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DFM:   

 
Xt = L Ft + ut 

 
F(L)Ft =  Ght 

 
Question: Identify "structural" shocks in ht and their effects on {Xt} 

 
And how is this related to the analogous question in VARs 

 
 
 
 

Start with discussion of VAR and then return to DFM 
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SVAR 
 

Yt is an n×1 vector of observables  (n typically 'small') 
 
VAR dynamics:  E(Yt | lags of Yt) = A1Yt-1 + … + ApYt-p. 
 
 
so that  Yt = A1Yt-1 + … + ApYt-p + ht  or A(L)Yt = ht. 
   
ht = 1-period ahead forecast error. (Note change of notation from DFM.) 
 
No constant term for notational convenience. 
 
VMA representation: 
 
  Yt = C(L)-1ht  where C(L) = A(L)-1 
 
Note: C(L) = C0 + C1L + C2L2 + …  and C0 = I 
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SVAR  (Sims (1980)):  Why do we make forecast errors? 
 

ht = Het  where et are 'structural' shocks. (Shocks interpretable in the 
context of particular theoretical economic models). 
 
Yt = C(L)ht = C(L)Het = D(L)et  is structural MA 
 
and with B(L) = H-1A(L) 
 
B(L)Yt = et is SVAR  
 
From SMA:  Yt = D0et + D1et-1 + …   with Dk = CkH 
 

Note:  = Dk,ij.    (These are "impulse responses" or "dynamic causal 

effects" or 'dynamic multipliers' … ) 
 
 

∂Yi,t+k
∂ε jt
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Issues:  
 

1. E(Yt | lags if Yt) = A1Yt-1 + … + ApYt-p. Reasonable? 
 

2. C(L) = A(L)-1; when is this a well-defined one-sided inverse? 
 

3. Estimation of A(L) and C(L).  When do usual large-sample linear 
properties obtain? 
  

4. ht = Het with H non-singular. Reasonable? 
 

5. Identification of H. 
 

6. Properties of  . Ĉk Ĥ
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Issues:  
 

1. E(Yt | lags if Yt) = A1Yt-1 + … + ApYt-p. Reasonable? 
 

2. C(L) = A(L)-1; when is this a well-defined one-sided inverse? 
 

3. Estimation of A(L) and C(L).  When do usual large-sample linear 
properties obtain. 

 
"Hayashi":   Roots of A(L) outside unit circle (difference equation is 
stable). ht are MDS with appropriate moments.  
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Issue: ht = Het with H non-singular. Reasonable? 
 

 
In some cases NO: 
 
Non-invertibility:  Static problem H is nY × ne.  What if ne > nY ? 
 
Dynamics:   
 
Invertibility (required here): Can I determine et from current and lagged Y. 
 
'Recoverability' (Chahrour and Jurado (2017), Plagbor-Moller and Wolf (2018)): Can I 
determine et from current, lagged and future Y. 
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Simplist example: 
 

Yt = et - qet-1 
 

  (so invertible when |q | < 1). 

 
Also 

 

 

 
(so recoverable as long as |q | ≠ 1) 

ε t = θ jYt− j
j=0

t−1

∑ +θ tε0

ε t = −θ −1 θ − jYt+ j
j=1

T−1

∑ +θ −TεT
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More complicated example:  
(Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007)) 

 
yt+1 = Cxt + Dwt+1 

 
xt+1 = Axt + Bwt+1 

 
 
Invertibilty:  eigenvalues of (A - BD-1C) are less than 1 in modulus. 
 
 
(Recoverability): When is   ?  (Exercise) 

 

var wt | yt+ j{ }
j=−∞

∞⎛
⎝

⎞
⎠ = 0
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Issue 5: Identification of H 
 

h = He  ⇒ Shh = HSeeH'   
 

Shh estimable from data, so question is whether their a unique solution for 
H and See  from Shh = HSeeH'. 
 
'Order condition' .. count equations and unknowns. 
 
• n(n+1)/2 elements in Shh  (number of equations) 

 
• n2 + n(n+1)/2 in H and See (number of unknowns) .. n2 too many 

parameters 
 
o Uncorrelated Structural Shocks:  Restrict See to be diagonal: n2 + n 

unknowns .. n(n+1)/2 too many parameters. 
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o Scale normalization 

 
scalar model:  ht = Het   ('units' of et are not identified) 
 
2 normalizations:  (1) se = 1 

 
     (2) H = 1    (or H-1 = 1) 
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Standard deviation normalization: Gertler Karadi (2015) – IRF or 
Monetary Policy Shock 
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We begin with the external instruments case. As noted earlier, we use the three 
month ahead funds rate future surprise FF4 to identify monetary policy shock. As a 
check to ensure that this instrument is valid, we report the F-statistic from the first 
stage regression of the one-year bond rate residual on FF4. We find an F-value of 21 
and half. We also compute a robust F-statistic (which allows for heteroskedasticity) 
of 17.5. Both values are safely above the threshold suggested by Stock et al. (2002) 
to rule out a reasonable likelihood of a weak instruments problem.

