
Studienzentrum Gerzensee Doctoral Program in Economics 
Econometrics 2017-18, Week 1 Lecture Notes  

 
Updated September 11, 2017  

(typos corrected, CLT discussion extended pages 46-47) 
 

Administrative Details 

Grades  
Exams (Midterm and Final. Closed book. 1 page of notes) 
Exercises (Randomly selected student, chosen in advance)  
Graded Problem Set in Weeks 3 and 4  

Overview of Econometrics Sequence 

Week 1 – Basic tools of probability, statistics, and econometrics 
Week 2 – Linear Model (including IV and linear GMM)  
Weeks 3 and 4 – Time Series (Watson) and Cross Section (Honore) Topics  

Readings for Week 1 

Hogg, R.V, J.W. McKean, and A.T. Craig, Introduction to Mathematical 
Statistics, 6th Edition, Prentice Hall, 2005. HMC (or earlier version: Hogg, 
R.V and A.T. Craig, A Introduction to Mathematical Statistics, Fifth 
Edition, 1995, Macmillon Publishing.) 

 
Rao, C.R., Linear Statistical Inference and Its Applications, Second Edition, 

1973, Wiley. 
 
Many other good books … choose the one(s) you like.  Here's one: 
 
Casella, G. and R.L. Berger (2008), Statistical Inference, 2nd Edition, 

Thompson Press. 
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Probability Concepts 
 
Experiment and Outcomes  

Uncertain/Not Perfectly Predictable/Random/Stochastic (example: roll of die)  
 
Sample Space (denoted by Ω)  

Set of all possible outcomes (die example: [(1), (2), (3), (4), (5), (6)])  
 
Points in Ω are denoted by ω   
 
Note Ω may contain an infinite number of possible outcomes  

Countable (Experiments like flipping a coin until “Tails” appears)  
Uncountable (growing a tomato and measuring its weight)  
 

Events  
Subset of Ω  (die example {(3),(4)}) 
 

Set Operations: Let A and B denote two subsets of Ω and let a denote an element of 
Ω 

a ∈ A (a is contained in A)  
A ⊂ B (A is a subset of B)  
A ⋃ B (the union of A and B)  
A ⋂ B (the intersection of A and B)  
 Ac (the compliment of A)  
 

σ-Algebra (or σ-field): Let A be a collection of subsets of Ω that satisfies  
(1) Ω ∈ A 
(2) A ∈ A then Ac ∈ A  
(3) if  A1, A2, . . . ∈ A then 1( )i iA

∞
=∪ ∈A 

 
Notes: Sometimes (1) is replaced with ∅ ∈ A.  
Because   (∪i=1

∞ Ai
c )c =∩i=1

∞ Ai  then (2) and (3) imply that   ∩i=1
∞ Ai ∈ A. 

 
Probability measure: A real-valued set function (maps sets into the real line) with 
the properties  

(1) A ∈ A then P(A) ≥ 0 
(2) P(Ω) = 1  
(3) If 1{ }i iA ∞

=  is a countable set of disjoint sets in A, then 

1 1
( ) ( )i i ii
P A P A∞∞

= =
∪ =∑   

 
Probability Space: The triple (Ω, A, P) defines a probability space. 
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There are many useful facts (see Hogg and Craig, Section 1.3 theorems 1-5), 
including:  
 

1. 0 ≤ P(A) ≤ 1  
 
2. P(A) = 1 − P(Ac)  
 
3.  P(A ⋃ B) = P(A) + P(B) − P(A ⋂ B)  
 
4. If 1{ }i iA ∞

=  are a set of mutually exclusive and exhaustive subsets of Ω , then 

1
( ) ( )ii
P A P A A∞

=
= ∩ .∑   
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Conditional Probability  
 
Let A and B denote two events in Ω with P(A) > 0 and P(B) > 0. Then  
 

 
( )( )
( )

P A BP A B
P B
∩| =  

 
is called the conditional probability of the event A given B.  
 

Note: ( ) ( ) ( ) ( ) ( )P A B P B P A B P B A P A| = ∩ = | .  
 

Being a bit more careful:  
 

Formally, the idea is to construct a new probability space from (Ω, A, P) by 
assigning zero probability to all elementary events that are not in B . The new 
probability measure, say Po is constructed using the restriction that if 

( )A A Bω ∈ ∩  and B Bω ∈  (so that Aω  and Bω  are in B ), then  

 
( ) ( )
( ) ( )
o A A

o B B

P P
P P

ω ω
ω ω

=  

 
so that the relative odds of events in B  remain the same under P and Po. If 

Bω∉ then Po(ω) = 0. These restrictions determines Po up to a scale factor, 
which is determined by the restriction that Po(B) = 1. The notation P(A|B) is short-
hand for Po(A), with  Po constructed in this way.  

 

Independence 

Events A and B are independent if P(A|B) = P(A). 
  
Independence implies P(A ⋂ B) = P(A)P(B) so that P(B | A ) = P(B).  

Bayes Rule 

Suppose we know P(B | A ) but we really want to know P(A | B). (Example, let 
B denote to the event that a medical diagnostic test comes up “positive” and A 
be the event that a patient has a particular disease.)   How can we compute 
P(A|B) given P(B | A) together with some other information?   
 
