standard deviation normalization: Gertler Karadi (2015) — IRF or

Monetary Policy Shock
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Scale normalization does not matter in population.

It will matter for inference.

Moving from one normalization to another involves dividing by
Hor o .-

We will use normalization on elements of H.

e ¢.g., Diagonal elements of H are unity

e Alternatives:
O2ee=1
o Diagonal elements of H™! =1. (Scale normalization used in
classical sitmultaneous equations literature.)
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Back to counting: with scale normalization the model needs only n(n—1)/2
additional restrictions.

Example: VAR(1) with n =13

Yi=AY 1+

21

31

12

32
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3t
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1 H, Hj €,
Yi=AY +| H, 1 H23 €y,
H, H, 1 €5,

Timing restriction example: Y; =AY, +

T

B



Long-run restriction example:
Arithmetic: Let D= A(L)'H and let Z, = (1-L)'Y; then

. aZz Jtk
Iim =Dy
d¢;,

Restrict H so that D;; has n(n-1)/2 zeros.

And so forth.
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Identification of one shock, say &i; and its effect on Y+«
Recall: Y, = C(L)n, = C(L)Hg with C(L) = A(L)™!

Thus

Y, =CL)[H, H,] " |=CL)Hies,+ distributed lag of €,

where ® denotes elements 2 through n

To 1dentify the effect of &1 on Y+ we need only 1dentify the first column
of H.

And, 1f H; 1s known (‘1dentified’) and H 1s invertible, then 1t turns out &i;
can be 're-constructed' from 7; (up to scale) — Algebra 1n paper.

18



1 H.
Y, =AY+ [‘[21 1
i H31 H32

Timing restriction example: Y; =AY, +

Identification of H;

H

13

H

23

1

1t

g2t

3t

& = ni, and Hj 1s 1dentified by regressing 7; onto 7.

Similar for other timing restrictions, long-run restrictions, etc.

1t

821‘

3t
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Other populator identification schemes
(1) Heteroskedasticity
(2) Sign Restrictions

(3) External Instruments ('Proxy variables')
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Identification by Heteroskedasticity (Rigobon (2003), Rigobon and Sack (2003,2004))

Idea: = and X = X =HX H'and X =HX H'
Order condition (counting):

Number of equations (unique elements in £ and X ): n(n+1) = n’+n
Number of unknowns: (H, X and X%): (n’>-n) +2n=n’+n.

Note: 'rank condition' .. relative variances of & must change to get
independent information on elements of H.

Potentially powerful tool.

Generalizes to time-varying conditional heteroskedasticity.
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2 nn nn
_hgl :i;z A112
mm mm

Denominator; 2° -3 —(22 -3 )+Sampling EI‘ror(i2 -3 )

nm, nm, \ " nm nm, nm, nm,

Estimator will have poor sampling properties when denominator is noisy:

Sampling Error(ﬁf7 - 3! )is big relative to (22 -3 ) .

mm mmn, mm

Or, (1) when change 1n variance i1s small or one or both of the samples 1s
small.
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Inequality (Sign) Restrictions (Faust (1998), Uhlig (2005))

Typical identifying restrictions: RH =r» where R and r are pre-specified

are can be computed from the data. (Or RH; =, when focused on a single
shock.)

Inequality Restrictions: RH > 7.

This 'set 1dentified' the impulse responses.

Determining the 1dentified set. A computational method using .. =1
normalization.

>n=HXH' =HH' so H is a matrix square root of £, =

H= X C where X " is any particular matrix square root (e.g., the

Cholesky factor) and C 1s an orthonormal matrix (so CC' =1).
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(1) Compute X~
(2) For a particular value of C, compute H= X °C.
(3) Check to see if RH > r. If so, keep H. If not discard H.

(4) Repeat step 2 for all possible values of C.

(5) The resulting values of H from (3) are the set of values of H that are
1dentified by the inequality restriction.
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Inference in a "set 1identified" model

Easy example: Suppose #1s a parameter of interest. You know that & 1s
restricted to lie between w4 and py. Thatis . < 60 < .

You have an 1.1.d. sample of data on (X;, Y;) where:

( )
X, N H, ,(10)

Y 0 1
l \”U Y,

and you want to conduct inference about 6. What should you do?
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Frequentist: Data give you information about ¢4 and uy. Estimate these
bounds. That's 1t.

Bayes: Priors on w4, py and 6. Form posterior. Data tells you about 4,
Uy, but nothing more about &. Likelihood 1s flat for all values of &
between 14 and uy. In large samples posterior for #1s the prior, but
truncated at g4 and .