As the top left panel shows, a one standard deviation surprise monetary tight-
ening induces a roughly 25 basis point increase in the one-year government bond 
rate. Consistent with conventional theory, there is a significant decline in industrial 
production that reaches a trough roughly a year and a half after the shock. Similarly 
consistent with standard theory, there is a small decline in the consumer price index 
that is not statistically significant. Note that in contrast to the Cholesky identifica-
tion, we do not impose zero restrictions on the contemporaneous responses of output 
and inflation. The identification of the monetary policy shock is entirely due to the 
external instrument.

 regression is incorporated in the reported confidence bands, because both stages of the estimation are included in 
the bootstrapping procedure. Thereby, we avoid any potential “generated regressor” problem. 
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 F: 21.55; Robust F: 17.64; R 

2: 7.76 percent; Adjusted R 
2: 7.40 percent

External instruments Cholesky

Figure 1. One-Year Rate Shock with Excess Bond Premium
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Scale normalization does not matter in population.   
 
It will matter for inference.   
 
Moving from one normalization to another involves dividing by 

 or . 
 
We will use normalization on elements of H.   
 
• e.g., Diagonal elements of H are unity 

 
• Alternatives: 

o See = I 
o Diagonal elements of H-1  = I.  (Scale normalization used in 

classical simultaneous equations literature.) 
 

Ĥ σ̂ ε
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Back to counting: with scale normalization the model needs only n(n-1)/2 
additional restrictions.  
 
Example: VAR(1) with  n = 3 
 
 

Yt = AYt-1 +   

 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



 16 

 

Yt = AYt-1 +   

 
 

Timing restriction example:  Yt = AYt-1 +   

 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0
H21 1 0

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Long-run restriction example: 
 
Arithmetic:  Let D = A(L)-1H and let Zt = (1-L)-1Yt  then 
 

  = Dij. 

 
Restrict H so that Dij has n(n-1)/2 zeros. 
 
 
And so forth. 
 
 

limk→∞

∂Zi,t+k
∂ε j ,t
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Identification of one shock, say e1t and its effect on Yt+k 
 

Recall: Yt = C(L)ht = C(L)Het with C(L) = A(L)-1 
 

Thus  
 

Yt = C(L)  = C(L)H1e1t + distributed lag of   

 
where 	denotes elements 2 through n  
 
 
To identify the effect of e1 on Yt+k we need only identify the first column 
of H. 
 
And, if H1 is known ('identified') and H is invertible, then it turns out e1t 
can be 're-constructed' from ht (up to scale) – Algebra in paper. 

H1  H•⎡⎣ ⎤⎦
ε1t
ε•,t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ε•t

•
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Identification of H1 

 

Yt = AYt-1 +   

 

Timing restriction example:  Yt = AYt-1 +   

 
e1 = h1, and H1 is identified by regressing ht onto h1,t. 
 
Similar for other timing restrictions, long-run restrictions, etc. 

1 H12 H13
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0
H21 1 H23

H31 H32 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε1t
ε2t
ε3t

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Other populator identification schemes 
 
(1) Heteroskedasticity 
 
(2) Sign Restrictions 
 
(3) External Instruments ('Proxy variables') 
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Identification by Heteroskedasticity (Rigobon (2003), Rigobon and Sack (2003,2004)) 
 
 
Idea:    and  ⇒   and  
 
Order condition (counting): 
 
Number of equations (unique elements in  and ): n(n+1) = n2 + n 
 
Number of unknowns: (H,  and ): (n2-n) + 2n = n2 + n. 
 
Note: 'rank condition' .. relative variances of et must change to get 
independent information on elements of H. 
 
Potentially powerful tool. 
 
Generalizes to time-varying conditional heteroskedasticity. 

Σεε
1 Σεε

2 Σηη
1 = HΣεε

1 H ' Σηη
2 = HΣεε

2 H '

Σηη
1 Σηη

2

Σεε
1 Σεε

2
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Example: 
 

,   j = 1, 2. 

 
 

Algebra ⇒               

 
 

 

Estimator:                 

 
 

 

Ση1η1
j Ση1η2

j

Ση2η1
j Ση2η2

j

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

1 H12
H21 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

σε1, j
2 0

0 σε2
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 H21

H12 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 1 2

1 1 1 1

2 1

21 2 1H hh hh

hh hh

S -S
=
S -S

Ĥ21 =
Σ̂η1η2
2 − Σ̂η1η2

1

Σ̂η1η1
2 − Σ̂η1η1

1
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Denominator:   
 
 
Estimator will have poor sampling properties when denominator is noisy: 
 

 is big relative to   . 
 
Or, (1) when change in variance is small or one or both of the samples is 
small. 
 