We know  

 
( )( )
( )

P A BP A B
P B
∩| = . 

 
To compute the pieces, first note that B  = (B ⋂ A) ⋃ (B ⋂ Ac) where (B ⋂ A) 
and  (B ⋂ Ac)  are two disjoint sets.  
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Thus,  
 P(B)  = P(B ⋂ A) +  P(B ⋂ Ac), 
 
 P(B ⋂ A)  = P(A ⋂ B) = P(B|A)P(A)  
and  
 P(B ⋂ Ac)  = P(B|Ac)P(Ac) 
so that  

 P(A|B) = P(A∩ B)
P(B)

= P(B | A)P(A)
P(B | A)P(A)+ P(B | Ac )P(Ac )

  

 
which is known as Bayes Rule. 
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Random Variables  
 
Consider a probability space (Ω, A, P).  
 
(Example: Ω  denotes outcomes of 3 tosses of a fair coin.)  
 
A random variable is a function that maps elements of Ω into the real line.  
 
(Examples: (i) ( )X ω =  number of heads; (ii) ( )X ω =  number of heads in first two 
tosses; (iii) ( ) 1X ω =  if heads appears on the 1st

 and 3rd toss and equals 0 otherwise.)  
 
 
Being a bit more careful:  
 
As a technical matter, we must make sure that the sets of events that give rise to 
particular values of the function X are contained in A. This makes the probability 
space for X, say (ΩX, AX, PX), consistent with the original probability space (Ω, A, P).  
Such a restriction makes X measurable with respect to A. Thus, a random variable 
X(ω) is a real valued function that maps ω ∈ Ω into the real line, with the property 
that for any real x, {ω | X(ω) = x) = A(x) ∈ A. 
 
Letting AX ∈ AX, the resulting probability function, PX, is given by   
PX(AX) = P(ω | ω ∈ Ω, X(ω) ∈ AX). 

 
Example: 
 

A fair coin is tossed 3 times.   
 
Ω = [(HHH), (THH), (HTH), (HHT), (HTT), (THT), (TTH), (TTT)] 

        
X(ω) =  number of heads,  
 
ΩX = [0, 1, 2, 3],  

  
A denotes all subset of Ω and AX denotes all subsets of ΩX  
 
PX(1) = P[(HTT), (THT), (TTH)] = 3/8, etc.  
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Distribution Functions 

 
Cummulative Distribution Function (CDF): The CDF of a random variable X(ω)  is 
defined as  
 

FX(x) =
def

   P(ω|X(ω) ≤ x) 
  
 
which is often denoted P(X ≤ x) (with a slight abuse of notation) .   
 
Some Properties of the CDF. 
 
1. For x2 ≥ x1,  FX(x2) − FX(x1) = P(x1 < X ≤ x2), 
 
2.  FX(-∞) = 0  
 
3. FX(∞) = 1  
 
4. FX( · )  is non-decreasing  
 
 
Probability Density Function: Suppose that X is a discrete random variable and can 
take on only a finite number of values x1, x2, . . . , xn. We can then define  
 

    P(X  = xi) =
def

pi =
def

fX(xi)  
 
as the density function for X and the resulting CDF is a step function.  
 
For a discrete random variable ( ) ( )

i
X X ix x
F x f x

≤
=∑ . 

 
For a continuous random variable, define the pdf analogously: fX( . ) satisfies 
 

FX(x) = 
  

fX (s)ds
−∞

x

∫   

so that  

 
( )( )

def

X
dF xf x
dx

=   . 

 
Note:  
 

 2

1
1 2 2 1[ ] ( ) ( ) ( )

x

X X Xx
P x X x F x F x f x dx≤ ≤ = − = ∫  

  
For mixtures of discrete and continuous random variables, FX(x) is defined by 
summing over the discrete and continuous components separately.  
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Example: Suppose X is a randomly chosen point between 0 and 1 with  
 

 

for 0 1
( ) 0 for 0

1for 1
X

x x
F x x

x

, ≤ ≤⎧ ⎫
⎪ ⎪= <⎨ ⎬
⎪ ⎪>⎩ ⎭

 

 
 
Then X is said to be Uniformly Distributed on [0 1], . The probability density  
function of  X  is  
 

	  
fX (x) = 1 for 0 < x <1

0 elsewhere

⎧
⎨
⎪

⎩⎪
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Bivariate Distribution Functions 
 
Let X and Y denote two scalar random variables. The joint CDF is defined as  
 

 ( ) (( ) and ( ))
def

X YF x y P X x Y y, , = ≤ ≤  

 
which is often denoted ( )P X x Y y≤ , ≤ .  
 
 
For a discrete random variable ( ) ( )

i i
X Y X Y i iy y x x
F x y f x y, ,≤ ≤

, = ,∑ ∑   

 
 
For a continuous random variable 1 2 1 2( ) ( )

y x

X Y X YF x y f z z dz dz, ,−∞ −∞
, = ,∫ ∫   

 
[ ]( ) ( ) ( ) ( ) ( )X X YF x P X x P X x Y F x,= ≤ = ≤ ∩ ≤∞ = ,∞  is the CDF of X  and thus  

 
 ( ) ( )X X Yf x f x y dy

∞

,−∞
= ,∫  

 
In this context, FX(x) and fX(x) are sometimes called the marginal distribution and 
marginal density of X, respectively.  
 