Bayes and frequentist inference couldn't be more different here. For

example, a 95% Bayes posterior credible set for #has a frequentist
coverage of 0% or 100%. (The Bayes 95% set 1s a 0% or 100%
confidence set.)
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What should you do:

(1) Estimate the 1dentified set. (Estimate 4 and uy 1n the example.
Sampling uncertainty 1s over the boundary of this set.)

(2) Do Bayes analysis. Prior is critical. In large samples the prior is the
posterior. Think carefully about prior.

What you shouldn't do.

(3) Do Bayes analysis without careful thought about prior.

28



Back to Sign-restricted VARs: Baumeister and Hamilton (2015, 2017).
SV AR (one lag for notationaly convenience):
Yi=AY 1+ n =AY +Hg or
BoY;=BiYr1+ &
with Bo = H! and B, = H!A.
Baumeister-Hamilton, use normalization with 1's on diagonal of By

(= H'). They advocate using informative priors about off-diagonal
elements of By, loose priors on B and variances of & + sign restrictions.
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Alternative (originally used on Uhlig(2005) and many others)
(1) Compute X~
(2) For a particular value of C, compute H= X °C.

(3) Check to see if RH > r. If so, keep H. If not discard H.

(4) Repeat step 2 for all possible values of C.

(5) Fheresulting values ot Hirom are-the-set-ot-vatgyesot H-that-are
tdentified-by-the-mequalityrestrietton— Use the values from (3) as the
posterior.

This amounts to having a flat prior on C ('Harr' prior on columns of
orthonormal matrix).
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What 1s a flat prior on C?

2-dimensional problem: C = { cosf —sinf

sin@ cos@

H= x"°C,soBy=H'!= C'S" Write B =
n nm 0

Yi:= —b12Y2 + lags + &1

Yo = —bu Y1, + lags + &

} with 6~ U(0,27)

1 b

12

b 1

21

, SO that
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Implied prior for bi2... 5 = =09
-09 1
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Prior on C 1s flat and does not depend on X,
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Bottom line: With sign-restricted SVARs, data cannot completely pin
down the effects of & on Y.

Frequentist: Determine what the data can say about this.

Bayesian: Add judgement (prior) + data to make probabilistic statements
about the effects. Prior matters.
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Identification of H: (3) External Instruments ('Proxy variables')
(Discussion follows Stock-Watson (2018) Economic Journal paper)

Step back for a moment and consider general problem of estimating
Dynamic causal effects and IRFs

Yi=Dog+Dig1+...=DL)&

/N

ny Neg
(Note: Do = H 1n our discussion above.)

DO NOT ASSUME INVERTIBILITY (yet)
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Estimating dynamic causal effects in macroeconomics

Standard Approach:
e Estimate VAR for Y
e Assume "invertibility" to relate & to VAR forecast errors.
e Impose some restrictions on H for identification

Alternative Approach:
e Find an "external" instrument Z that captures some exogenous
variation in one of the structural shocks.
e Use instrument (with or without VAR step) to estimate dynamic
causal effects.
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Some references on external instruments

VARs: Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013
2014), Gertler and Karadi (2015), Caldera and Kamps (2017), Montiel
Olea, Stock and Watson (2012), Lumsford (2015), Jentsch and Lunsford
(2016), Drautzburg(2017), Carriero, Momtaz, Theodoridis and
Theophilopoulou (2015), ...

Local-projections: Jorda, Schularick, and Taylor (2015), Ramey and
Zubairy (2017), Ramey (2016), Mertens (2015), Fieldhouse, Mertens,
Ravn (2017) ...

b
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A Running Empirical Example: Gertler-Karadi (2015)
o Y,=[R: 100xAlIn(IP), 100xAln(CPI), EBP ]
e Monetary policy shock = &,
e Causal Effects: E(Yisn | €1,,=1) —E(Yistn | £1,:=0) = On,
e Kuttner (2001)-like instrument, Z; = change in Federal Funds rate

futures 1in short window around FOMC announcements.
o Z:correlated with &, but uncorrelated with

82:718 f (82,1"83,t" . "gng ,t)'
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Direct estimation of Dy, i1

Yi=Dog+Dig-1+...=DL)&

Yiren = Dupit &1+ uy (LP)

Uy = {gfrh, e A an 82:n8,t’ Et—1y o }

{x}: linear combinations of elements of x
E(gl,t Mt) =0

But &1, 1s not observed
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IV estimation of Dy i

Yieen=Dnin&s+ {&hy ..., &1, 82,’1 o Ei-l, . }

e

Yi;=Doné&,+ {82%8,1, E-1y un § = &4 T {82:n8,t’ Er—1, - ..