Ĥ21 =
Σ̂η1η2
2 − Σ̂η1η2

1

Σ̂η1η1
2 − Σ̂η1η1

1

Σ̂η1η1

2 − Σ̂η1η1

1 = Ση1η1

2 − Ση1η1

1( )+Sampling Error Σ̂η1η1

2 − Σ̂η1η1

1( )

Sampling Error Σ̂η1η1

2 − Σ̂η1η1

1( ) Ση1η1
2 − Ση1η1

1( )
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Inequality (Sign) Restrictions (Faust (1998), Uhlig (2005)) 
 

 
Typical identifying restrictions:  RH = r  where R and r are pre-specified 
are can be computed from the data. (Or RH1 = r, when focused on a single 
shock.) 
 
Inequality Restrictions: RH ≥  r. 
 
This 'set identified' the impulse responses. 
 
Determining the identified set.  A computational method using See = I 
normalization. 
 
Shh = HSeeH' = HH', so H is a matrix square root of Shh    ⇒ 
 
H =  where  is any particular matrix square root (e.g., the 
Cholesky factor) and C is an orthonormal matrix (so CC' = I). 

Σηη
1/2C Σηη

1/2
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(1) Compute   
 
(2) For a particular value of C, compute H = .  
 
(3) Check to see if RH ≥ r.  If so, keep H. If not discard H. 
 
(4) Repeat step 2 for all possible values of C.   
 
(5) The resulting values of H from (3) are the set of values of H that are 
identified by the inequality restriction. 
 

Σηη
1/2

Σηη
1/2C



 26 

Inference in a "set identified" model 
 
Easy example:  Suppose q is a parameter of interest.  You know that q  is 
restricted to lie between µL and µU.  That is  µL ≤ q  ≤ µU. 
 
You have an i.i.d. sample of data on (Xi, Yi) where: 
 

  

 
 
and you want to conduct inference about q.  What should you do? 
 

Xi
Yi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
~ N

µL
µU

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
, 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Frequentist:  Data give you information about µL and µU.  Estimate these 
bounds.  That's it. 
 
 
Bayes:  Priors on µL, µU and q.  Form posterior.  Data tells you about µL, 
µU, but nothing more about q.  Likelihood is flat for all values of q 
between µL and µU.  In large samples posterior for q is the prior, but 
truncated at µL and µU. 
 
 
Bayes and frequentist inference couldn't be more different here. For 
example, a 95% Bayes posterior credible set for q has a frequentist 
coverage of 0% or 100%.  (The Bayes 95% set is a 0% or 100% 
confidence set.) 
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What should you do: 
 
(1) Estimate the identified set.  (Estimate µL and µU in the example.  
Sampling uncertainty is over the boundary of this set.) 
 
(2) Do Bayes analysis.  Prior is critical. In large samples the prior is the 
posterior. Think carefully about prior. 
 
 
What you shouldn't do. 
 
(3) Do Bayes analysis without careful thought about prior. 
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Back to Sign-restricted VARs: Baumeister and Hamilton (2015, 2017). 
 
SVAR (one lag for notationaly convenience): 
 
Yt = AYt-1 + ht = AYt-1 + Het   or   
 

B0Yt = B1Yt-1 + et 
 
with B0 = H-1 and B1 = H-1A. 
 
Baumeister-Hamilton, use normalization with 1's on diagonal of B0  
(= H-1). They advocate using informative priors about off-diagonal 
elements of B0, loose priors on B1 and variances of et + sign restrictions. 
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Alternative (originally used on Uhlig(2005) and many others) 
 
(1) Compute   
 
(2) For a particular value of C, compute H = .  
 
(3) Check to see if RH ≥ r.  If so, keep H. If not discard H. 
 
(4) Repeat step 2 for all possible values of C.   
 
(5) The resulting values of H from (3) are the set of values of H that are 
identified by the inequality restriction.  Use the values from (3) as the 
posterior. 
 
This amounts to having a flat prior on C ('Harr' prior on columns of 
orthonormal matrix). 
 
 

Σηη
1/2

Σηη
1/2C
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What is a flat prior on C? 
 

2-dimensional problem:   with q ~ U(0,2p) 

 
 

H =  , so B0 = H-1 = .  Write  , so that  

 

Y1t = −b12Y2t + lags + e1t 
 

Y2t = −b21Y1t + lags + e2t 
 

 
 
 
 

C = cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

Σηη
1/2C C−1Σηη

−1/2 B0 =
1 b12
b21 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Prior on C is 'flat'. What is implied prior on b12 ? 

 

Implied prior for b12 …  

 

Σηη =
1 0.9
0.9 1

⎡

⎣
⎢

⎤

⎦
⎥
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Implied prior for b12 …  

 

 
 
 
Prior on C  is flat and does not depend on Shh. 
 
Implied Prior on b12 is not flat, not symmetric, and depends on Shh. 