 
 
The random variables X and Y are independent if ( ) ( ) ( )X Y X YF x y F x F y, , =  for all x  
and y .  (Also ( ) ( ) ( )X Y X Yf x y f x f y, , = .)  
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Conditional Distribution Functions 

 
Let X and Y denote two discrete scalar random variables. The conditional pdf is 
defined as  

 
[( ) and ( )]( )

( )

def

Y X
P Y y X xf y X x

P X x|
= =| = =

=
 

 
for values of x with P(X = x) > 0.  
 
 
Equivalently  

 
( )

( )
( )

X Y
Y X

X

f x y
f y X x

f x
,

|

,
| = =  

 
for values of x with fX(x) > 0.  
 
We will use this as the definition of the conditional density in both the discrete and 
continuous cases.  I will often write this as ( )Y Xf y x| | .  
 
The conditional CDF is ( ) ( )

y

Y XP Y y X x f s x ds|−∞
≤ | = = |∫   

 
which I will write as ( )Y XF y X x| | = or FY|X(y | x). 
 
If X and Y are independent, then ( ) ( )Y X YF y X x F y| | = =  and ( ) ( )Y X Yf y x f y| | =  for 
all x and y.  

 

Multivariate Distribution Functions 

CDFs for the vector of random variables X = (X1, X2, … , Xn)  are defined analogously 
to the bivariate case.  Conditional distributions are defined similarly, and so forth.  



Gerzensee − Week 1 – 2017-18 

11 

Expectations 

 
Let X denote a discrete random variable and let g(X) denote a function of X, then  
 

 ( ) ( ) ( )
def

i X i
i

g X g x f x=∑E  

 
Let X denote a continuous random variable and let g(X) denote a function of X, then  
 

 ( ) ( ) ( )
def

Xg X g x f x dx
∞

−∞
= ∫E  

 
A few useful facts. Suppose a and b are constants, and 1( )g x and 2 ( )g x  are two 
functions:  
 

( ) ( )X Xa af x dx a f x dx a
∞ ∞

−∞ −∞
= = =∫ ∫E   

 
[ ( )] ( ) ( ) ( ) ( ) ( )X Xag X ag x f x dx a g x f x dx a g X

∞ ∞

−∞ −∞
= = =∫ ∫E E   

 

1 2 1 2[ ( ) ( )] ( ) ( )g X g X g X g X+ = +E E E   
 
(Said differently, E is a linear operator.) 
 
Examples: Suppose X is uniformly distributed on [0 1],  

 
   
E( X ) =

0

1

∫ xdx = 1
2

x2  0
1 = 1

2
 

and  

 
   
E( X 2 ) =

0

1

∫ x2dx = 1
3

x3  0
1 = 1

3
 

 
 
 
Functions of more than one random variable:  
 
Suppose X and Y have joint density fX,Y(x,y) and let g(X,Y) be a scalar function of X 

and Y, then ( ) ( ) ( )X Yg X Y g x y f x y dxdy,, = , ,∫ ∫E   
 
Suppose G is a matrix of random variables, then E(G) is a matrix with ij th′  element 
equal to E(Gij).  
 
Suppose g(X,Y) = a(X)b(Y) and X and Y are independent.  
Exercise: Show Eg(X,Y) = Ea(X) × Eb(Y). 
 
Conditional Expectations 
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The conditional expectation of Y given X = x is just the expectation of Y constructed 
using the probability density ( )Y Xf y x| | . Thus, for a continuous random variable  
 
 

( )
( ) ( )

x
Y XY

Y X x yf y x dy|Ω
| = = |∫E  

 
where xΩ  is the restricted sample space associated with the event X x= .   
 
Note that ( )Y X x| =E  depends on the particular value of x  (obvious, but worth 
pointing out). The function µY(x) = E(Y|X=x) is called a regression function. It shows 
how the conditional mean of Y  changes as the realization of X  changes.  
 
 
The Law of Iterated Expectations: EY(Y) = EX[EY|X(Y|X)]  
 
Proof:  

 [ ( )] ( ) ( )X Y X Y X XY X yf y x dy f x dx| |
⎡ ⎤| = |⎢ ⎥⎣ ⎦
∫ ∫E E  

 

 ( ) ( ) ( )Y X X Y Xyf y x f x dydx yf y x dydx| ,= | = ,∫ ∫ ∫ ∫  

 

 ( ) ( ) ( )Y X Y Yy f y x dxdy yf y dy Y,= , = =∫ ∫ ∫ E  
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Optimal Forecasting: 
 
Problem 1: Find the constant h that minimizes "Mean Squared Error", E[(Y  − h)2]. 
 
E[(Y  − h)2] = 

  
( y − h)2 fY ( y)dy∫   yielding the first order conditions: 

 

  
yfY ( y)dy∫ = h fY ( y)dy∫ = h  

 
so the optimal value of h is the mean of h. 
 