(unit-effect normalization Dg,11 = 1)

Yz‘,t+h — Dh,51Y1,t‘|' {€t+h, coe o Ettl, 82% £ Et—1y ... }
Ny,

Condition LP-1V:
(1) E(gl,tZt) a4 = 0
(11) E(gzzn t Z/)=0

(iii) E(g+ Z') = 0 for j # 0
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Odds and ends
e HAR SEs
e Dyn. Causal Effects for levels vs. differences

e Weak-instrument robust inference

e "News" Shocks
oreplace Do,11 = 1 normalization with Dy 11 = 1 normalization

e Smoothness constraints (Barnichon &Brownlees, Plagborg-
Moller, ...)

e &i; (or 1ts variance) 1s not 1dentified. (see Plagborg-Mgller-
Wolf for bounds).
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Results for [R and 100xIn(/P)]

(1990m1 -2012:m6)

lag (h) (a)
R 0 1.00 (0.00)
6 -0.07 (1.34)
12 -1.05 (2.51)
24 -2.09 (5.60)
IP 0 -0.59 (0.71)
6 -2.15 (3.42)
12 -3.60 (6.23)
24 -2.99 (10.21)
Controls none
First-stage F 1.7
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Results for [R and 100 xIn(/P)]
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Results for [R and 100 xIn(/P)]

(1990m1 -2012:m6)

lag (h) (a)
R 0 1.00 (0.00)
6 -0.07 (1.34)
12 -1.05 (2.51)
24 -2.09 (5.66)
IP 0 -0.59 (0.71)
6 -2.15 (3.42)
12 -3.60 (6.23)
24 -2.99 (10.21)
Controls none
First-stage F 1.7
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IV Estimation of D;,» with additional controls -1

Yitsn=Dni Y1+ {8t+h, cee 8t+1,82_n it Et—-1y .. }

&

2 Motivations for adding controls:

(1) eliminate part of error term

e controls should be uncorrelated with &i.

o Examples: lags of Z, Y, other macro variables, 'factors,' etc.,
leads of Z.

(2) Z; may be correlated with error, but uncorrelated after adding controls
(a) Example: GK-Z = {AFFF;,, AFFF;_1}. Add lags of FFF..
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IV Estimation of D;,;; with additional controls - 2

Yi,t+h — Dh,ilYl,t + 7/VVt + Uy

X" =x, —Proj(x:| W)

4

Condition LP-IV+

i E [elftzf') =o' #0
(i) E [ej JZf') =0
(iii) E [ejﬂzf') =0 forj #0.




Results for [R and 100 xIn(ZP)]

Yirrn=Dpin Y1, + 7/VVt + {€t+h, cee 5 Gt £, 2 &t-1, ... }

lag (h) (a) (b) (c)
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57)
12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07)
24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48)
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55)
6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65)
12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49)
24 -2.99 (10.21) | -9.51 (7.70) -8.13 (7.62)

Controls none 4 lags of 4 lags of

(z,y) (z,y,factors)

First-stage F 1.7 23.7 18.6
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Results for [R and 100 xIn(ZP)]

Yiren=DpiY1,+ 7/VVt + {€t+h, coe s Ettl, Ez:n 2 Et—1y on }
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Results for [R and 100 xIn(ZP)]

Yirn = DpinY1,+ Q/VV}‘|‘ {€t+h, cee s G, 82:}1 2 Et—1y «nn }
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SVARSs with External Instruments - 1
VAR: V=AY +AYr + ...+ 1
Structural MA: Y;=Hg+Di g1+ ... =D(L)&

(Do = H in notation above)

Invertibility: & = Proj(&|Y:, Ye1, ...)

=

17: = H& with H nonsingular (so n, = ny)
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SVARSs with External Instruments - 2
AL)Y:= vi=Dog
= Y;=C(L)Hg with C(L)=A(L)"!
thus Dy = CHa

Unit-effect normalization yields: 7;.=Han+ {€, }

8)

Condition SVAR-1V
(1) E(El,zZt) = = 0

(i) E(,, ,Z)=0
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SVAR with external instruments — estimation

1. Regress Y;; onto Y1, using instruments Z; and p lags of Y; as controls.
This yields H_ .

2. Estimate a VAR(p) and invert the VAR to obtain C (L)= IZI(L)_1 .

3. Estimate the dynamic causal effects of shock 1 on the vector of
variables as

Dh,l =C,H,

(odds and ends: (1) News shocks; (2) Dif. sample periods in (1) and (2))
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SVAR with external instruments — inference

e Strong istruments:

( A

JT

# Normal + o-method

A—A
H-H,
N )

e Weak instruments:

\/_(A A)% Normal.