Σηη =
1 −0.9

−0.9 1
⎡

⎣
⎢

⎤

⎦
⎥
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Bottom line:  With sign-restricted SVARs, data cannot completely pin 
down the effects of et on Yt+k.   
 
Frequentist:  Determine what the data can say about this. 
 
Bayesian:  Add judgement (prior) + data to make probabilistic statements 
about the effects.  Prior matters.   
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Identification of H: (3) External Instruments ('Proxy variables') 
(Discussion follows Stock-Watson (2018) Economic Journal paper) 

 
 

Step back for a moment and consider general problem of estimating 
Dynamic causal effects and IRFs 
 
 
                     Yt = D0 et + D1 et -1 + … = D(L)et 
 
                         nY                    ne 
 
 
(Note: D0 = H in our discussion above.) 
 
 
DO NOT ASSUME INVERTIBILITY  (yet) 
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Estimating dynamic causal effects in macroeconomics 
 
Standard Approach:   

• Estimate VAR for Y 
• Assume "invertibility" to relate et to VAR forecast errors. 
• Impose some restrictions on H for identification 

 
Alternative Approach:  

• Find an "external" instrument Z that captures some exogenous 
variation in one of the structural shocks. 

• Use instrument (with or without VAR step) to estimate dynamic 
causal effects. 
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Some references on external instruments 
 

 
VARs: Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013, 
2014), Gertler and Karadi (2015), Caldera and Kamps (2017), Montiel 
Olea, Stock and Watson (2012), Lumsford (2015), Jentsch and Lunsford 
(2016), Drautzburg(2017), Carriero, Momtaz, Theodoridis and 
Theophilopoulou (2015),  …  
 
 
Local-projections: Jordà, Schularick, and Taylor (2015), Ramey and 
Zubairy (2017), Ramey (2016), Mertens (2015), Fieldhouse, Mertens, 
Ravn (2017) …  
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A Running Empirical Example: Gertler-Karadi (2015) 
 

• Yt = [ Rt, 100×Dln(IP), 100×Dln(CPI), EBP ] 
 
• Monetary policy shock = e1,t 

 
• Causal Effects: E(Yi,t+h | e1,t = 1) - E(Yi,t+h | e1,t = 0) = Qh,i 

 
• Kuttner (2001)-like instrument, Zt = change in Federal Funds rate 

futures in short window around FOMC announcements. 
o Zt correlated with e1,t but uncorrelated with 

.,t is 
   ε2:nε ,t = (ε2,t ,ε3,t ,…,εnε ,t )
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Direct estimation of Dh,i1 
 
 

Yt = D0 et + D1 et -1 + … = D(L)et 
 

Yi,t+h = Dh,i1 e1,t + ut          (LP) 
  

ut = {et+h, … , et+1, , et -1, … } 

{x}: linear combinations of elements of x  
 

E(e1,t ut) = 0 
 

But e1,t is not observed 

  ε2:nε ,t
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IV estimation of Dh,i1 
 

Yi,t+h = Dh,i1e1,t + {et+h, … , et+1, , et -1, … } 

 
Y1,t = D0,11e1,t + { , et -1, … } = e1,t + { , et -1, … } 

 
(unit-effect normalization D0,11 = 1) 

 
Yi,t+h = Dh,i1Y1,t + {et+h, … , et+1, , et -1, … } 

  
Condition LP-IV: 

(i) E(e1,t Zt) = a ≠ 0 
(ii) E(  Zt') = 0 

(iii) E(et+j Zt') = 0 for j ≠ 0 

  ε2:nε ,t

  ε2:nε ,t   ε2:nε ,t

  ε2:nε ,t

  ε2:nε ,t
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Odds and ends 
 
• HAR SEs 

 
• Dyn. Causal Effects for levels vs. differences 

 
• Weak-instrument robust inference 

 
• "News" Shocks  

o replace D0,11 = 1 normalization with Dk,11 = 1 normalization 
 

• Smoothness constraints (Barnichon &Brownlees, Plagborg-
Møller, …)  
 

• e1t (or its variance) is not identified.  (see Plagborg-Møller-
Wolf for bounds). 
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Results for [R and 100×ln(IP)] 
(1990m1 -2012:m6) 

 

 lag (h) (a) 
R 0 1.00 (0.00) 
 6 -0.07 (1.34) 
 12 -1.05 (2.51) 
 24 -2.09 (5.66) 
   
IP 0 -0.59 (0.71) 
 6 -2.15 (3.42) 
 12 -3.60 (6.23) 
 24 -2.99 (10.21) 
   
Controls  none 
First-stage F  1.7 
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Results for [R and 100 ×ln(IP)] 
(1990m1 -2012:m6) 

 

 lag (h) (a) 
R 0 1.00 (0.00) 
 6 -0.07 (1.34) 
 12 -1.05 (2.51) 
 24 -2.09 (5.66) 
   
IP 0 -0.59 (0.71) 
 6 -2.15 (3.42) 
 12 -3.60 (6.23) 
 24 -2.99 (10.21) 
   