Problem 2: Find the function h(x) that minimizes EY|X=z[(Y  − h(x))2]. 
Same problem as 1, but using the conditional distribution of Y|X=x. Thus, the optimal 
h(.) is h(x) = E(Y | X= x) = µY(x). 
 
“The minimum mean square error forecast is given by regression function.” 
 
Here’s an alternative derivation, yielding the result by inspection. 
 
Optimal Forecasting: You observe X=x, and you want to forecast Y.  
 
Suppose h(x) = µY(x) + g(x). 
 
Then:  
 

2 2 2( ( )) ( ( )) 2 ( )( ( )) ( )Y YY h x Y x g x Y x g xµ µ− = − − − + . 
 
But  
 

{ } { }( )( ( )) ( ) ( ) 0Y X Y Y X Yg x Y x g x Y xµ µ| |− = − =E E , 

 
so EY|X[(y  − h(x))2] = EY|X[(y  − µY(x))2] + g(x)2 
 
which is minimized by setting g(x) = 0. 
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Transformations of Variables 

Let X be a random variable with CDF FX. Let Y = h(X) where h(·)  is 1-to-1 with 
inverse h −1. What is the distribution of Y ?  
 
Discrete case: Suppose that X can take on values 1x ,  2x , ... , nx . Then Y can take on 
values 1y ,  2y , ... , ny with ( )i iy h x= .  
 
Thus, 1( ) ( ( ))i iP Y y P X h y−= = = , so that 1( ) ( ( ))Y Xf y f h y−=  
 
Continuous case: We need to consider two cases.  
 
1. h( · )  is increasing. Then 1 1( ) ( ) ( ( )) ( ( ))Y XF y P Y y P X h y F h y− −= ≤ = ≤ = . Thus 
 

 
1 1

1( ) ( ( )) ( )( ) ( ( ))Y X
Y X

dF y dF h y dh yf y f h y
dy dy dy

− −
−= = =  

 
2. h( · ) is decreasing.  Then 1 1( ) ( ) ( ( )) 1 ( ( ))Y XF y P Y y P X h y F h y− −= ≤ = ≥ = − . Thus,  
 

 
1 1

1( ) ( ( )) ( )( ) ( ( ))Y X
Y X

dF y dF h y dh yf y f h y
dy dy dy

− −
−= = − = − .  

 
The two cases can be combined as:  

 
1

1 ( )( ) ( ( ))Y X
dh yf y f h y
dy

−
−= | |  

 
Example: Suppose X  is uniformly distributed on [0 1], , and let 2Y X= . Then  

 

1
2

1 1
2 2

1 for 0 11( ) ( )( ) 2
2 0 otherwise

Y X
y y

f y f y y
−

−
⎧ < <⎪= = ⎨
⎪⎩

 

 
 
Extension to the case where h is not one-to-one:  Let U1, … , Um be a partition of the 
real line and suppose that y = h(x) is a one-to-one transformation on each Ui with range 
Ri and inverse hi

–1(y).  The density of Y = h(X) is 
 

     fY(y) = 
1

1 ( )( ( )) | |i
X i

i

dh yf h y
dy

−
−∑  

 
where the summation is over those i for which y ∈  Ri. 
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Multivariate case: The extension to the multivariate discrete case is straightforward 
(just book-keeping). The extension to the continuous case requires somewhat more 
work, see Hogg and Craig Sections 4.3 and 4.5. The result is: 
 

fY(y) = fX(h −1(x)) |J| 
 
 
where |J | is the absolute value of the Jacobian determinant of the inverse 
transformation – the absolute value of the determinant of the matrix [ ]i jx y∂ /∂  where 

ix is the i th′  component of X and yj is the j th′ component of  Y. In particular, 
suppose Y = HX where H is a non-singular matrix. Then J = |H−1| = |H|−1 and

1 1( ) ( )Y Xf y f H y H− −= | | .  
 
 
Moments  
 
The kth moment of X is defined as E(Xk). 
 
The mean of X is the first moment, E(X1). It is denoted as µ = E(X)  
 
The kth centered moment of X is defined as E[(X−µ)k]  
 
The second centered moment is called the variance and is denoted σ2.  
 
A straightforward calculation shows  
 

σ2 = E[(X−µ)2] = E(X2) − µ2 

 
σ  2

def
σ=  is the standard deviation.  

 
All odd centered moments are equal to zero for symmetric distributions. (A 
distribution is symmetric if f(x) = f(−x).  A distribution is symmetric around a point 
a if f(x−a) = f(a−x).) The mean is the point of symmetry. (You should prove these 
results as an exercise) . 
 
The first moment and 2-4th centered moments are used to measure the center 
(location), spread, skewness and kurtosis of the distribution.  
 