O H H — 9y NonNormal.

e Use weak instrument robust methods. (Montiel Olea, Stock
and Watson (2018)).
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Results for [R and 100 xIn(/P)]

lag (h) LP-IV SVAR-IV
1990m1-2012mé6 IV: 1990m1-2012m6
VAR:1980m7-2012m6

R 0 1.00 (0.00) 1.00 (0.00)
6 1.12 (0.52) 0.89 (0.31)

12 0.78 (1.02) 0.78 (0.46)

24 -0.80 (1.53) 0.40 (0.49)

IP 0 0.21 (0.40) 0.16 (0.59)
6 -3.80 (3.14) -0.81 (1.19)

12 -6.70 (4.70) -1.87 (1.54)

24 -9.51 (7.70) -2.16 (1.65)
Controls 4 lags of (Z,Y) 12lags of Y
4 lags of Z

First-stage F 23.7 20.5
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Results for [R and 100 xIn(/P)]

lag (h) LP-IV SVAR-IV
1990m1-2012mé6 IV: 1990m1-2012m6
VAR:1980m7-2012m6
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6 1.12 (0.52) 0.89 (0.31)
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SDFM
SV AR analysis, but now using DFM
SV AR problems that the DFM might solve:
(a) Many variable, thus invertibility 1s more plausible.

(b) Errors-in-variables, several indicators for same theoretical
concept (‘aggregate prices','o1l prices', etc.)

(¢c) Framework for computing IRFs from structural shocks to many
variables.
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Can't I just do a VAR? .. No

Table 5 Approximating the eight-factor DFM by a eight-variable VAR
Canonical correlation

1 2 3 4 5 6 7 8

(A) Innovations

VAR-A 0.76 0.64 0.6 0.49

VAR-B 0.83 0.67 0.59 0.56 0.37 0.33 0.18 0.01
VAR-C 0.86 0.81 0.78 0.76 0.73 0.58 0.43 0.35
VAR-O 0.83 0.80 0.69 0.56 0.50 0.26 0.16 0.02

(B) Variables and factors

VAR-A 0.97 0.85 0.79 0.57

VAR-B 0.97 0.95 0.89 0.83 0.61 0.43 0.26 0.10
VAR-C 0.98 0.93 0.90 0.87 0.79 0.78 0.57 0.41
VAR-O 0.98 0.96 0.88 0.84 0.72 0.39 0.18 0.02

Notes: All VARSs contain four lags of all variables. The canonical correlations in panel A are between the VAR residuals and
the residuals of a VAR estimated for the eight static factors.

VAR-A was chosen to be typical of four-variable VARSs seen in empirical applications. Variables: GDP, total employment,
PCE inflation, and Fed funds rate.

VAR-B was chosen to be typical of eight-variable VARSs seen in empirical applications. Variables: GDP, total employ-
ment, PCE inflation, Fed funds, ISM manufacturing index, real oil prices (PPI-oil), corporate paper-90-day treasury
spread, and 10 year—3 month treasury spread.

VAR-C variables were chosen by stepwise maximization of the canonical correlations between the VAR innovations and
the static factor innovations. Variables: industrial commodities PPI, stock returns (SP500), unit labor cost (NFB), exchange
rates, industrial production, Fed funds, labor compensation per hour (business), and total employment (private).

VAR -O variables: real oil prices (PPI-oil), global oil production, global commodity shipment index, GDP, total employ-
ment (private), PCE inflation, Fed funds rate, and trade-weighted US exchange rate index.

Entries are canonical correlations between (A) factor innovations and VAR residuals and (B) factors and observable
variables.
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The SDFM:

nxl nxr rxl  nx1
X =AF+e
rXr rx1 rxq gxl1

O(L)F,=Gn,

where ®(L)=1-®L—-... - ®,L7,

gx1 gxq gx1

n =H ¢,
X/ = A(D(L)_IGH& + e
IRFs: AD(L)'GH

IRF from &: A®(L)Y'GH,
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Three Normalizations

1. AF,= APP'F, for any matrix P. Set P rows of A equal to rows of
1dentity matrix. Rearranging the order of the Xs this yields

/X\/]\

L.r r

= F +e

t t

\ Xr+1:n )t \ Ar+1:n )
This 'names' the first factor as the X factor, the second factor as the X>

factor and so forth. Example: Xi, 1s the logarithm of o1l prices, then F s 1s
called the o1l price factor.
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2.G=1(0fg=r)orGiy=1,1f g <vr.