Controls  none 
First-stage F  1.7 
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Results for [R and 100 ×ln(IP)] 
(1990m1 -2012:m6) 

 

 lag (h) (a) 
R 0 1.00 (0.00) 
 6 -0.07 (1.34) 
 12 -1.05 (2.51) 
 24 -2.09 (5.66) 
   
IP 0 -0.59 (0.71) 
 6 -2.15 (3.42) 
 12 -3.60 (6.23) 
 24 -2.99 (10.21) 
   
Controls  none 
First-stage F  1.7 
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IV Estimation of Dh,i2 with additional controls -1 
 

Yi,t+h = Dh,i1Y1,t + {et+h, … , et+1, , et -1, … } 

 
2 Motivations for adding controls: 

 
(1) eliminate part of error term 

• controls should be uncorrelated with e1,t. 
o Examples: lags of Z, Y, other macro variables, 'factors,' etc., 

leads of Z. 
 

(2) Zt may be correlated with error, but uncorrelated after adding controls 
(a) Example: GK-Z = {DFFFt, DFFFt -1}. Add lags of FFFt. 

  ε2:nε ,t
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IV Estimation of Dh,i1 with additional controls - 2 
 

Yi,t+h = Dh,i1Y1,t + g'Wt + ut  
 

  = xt  - Proj(xt | Wt) 
 

 
Condition LP-IV^  

(i)    

(ii)   

(iii)  for j ≠ 0.

 xt
⊥

  
E ε1,t

⊥ Zt
⊥′( ) = ′α ≠ 0

  
E ε2:nε ,t

⊥ Zt
⊥′( ) = 0

  
E ε t+ j

⊥ Zt
⊥′( ) = 0
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 

 
 lag (h) (a) (b) (c)  
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
 6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57) 
 12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07) 
 24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48) 
     
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55) 
 6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65) 
 12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49) 
 24 -2.99 (10.21) -9.51 (7.70) -8.13 (7.62) 
     
Controls  none 4 lags of  

(z,y) 
4 lags of 

(z,y,factors) 
First-stage F  1.7 23.7 18.6 

 

  ε2:nε ,t
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 

 
 lag (h) (a) (b) (c)  
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
 6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57) 
 12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07) 
 24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48) 
     
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55) 
 6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65) 
 12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49) 
 24 -2.99 (10.21) -9.51 (7.70) -8.13 (7.62) 
     
Controls  none 4 lags of  

(z,y) 
4 lags of  

(z,y,factors) 
First-stage F  1.7 23.7 18.6 

  ε2:nε ,t
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Results for [R and 100 ×ln(IP)] 
Yi,t+h = Dh,i1Y1,t + g'Wt + {et+h, … , et+1, , et -1, … } 

 
 lag (h) (a) (b) (c)  
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
 6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57) 
 12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07) 
 24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48) 
     
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55) 
 6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65) 
 12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49) 
 24 -2.99 (10.21) -9.51 (7.70) -8.13 (7.62) 
     
Controls  none 4 lags of  

(z,y) 
4 lags of  

(z,y,factors) 
First-stage F  1.7 23.7 18.6 

  ε2:nε ,t
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SVARs with External Instruments - 1 
 

VAR:  Yt = A1Yt-1 + A2Yt-2 + … + ht 
 

Structural MA: Yt = Het + D1 et -1 + … = D(L)et 
 

(D0 = H in notation above) 
 
 

Invertibility: et = Proj(et|Yt, Yt-1, … ) 
 
⇒ 
 

ht = Het  with H nonsingular (so ny = ne)  
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SVARs with External Instruments - 2   
 

A(L)Yt = nt = D0et  
 

⇒  Yt = C(L)Het  with  C(L)=A(L)-1 
 

thus Dh,i1 = ChHi1 
 

Unit-effect normalization yields:  hi,t = Hi1h1,t + { } 

 
Condition SVAR-IV  

(i) E(e1,tZt) = a ≠ 0 
(ii) E( Zt') = 0 

  ε2:nε ,t

  ε2:nε ,t
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SVAR with external instruments – estimation  
 

1. Regress Yi,t onto Y1,t using instruments Zt and p lags of Yt as controls. 
This yields  . 
 
2. Estimate a VAR(p) and invert the VAR to obtain  .  
 
3. Estimate the dynamic causal effects of shock 1 on the vector of 
variables as 
 

 
 

(odds and ends: (1) News shocks; (2) Dif. sample periods in (1) and (2)) 

Ĥi1

  Ĉ(L) = Â(L)−1

D̂h,1 = ĈhĤ1
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SVAR with external instruments – inference 
 

• Strong instruments:  
 

 Normal + d-method 

 
• Weak instruments:  

o  Normal.  

o  NonNormal.  
o Use weak-instrument robust methods. (Montiel Olea, Stock 

and Watson (2018)).   
 