 
Examples:  
 
(1) Suppose X is uniformly distributed on [0 1],  
 

 
1( )
2

E Xµ = =  

 



Gerzensee − Week 1 – 2017-18 

16 

 2 2 2 21 1 1( ) ( )
3 2 12

E Xσ µ= − = − =  

 
(2) Suppose X has mean µX and variance 2

Xσ . Let a and b be constants and  
Y  = a + bX.  Then Y has mean µY = a + bµX and variance 2 2 2

Y Xbσ σ=  
 
 
Moment Generating Function 
 
The Moment Generating Function of X is defined as M(t) = E(etX)  
 
Since  

 ( ) ( )tX tx
Xe e f x dx= ∫E  

 

 ( ) ( )txM t xe f x dx′ = ∫ ,  so that M′(0) = E(X1) 
 

 2( ) ( )txM t x e f x dx′′ = ∫ ,  so that M′′(0) = E(X2) 
 
and in general  

 ( ) ( ) ( )j j txM t x e f x ds= ∫ ,  so that M(j)(0) = E(Xj) 
 
Thus, if you know the MGF of random variable, it is often a straightforward 
calculation to find its moments.  
 
The MGF does not exist for all random variables – the relevant integrals may not 
converge. (etx can get very large for extreme values of X). We will modify the MGF 
shortly to produce a Characteristic Function which always exists.  
 
A moment generating function uniquely characterizes a distribution. Thus, if X and Y  
have the same MGF, then they have the same CDF . (We will discuss this later in the 
context of characteristic functions.)  
 
Examples:  
 
(1) Suppose X is uniformly distributed on [0 1], , then  
 

 
1

0

1( ) [ 1]tx tM t e dx e
t

= = −∫ . 

 
(2) Suppose X  has MGF MX(t), and Y = a + bX, where a and b are constants.  Then 
MY(t) = eatMX(bt).
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Moments for Vector valued random variables 
 
Suppose that X and Y are two scalar random variables with joint cdf FX,Y(x,y).  
 
The covariance between X and Y  is defined as  σXY = E[(X − µX)(Y − µY)].   
You should show that σXY = E(XY) − µXµY. 
 
Let a and b denote two constants, and let W = aX + bY. Then  
 
µW = aµX + bµY 
 
2 2 2 2 2 2W X Y XYa b abσ σ σ σ= + +   

 
 
These results can be generalized.  Suppose X = (X1 X2 … Xn)ꞌ . 
Then 
 

E(X) = µX = 

 

E(X1)
E(X2 )
!

E(Xn )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

 
  
is the mean vector.  
 
( ) [ ( )]i jXX X X′ =E E  is the n n× second moment matrix  

 
[( )( ) ] [ {( )( )}]X X i i j jX X X Xµ µ µ µ′− − = − −E E  is the n n× covariance matrix.  

 
{( )( )}ij i i j jX Xσ µ µ= − −E  is called the covariance between iX  and jX .  

 

Σ = 

 

σ 11 σ 12 ! σ 1n

σ 21 σ 22 ! σ 2n

" " # "
σ n1 σ n2 ! σ nn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

 
  
is called the covariance matrix.  
 
Notes: (Exercise: Show these results): 

Σ is a symmetric n n× matrix since ij jiσ σ= .  
Σ = E(XX')  − µµ'. 
If Xi  and Xj are independent, then 0ijσ = .   
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Let α denote a 1n×  non-stochastic vector and let Y = α′X  . Then  
 
µY = α′µX.  
 
The variance of Y is ΣY = α′ΣXα. Because ΣY ≥ 0, ΣX is positive semi-definite. 
  

1
2( )ij ij ii jjρ σ σ σ= /  is the correlation between iX  and jX .  

 
[ ]ijρ is called the correlation matrix  
 
Since  

 ii ij

ji jj

V
σ σ
σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
is psd, then 0V| |≥ , which implies 2

ii jj ijσ σ σ≥ , so that 1 1ijρ− ≤ ≤ .  
 
 
If Xi and Xj are independent, then 0ijρ = .   
 
 
The moment generating function for X is  
 
 ( ) ( )t X

XM t e
′

= E  

 
where t is a 1n×  vector. 
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Selected Probability Distributions 

Some Discrete Distributions 

Bernoulli: X can take on two values, 0 and 1, (1)f p=  and (0) 1f p= − . Thus, 
1( ) (1 )x xf x p p −= −   

 
The parameter p indexes the distribution  
 
Exercise: Work out MGF and all moments. 
 
 
Binomial: Suppose Xi, i = 1, … , n are Independent and Identically Distributed (i.i.d.) 
Bernoulli random variables with parameter p. Let 

1

n
ii

Y X
=

=∑ . Then Y has a Binomial 
distribution with parameters n and p . Y can take on values 0, 1, …, n. 
 

 ( ) (1 )y n yn
f y p p

y
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

where  

 
( )

n n
y y n y

⎛ ⎞ !=⎜ ⎟ ! − !⎝ ⎠
 

 
is the number of ways that y 1s can occur in n (0,1) outcomes.  
 
Exercise: work out MGF of Y .  Use: 1( ) ( )

i

n
Y i XM t M t==Π  which follows from (i)  

( i it X tXe e∑ =Π ) and (ii) independence.  
 
 
Poisson: X takes on the values 0 1 2, , , ... with  
 

 ( )
x m

X
m ef x
x

−

=
!

 

 
This distribution is useful for modeling “successes” that occur over intervals of time. 
(customers walking into a store, central bank changes in the policy interest rate, etc.).  
 