Recall

X:= ALY+ e and AL)fi = 1,

,
X, =(, 4 - A,)
\
06 0,
| 1o 0
_ | 1 U

) )

Ji

+e

j[t—k )

( A
Ji

Jis

\ ft—k—l Y,

where f; and 7; are g % 1.
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3. The diagonal elements of H are unity. That 1s, &i; has a unit effect of
and so forth. Same as in SVAR.

Putting these together:
Xi.q:=Hg + lags of & + e

(Same normalization used in SVAR, but only applied to the first g
clements of X;).

Fi.q:= Hg + lags of &
etc.

This means that everything in SVARSs carry over here.
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Additional flexibility in SDFM

(1) Measurement error allowed: With normalization, F' follows SVAR,
and X=AF+e.
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(2) Multiple measurements: Example Oil prices
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Fig. 7 Real oil price (2009 dollars) and its quarterly percent change.
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(3) "Factor Augmented" VAR ) (FAVAR) (Bernanke, Boivin, Eliasz (2005))

Easily implemented in this framework:
(K ] 10, F, ( 0 ]
= r +
Xt A E‘ €

where
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Example: Macroeconomic Effects of O1l Supply Shocks

2 Identifications:

(1) O1l Price exogenous

PPI-0il
t

SVAR, FAVAR and SDFM versions

F oilprice
t

F.

2.t

F,
F

8.t

PPI—oil
et

Brent
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(2) Killian (2009) Identification

(10 0 0 &»)
H,, 1 0 0 thD
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Some Results

Table 6 Fraction of the variance explained by the eight factors at horizons
h=1 and h=6 for selected variables: 1985:Q1-2014:Q4

Variable h=1 h=6
GDP 0.60 0.80
Consumption 0.37 0.76
Fixed investment 0.38 0.76
Employment (non-ag) 0.56 0.94
Unemployment rate 0.44 0.90
PCE inflation 0.70 0.63
PCE inflation—core 0.10 0.34
Fed funds rate 0.48 0.71
Real o1l price 0.74 0.78
Oil production 0.06 0.27
Global commodity shipment index 0.39 0.51
R eal gasoline price 0.72 0.80




O1l Price Exogenous

Oil prices Oil production

Fixed investment

-0.02

-4 -0.04
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Fig. 8 Structural IRFs from the SDFM (blue (dark gray in the print version) solid with 1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to an oil price shock: “oil prices exogenous” identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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Killian 1dentification IRFs (see paper)
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Variance Explained:

Table 7 Forecast error variance decompositions for six periods ahead forecasts of selected variables:
FAVARs and SDFMs
B. Kilian (2009) identification

A. Oil price Global QOil spec.

exogenous Oil supply demand demand
Variable F D F D(O) F D(U) F D(V)
GDP 0.07 0.07 0.04 0.01 0.02 0.04 0.09 0.04
Consumption 0.19 0.22 0.09 0.08 0.02 0.22 0.11 0.01
Fixed investment 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.01
Employment (non-ag) 0.03 0.02 0.04 0.01 0.02 0.01 0.03 0.01
Unemployment rate 0.04 0.03 0.04 0.03 0.02 0.03 0.04 0.01
PCE inflation 0.28 0.40 0.02 0.04 0.09 0.16 0.17 0.29
PCE inflation—core 0.05 0.04 0.01 0.02 0.03 0.05 0.02 0.02
Fed funds rate 0.02 0.04 0.00 0.01 0.05 0.11 0.03 0.02
Real o1l price 0.81 0.53 0.14 0.10 0.22 0.44 0.42 0.09
Oi1l production 0.03 0.01 0.75 0.78 0.07 0.02 0.03 0.01
Global commodity 0.11 0.23 0.05 0.07 0.79 0.33 0.03 0.02
shipment index
Real gasoline price 0.61 0.48 0.05 0.06 0.25 0.43 0.34 0.08

Notes: Entries are the fractions of the six periods ahead forecast error of the row variable explained by the column shock,
for the “oil price exogenous” identification results (columns A) and the Kilian identification scheme (columns B). For each
shock, “F” refers to the FAVAR treatment in which the factor is treated as observed and “D” refers to the SDFM treat-
ment. In the hybrid SDFM using the Kilian (2009) identification scheme, the oil supply factor is treated as observed (the oil
production variable) (ID(O)) while the global demand and oil-specific demand factors are treated as unobserved (D (U)).
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