T
Â− A
Ĥ1 − H1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d⎯ →⎯

  T ( Â− A) d⎯ →⎯
Ĥ1 − H1

d⎯ →⎯
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Results for [R and 100 ×ln(IP)] 
 

 lag (h) LP-IV 
1990m1-2012m6 

SVAR-IV 
IV: 1990m1-2012m6 

VAR:1980m7-2012m6 
R 0 1.00 (0.00) 1.00 (0.00) 
 6 1.12 (0.52) 0.89 (0.31) 
 12 0.78 (1.02) 0.78 (0.46) 
 24 -0.80 (1.53) 0.40 (0.49) 
    
IP 0 0.21 (0.40) 0.16 (0.59) 
 6 -3.80 (3.14) -0.81 (1.19) 
 12 -6.70 (4.70) -1.87 (1.54) 
 24 -9.51 (7.70) -2.16 (1.65) 
    
Controls  4 lags of (Z,Y) 

 
12 lags of Y 
4 lags of Z 

First-stage F  23.7 20.5 
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Results for [R and 100 ×ln(IP)] 

 lag (h) LP-IV 
1990m1-2012m6 

SVAR-IV 
IV: 1990m1-2012m6 

VAR:1980m7-2012m6 
R 0 1.00 (0.00) 1.00 (0.00) 
 6 1.12 (0.52) 0.89 (0.31) 
 12 0.78 (1.02) 0.78 (0.46) 
 24 -0.80 (1.53) 0.40 (0.49) 
    
IP 0 0.21 (0.40) 0.16 (0.59) 
 6 -3.80 (3.14) -0.81 (1.19) 
 12 -6.70 (4.70) -1.87 (1.54) 
 24 -9.51 (7.70) -2.16 (1.65) 
    
Controls  4 lags of (Z,Y) 

 
12 lags of Y 
4 lags of Z 

First-stage F  23.7 20.5 
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SDFM 
SVAR analysis, but now using DFM 

 
 

SVAR problems that the DFM might solve: 
 

(a) Many variable, thus invertibility is more plausible. 
 
(b) Errors-in-variables, several indicators for same theoretical 
concept ('aggregate prices','oil prices', etc.) 
 
(c) Framework for computing IRFs from structural shocks to many 
variables. 
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Can't I just do a VAR?  .. No 
 

 
additionally has the ISMmanufacturing index, the oil price PPI, the corporate paper-90-day

treasury spread, and the 3 month–10 year treasury term spread. The eight variables in the

thirdVAR(VAR-C)were selectedusing a stepwiseprocedure toproduceahigh fit between

VARresiduals andthe innovations in theeight static factors (ie, the residuals in theVARwith

the eight static factors).This procedure led to theVAR-Cvariablesbeing the indexof IP, real

personal consumption expenditures, government spending, thePPI for industrial commod-

ities, unit labor costs for business, the S&P500, the 6 month–3 month term spread, and a

trade-weighted index of exchange rates.kk The final VAR, VAR-O, is used for the SVAR

analysis of the effect of oil shocks in Section 7 and is discussed there.

Table 5 Approximating the eight-factor DFM by a eight-variable VAR
Canonical correlation

1 2 3 4 5 6 7 8

(A) Innovations

VAR-A 0.76 0.64 0.6 0.49
VAR-B 0.83 0.67 0.59 0.56 0.37 0.33 0.18 0.01
VAR-C 0.86 0.81 0.78 0.76 0.73 0.58 0.43 0.35
VAR-O 0.83 0.80 0.69 0.56 0.50 0.26 0.16 0.02

(B) Variables and factors

VAR-A 0.97 0.85 0.79 0.57
VAR-B 0.97 0.95 0.89 0.83 0.61 0.43 0.26 0.10
VAR-C 0.98 0.93 0.90 0.87 0.79 0.78 0.57 0.41
VAR-O 0.98 0.96 0.88 0.84 0.72 0.39 0.18 0.02

Notes:All VARs contain four lags of all variables. The canonical correlations in panel A are between the VAR residuals and
the residuals of a VAR estimated for the eight static factors.
VAR-Awas chosen to be typical of four-variable VARs seen in empirical applications. Variables: GDP, total employment,
PCE inflation, and Fed funds rate.
VAR-B was chosen to be typical of eight-variable VARs seen in empirical applications. Variables: GDP, total employ-
ment, PCE inflation, Fed funds, ISM manufacturing index, real oil prices (PPI-oil), corporate paper-90-day treasury
spread, and 10 year–3 month treasury spread.
VAR-C variables were chosen by stepwise maximization of the canonical correlations between the VAR innovations and
the static factor innovations. Variables: industrial commodities PPI, stock returns (SP500), unit labor cost (NFB), exchange
rates, industrial production, Fed funds, labor compensation per hour (business), and total employment (private).
VAR-O variables: real oil prices (PPI-oil), global oil production, global commodity shipment index, GDP, total employ-
ment (private), PCE inflation, Fed funds rate, and trade-weighted US exchange rate index.
Entries are canonical correlations between (A) factor innovations and VAR residuals and (B) factors and observable
variables.