Let g(x,w) denote the probability that x successes occur in a period of length w.  
Suppose  
 
(i) (1 ) ( )g h h o hλ, = + , where λ is a positive constant, 0h >  ( ( )o h  means a term that 
satisfies 0lim [ ( ) )] 0h o h h→ / = ),   
 
(ii) 

2
( ) ( )

x
g x h o h∞

=
, =∑  
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(iii)  The number of successes in non-overlapping periods are independent.  
 
When these postulates describe an experiment, then you can show (See Hogg and 
Craig Section 3.2) that the number of successes over a period of time with length w  
follows a Poisson distribution with parameter m wλ= .   
 
Exercise: You should be able to show the MGF is ( 1)tm ee − , and that both the mean and 
variance are equal to m.  (Hint: remember that 1

0
z k

kk
e z∞

!=
=∑ .)  

 

Some Continuous Distributions 

Uniform:  f(x) = (b − a)−1 for a ≤ x ≤ b and 0 elsewhere. 
 
The MGF is  

 ( )
( )

bt at

X
e eM t
b a t
−=
−

 

 
Univariate Normal : 
 

Standard Normal (denoted N(0,1) and often represented by Z ):  

 
21

2
1( )
2

z
Zf z e

π
−=  

 
General Normal (denoted N(µ, σ2)): Let Y Zµ σ= +  where Z is standard normal 
and σ > 0. Then from the change-of-variables formula  
 

 
21

22
( )1( )

2
y

Yf y e σ
µ

σ π
− −

=  

 
MGF for standard normal: 
 

 
21

221 1 1( ) exp[ ]
22 2

ztz
ZM t e e dz z tz dz

π π
∞ ∞−

−∞ −∞
= = − +∫ ∫  

 

 21 1exp[ { 2 }]
22
z tz dz

π
∞

−∞
= − −∫  

 

 
2

21 1exp[ ] exp[ ( ) ]
2 22
t z t dz

π
∞

−∞
= − −∫  

 

 
2
2
t

e=  

 
since the integral term =1 (it is the integral of the density of a random variable 
distributed ( 1)N t, ). Thus, from the MGF: 
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E(Z) = 0 
 
E(Z2) = 2

Zσ  = 1 
 
E(Zk) = 0 for k = 1, 3, 5, … 
 
E(Z4) = 3 

 
 

MGF for General Normal: 
 

Because Y = µ + σZ, MY(t) = eµtMZ(σt) = 
2 21

2
t t

e
µ σ+

 
 
and a direct calculation shows: 
 
 
( )E Y µ=   

 
2 2 2( )E Y σ µ= + , so that 2( )Var Y σ=   

 
[( ) ] 0kE Y µ− = , for 1 3 5k = , , ,...  

 
4 4[( ) ] 3E Y µ σ− =   
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Chi-Squared Distribution: Let Zi, i = 1, . . . , n be distributed i.i.d. N(0,1).  
 
(where i.i.d. denotes Independent and Identically Distributed). 
 
Let 2

1

n
ii

Y Z
=

=∑ .  
 
Then Yi is distributed as a 2

nχ  random variable. The parameter n is called the degrees 
of freedom of the distribution  
 
F Distribution: Let Y ~ χn

2 , X ~ χm
2  and suppose that Y  and X  are independent. 

Then  

 
Y nQ
X m
/=
/

 

is distributed Fn,m. The parameters n and m are called the numerator and denominator 
degrees of freedom.  
 
 
Students t distribution: Let Z ~ N(0,1) and Y ~ χn

2    and suppose Z and Y are 
independent. Then,  

 1
2( )

ZX
Y n

=
/

 

 
is distributed tn. The parameter n is called the degrees of freedom of the distribution.  
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 Multivariate Normal Distribution 

Definition : A p-dimensional random vector X  is p-dimensionally normally 

distributed if the one–dimensional random variables a′X are normally distributed for 

all a   ∈! p . (See Rao page 518) 

 

It follows from this definition that if X is p-dimensionally normally distributed, then 

Xi  is normally distributed.  

 

Let µ and Σ denote the mean vector and covariance matrix of X. The multivariate 

normal distribution is characterized by µ and Σ.  To see this note that for any a   ∈! p , 

we have  

 

 [ ' ] ' and [ ' ] 'E a X a V a X a aµ= = Σ .  

 

Note also that the moment generating function for X evaluated at a is the moment for 

the scalar a'X evaluated at 1.  That is:  

 

 
1
2' ''

'( ) (1) a a aa X
X a XM a Ee M e µ+ Σ= = = ,  

 

and the final equality follows because a'X ~ N(a'µ, a'Σa). Because the MGF uniquely 

defines the probability distribution, the PDF for X must depend on the parameters µ 

and Σ.  

 

This distribution is typically denoted: X ~ N(µ,Σ) (or sometimes X ~ Np(µ,Σ), where 

the subscript p emphasizes that X has p elements.)  
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The multivariate normal has a special role in statistics because of the central limit 

theorem, a result discussed below.  In many applications subsets of elements of X  

and/or function of X appear, and it is useful to characterize the relevant PDF.  Here I 

discuss a few results that will prove useful in our later work. (For a more detailed 

discussion see C. R. Rao: Linear Statistical Inference and Its Applications pp. 185–

189 and pp. 519–527, and Sections 3.5, 9.1, 9.8 and 9.9 of HMC.) 