kk The variables in VAR-C were chosen from the 207 variables so that the ith variable maximizes the ith
canonical correlation between the residuals from the i-variable VAR and the residuals from the eight-
factor VAR. In the first step, the variable yielding the highest canonical correlation between its autore-

gressive residual and the factor VAR residuals was chosen. In the second step, the variable that maximized
the second canonical correlation among all 206 two-variable VAR residuals (given the first VAR variable)
and the factor VAR residuals was chosen. These steps continued until eight variables were chosen.
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The SDFM: 
 

 

 

 
 

where F(L) = I – F1L – … – FpLp, 
 

 
 

Xt = ΛF(L)-1GHεt + et 
 

IRFs: ΛF(L)-1GH  
 

IRF from e1t: ΛF(L)-1GH1 

1 1 1n n r r n

t t tX F e
´ ´ ´ ´

= L +

Φ
r×r

(L)Ft
r×1

= G
r×q

ηt
q×1

1 1q q q q

t tHh e
´ ´ ´

=
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Three Normalizations 
 

1. LFt = LPP-1Ft for any matrix P.  Set P rows of L equal to rows of 
identity matrix.  Rearranging the order of the Xs this yields 
 

 

 
This 'names' the first factor as the X1 factor, the second factor as the X2 
factor and so forth.  Example:  X1,t is the logarithm of oil prices, then F1,t is 
called the oil price factor. 
 

X1:r
Xr+1:n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
t

=
Ir

Λr+1:n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Ft + et
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2. G = I (if q = r) or G1:q = Iq if q < r.     Recall 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

 
where ft and ht are q × 1. 

 

Xt = λ0  λ1  ! λk( )
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!
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3. The diagonal elements of H are unity. That is, e1t has a unit effect of F1,t 
and so forth.  Same as in SVAR. 
 
 
Putting these together: 
 
X1:q,t = Het + lags of et + et     
 
(Same normalization used in SVAR, but only applied to the first q 
elements of Xt). 
 
F1:q,t = Het + lags of et 
 
etc. 
 
This means that everything in SVARs carry over here. 
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Additional flexibility in SDFM 
 

(1) Measurement error allowed:  With normalization, F follows SVAR, 
and  X = LF + e. 
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(2) Multiple measurements:  Example Oil prices 

 

Real oil price (Brent) 

A

B

Quarterly percent change in real oil price: four oil price series and the common component  

Fig. 7 Real oil price (2009 dollars) and its quarterly percent change.
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(3) "Factor Augmented" VAR ) (FAVAR)  (Bernanke, Boivin, Eliasz (2005)) 
 
Easily implemented in this framework: 
 

 

 

 
 

where  

, 
 

               ηt = Hεt. 
 
 

 

Yt
Xt

⎛

⎝⎜
⎞

⎠⎟
=

1 01×r
Λ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

!Ft
Ft

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

0
et

⎛

⎝
⎜

⎞

⎠
⎟

Ft
+ = Φ(L)Ft−1

+ +Gηt

Ft
+ =

!Ft
Ft

⎛

⎝
⎜

⎞

⎠
⎟



 66 

Example: Macroeconomic Effects of Oil Supply Shocks 
 

2 Identifications: 
 
(1) Oil Price exogenous 

 

 

 

 

 
SVAR, FAVAR and SDFM versions 
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(2) Killian (2009) Identification  
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Some Results 
 

 
 

7.5 Results: Kilian (2009) Identification
As discussed in Section 7.2, the Kilian (2009) identification scheme identifies an oil sup-

ply shock, a global aggregate demand shock, and an oil-specific demand shock. Because

there are eight innovations total in all the models examined here, this leaves five uniden-

tified shocks (or, more precisely, a five-dimensional subspace of the innovations on

which no identifying restrictions are imposed).

7.5.1 Hybrid FAVAR-SDFM
As indicated in Table 6, the innovations in the first eight principal components explain a

very small fraction of the one step ahead forecast error of oil production, that is, the inno-

vation in oil production is nearly not spanned by the space of factor innovations. Under

the Kilian (2009) identification scheme, the innovation in oil production is the oil supply

shock; but this oil supply shock is effectively not in the space of the eight shocks that

explain the variation in the macro variables. This raises a practical problem for the SDFM

because the identification scheme is asking it to identify a shock from the macro factor

innovations, which is arguably not in the space of those innovations, or nearly is not in

that space. In the extreme case that the common component of oil production is zero, the

estimated innovation to that common component will simply be noise.

For this reason, wemodify the SDFM to have a single observed factor, which is the oil

production factor. The global demand shock and the oil-specific demand shock are,

however, identified from the factor innovations. Thus this hybrid FAVAR–SDFM

has one identified observed factor, two identified unobserved factors, and five unidenti-

fied unobserved factors.

As discussed in Section 7.2, the FAVAR treats the oil price (PPI-oil), global oil

production, and the global activity index as observed factors, with five latent factors.

Table 6 Fraction of the variance explained by the eight factors at horizons
h¼1 and h¼6 for selected variables: 1985:Q1–2014:Q4
Variable h5 1 h5 6

GDP 0.60 0.80
Consumption 0.37 0.76
Fixed investment 0.38 0.76
Employment (non-ag) 0.56 0.94
Unemployment rate 0.44 0.90
PCE inflation 0.70 0.63
PCE inflation—core 0.10 0.34
Fed funds rate 0.48 0.71
Real oil price 0.74 0.78
Oil production 0.06 0.27
Global commodity shipment index 0.39 0.51
Real gasoline price 0.72 0.80
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Oil Price Exogenous 
 

 
SVAR. The SVAR SIRFs are available only for the eight variables in the SVAR. The

figure shows SIRFs in the log levels of the indicated variables. For example, according to

the SDFMSIRFs in the upper left panel of Fig. 8, a unit oil price shock increases the level of

oil prices by 1% on impact (this is the unit effect normalization), by additional 0.3% after

one quarter, then the price of oil reverts partially and after four quarters is approximately

Fig. 8 Structural IRFs from the SDFM (blue (dark gray in the print version) solid with !1 standard error
bands), FAVAR (red (gray in the print version) dashed), and SVAR (black dots) for selected variables with
respect to an oil price shock: “oil prices exogenous” identification. Units: standard deviations for Global
Commodity Demand and percentage points for all other variables.
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Killian identification IRFs (see paper) 
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Variance Explained: 
 

  
   

spanned by the space of the factor innovations, (b) the innovations in the commodity

index being a noisy measure of the unobserved global factor innovations, and (c) the

one step ahead forecast errors for the commodity index being close using either the fac-

tors or SVAR variables as conditioning sets. Evidence for (a) is the large fraction of the

one step ahead forecast error variance of the global commodity index that is explained by

the factor innovations (Table 6). But because the global commodity index is just one

noisy measure of global demand, it follows from the general discussion of Section 5 that

the innovations in the global commodity index in the FAVAR and SVARmodels will be

noisy measures of—that is, an imperfect proxy for—the innovation in global economic

activity (this is point (b)). Evidence for (c) is the high correlation (0.82) between the

SVAR and FAVAR estimates of the global demand shocks in Table 8.

For the oil-specific demand shock (Fig. 11), the FAVAR and SVAR SIRFs are also

attenuated relative to the SDFM SIRFs. The issues associated with interpreting these dif-

ferences are subtle. In addition to the oil supply and aggregate demand shocks discussed

earlier, the hybrid SDFM allows for two oil price-specific shocks: one that explains some

of the comovements of other macro variables, and one that is purely idiosyncratic (actu-

ally, an idiosyncratic disturbance for each oil price) which has no effect on other macro

Table 7 Forecast error variance decompositions for six periods ahead forecasts of selected variables:
FAVARs and SDFMs

B. Kilian (2009) identification

A. Oil price
exogenous Oil supply

Global
demand

Oil spec.
demand

Variable F D F D(O) F D(U) F D(U)

GDP 0.07 0.07 0.04 0.01 0.02 0.04 0.09 0.04
Consumption 0.19 0.22 0.09 0.08 0.02 0.22 0.11 0.01
Fixed investment 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.01
Employment (non-ag) 0.03 0.02 0.04 0.01 0.02 0.01 0.03 0.01
Unemployment rate 0.04 0.03 0.04 0.03 0.02 0.03 0.04 0.01
PCE inflation 0.28 0.40 0.02 0.04 0.09 0.16 0.17 0.29
PCE inflation—core 0.05 0.04 0.01 0.02 0.03 0.05 0.02 0.02
Fed funds rate 0.02 0.04 0.00 0.01 0.05 0.11 0.03 0.02
Real oil price 0.81 0.53 0.14 0.10 0.22 0.44 0.42 0.09
Oil production 0.03 0.01 0.75 0.78 0.07 0.02 0.03 0.01
Global commodity
shipment index

0.11 0.23 0.05 0.07 0.79 0.33 0.03 0.02

Real gasoline price 0.61 0.48 0.05 0.06 0.25 0.43 0.34 0.08

Notes: Entries are the fractions of the six periods ahead forecast error of the row variable explained by the column shock,
for the “oil price exogenous” identification results (columns A) and the Kilian identification scheme (columns B). For each
shock, “F” refers to the FAVAR treatment in which the factor is treated as observed and “D” refers to the SDFM treat-
ment. In the hybrid SDFM using the Kilian (2009) identification scheme, the oil supply factor is treated as observed (the oil
production variable) (D(O)) while the global demand and oil-specific demand factors are treated as unobserved (D(U)).
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