 

 

Theorem A. (Linear functions of X are normally distributed). Let X ~ Np(µ,Σ), let B  

be a k p×  matrix, let η  denote a 1k ×  vector, and Y = η + BX   

 Y ~ Nk(η + Bµ, BΣB’)  

 

Notes: The proof is straightforward. 

 

Theorem B. (The multivariate normal density).  Suppose X ~ Np(µ,Σ) and Σ  has rank 

p. Then X has density given by  

 

 1
2 1 2

1 1( ) exp{ ( ) ' ( )}
(2 ) 2

p
pf x x x x Rµ µ

π
−

/ /= − − Σ − , ∈ .
|Σ |

 

 

 

Notes: Perhaps the easiest way to see this is as follows. Let Z denote a p-vector of 

i.i.d. N(0,1) random variables, then you can verify that MZ(a) = 
1
2 '

' (1)
a a

a ZM e= , so that 

Z is multivariate normal. (Remember we worked out the MGF for a multivariate 

normal on the last page.)   

The pdf of Z is fZ(z) = 
21 1 '

2 2

1

1 1
2 2

i
pp z z z

i

e e
π π

− −

=

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∏ . Now let X = µ + Σ1/2Z, and 

from Theorem A, X ~ N(µ, Σ)  From the change-of-variables formula, the density of X 

is then fX(x) = |Σ1/2|–1fz(Σ–1/2(x–µ)), and rearranging yields the formula given above. 
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Theorem C. (Independent normally distributed random variables have a joint normal 

distribution.)  If X1 ~ Np(µ1, Σ1)  and X2 ~ Nq(µ2, Σ2), and X1 and X2  are independent, 

then X = X1
'  X2

'( ) '  ~ Np+q(µ, Σ), where  

 

 1 1

22

0
and

0
µ

µ
µ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Σ
= Σ = .

Σ
 

 

 

Proof: Just write the joint density of 1 2( )X X′ ′ ′,  as a product of the densities of X1 and 

X2, and rearrange. 

 

Theorem D. (Conditional normal distribution) Let X ~ Np(µ,Σ). Also let 

'
1 2( ) 'X X X ′= , , 1 2( ) 'µ µ µ′ ′= , , and 11 12

21 22

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

Σ Σ
Σ =

Σ Σ
,  be the partitions of X , µ  and Σ .  

The conditional distribution of X1 given X2 = x2 is given by  

 

 
   
X1 | X2 = x2 ∼ N µ1 + Σ12Σ22

−1(x2 − µ2 ),Σ11 − Σ12Σ22
−1Σ21

⎛
⎝⎜

⎞
⎠⎟ .  

 

Proof:  This is a (tedious) calculation applied to the definition of a conditional 

distribution.  Write:   

  

fX1|X2
(x1) =

fX1,X2
(x1,x2 )

fX2
(x2 )

=
(2π )− p/2 |Σ |−1/2 exp − 1

2
(x − µ)'Σ−1(x − µ)

⎧
⎨
⎩

⎫
⎬
⎭

(2π )− p2 /2 |Σ22 |−1/2 exp − 1
2

(x2 − µ2 ) 'Σ22
−1(x2 − µ2 )

⎧
⎨
⎩

⎫
⎬
⎭

 

 

where X2 is p2×1.  Using the partitioned inverse formula: 

 
1 1 1

1 12 22
1 1 1 1 1
22 21 22 21 12 22( )
V V
V I V

− − −
−

− − − − −

⎡ ⎤− Σ Σ
Σ = ⎢ ⎥−Σ Σ Σ +Σ Σ Σ⎣ ⎦

 

 

where V = Σ11 – Σ12
1
22
−Σ Σ21 
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and |Σ|=|Σ22||V|. 

 

Substituting these expressions into 
1 2| 1( )X Xf x  and rearranging yields: 

 

1 2| 1( )X Xf x  = |V|–1/2 1 / 2(2 ) pπ − exp 1
1 1/ 2 1 1|2

1 ( ) ' ( )
2
x V xµ µ−⎛ ⎞− − −⎜ ⎟⎝ ⎠

 

 

with µ1|2 = µ1 + Σ12
1
22
−Σ (x2 – µ2).  The result then follows immediately. 

 

Theorem E. (Sums of independent normals) If X1 ~ Np(µ1, Σ1)  and X2 ~ Np(µ2, Σ2), 

and X1 and X2  are independent,, then  

 X1 + X2 ~ Np(µ1 + µ2 , Σ1 + Σ2).  

 

Notes: Immediate  

  

Theorem F. (Marginal distributions from the multivariate normal) The marginal 

distribution of X1 is Nk(µ1, Σ11).  

 

Theorem G. (For a normal, a zero correlation implies independence) If Σ12 = 0 then 

X1 and X2 are independent.  

 

Notes: Write out the joint distribution to see that it factors. 

 

 

Theorem H. (Characterizing independence of linear combinations of normal 

variables)  If X ~ Np(µ, Σ), B is a p k×  matrix, and C is a p×m matrix, then B′X and 

C′X  are independent if and only if  B′ΣC = 0. 

 

Notes: Note that Β´X and C´X are jointly normally distributed with covariance B′ΣC = 

0. 
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Quadratic forms of normal random vectors:  

 

We will call a quantity of the form Y′AY  a quadratic form. Without loss of generality, 

assume that A is symmetric. (This follows since Y′AY = Y′A′Y  so that Y′AY = Y′BY  

with B  = ½ (A + A′). ) In all of the quadratic forms discussed below, we assume that 

the matrix in the middle is symmetric. 

 

There are many useful theorems on the distribution of quadratic forms.  We will 

discuss a few. They rely on the following sets of results: Suppose zi ~ iidN(0,1) 

random variables for i = 1, … , n.  Then we know a few things: 

 

First:  
!!

zi
2

i=1

n

∑ ~ !!χn
2 .  This can be written in another way: letting Z denote the n×1 

vector (z1, z2 , .. zn)', then 
!!

zi
2

i=1

n

∑ = Z'Z ~ !!χn
2 . 

 

Second: Suppose we partition Z into its first n1 elements and last n2 elements: 

!!
Z =

Z1
Z2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 . Then we know (i) Z1 is independent of Z2 (ii) AZ1 is normally 

distributed, (iii) Z2'Z2 ~ !!χn2

2 , and (iv) AZ1  and Z2'Z2  are independent. 

 

Third:  Suppose P is a n×m matrix with orthonormal columns, that is P'P = Im. Then 

(i) P'Z is normally distributed; (ii) P'Z ~ N(0, Im) so that the elements of P'Z are m 

iidN(0,1) random variables; (iii)  Letting Y = P'Z, then Y'Y ~ !!χm
2   and rewriting this 

Y'Y = Z'PP'Z ~ !!χm
2  
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Now, a few results: 

 

Theorem I. (Quadratic form of centered X around inverse of covariance matrix) If X ~ 

Np(µ, Σ)  where Σ has rank p, then (X−µ)′Σ−1(X−µ) ~ χ p
2    

 

Notes: Write Z = Σ–1/2(X – µ), so that (X−µ)′Σ−1(X−µ) = Z′Z, and the result follows by 

noting that Z ~ N(0, Ip). 

 

Theorem J. (Quadratic forms around idempotent matrices) Let M denote an 

idempotent p×p matrix with rank k, then Z´MZ ~ 2
kχ . 

 

Notes: Write M = PΛP´, where Λ contains the eigenvalues of M on the diagonal and 

the rows of P are the orthonormal eigenvectors. Because M is idempotent we can 

write  

 

[ ] 1
1 2 1 1

2

'0
'

'0 0
k PI

M P P PP
P
⎡ ⎤⎡ ⎤

= =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

Thus Z´MZ = Y´Y where Y = P1´Z, and the result follows from Y ~ N(0, P1´P1), where 

P1´P1 = Ik. 

 

Theorem K: Let X = PZ and Q = Z´AZ, where PA = 0, then X and Q are independent. 

 

Notes: Suppose Z is p×1, A is p×p with rank m, and P is q×p. Because A is symmetric, 

it can be decomposed as A = GΛG′, where G is a p×m matrix with full column rank 

and Λ is a diagonal matrix with the non-zero eigenvalues of A on the diagonal. Let Y 

= G'Z. Then Z'AZ = Y'ΛY. Note that (Y' X')' are multivariate normal, with 

cov(X,Y)=PG.  But PA = PGΔG' = 0. This implies PGΛG'G = 0, so PG = 0 (because 

ΛG'G is non-singular). Because X and Y have covariance zero, they are independent. 
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Theorem L:  Let Q1 = Z´A1Z and Q2 = Z´A2Z, where A1A2 = 0.  Then Q1 and Q2 are 

independent. 

 

Notes:  Same idea as Theorem K. 



Gerzensee − Week 1 – 2017-18 

30 

Exercise 1:  Let Yi, i = 1, …, n be distributed i.i.d. N(µ, σ2). Let  
1

1 n

i
i

Y Y
n =

= ∑  and 

  
s2 = 1

n−1
(Yi −Y )2

i=1

n

∑ . Show  

 

(i) 
2

( ) ~ (0,1)
/

Y N
n
µ

σ
−  

 

(ii)  (n – 1)s2/σ2
 ~ 2

1nχ −  

 

(iii) Y and s2 are independent. 

 

(iv) 
!! 

(Y − µ)
σ 2 /n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
/ (n−1)s2

σ 2
⎛

⎝⎜
⎞

⎠⎟
/(n−1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= (Y − µ)
s2 /n

∼ tn−1  

where tn-1 is the Student's t distribution with n −1 degrees of freedom.

  

Proof: 

Notation:  Let Y1:n denote the n×1 vector (Y1 Y2  … Yn)'.  Let l denote an n×1 vector of 

1s.  
 

From Theorem C: Y1:n ~ Nn(µl, σ2I).  Letting Z1:n = (Y1:n  − µl)/σ  then Z1:n ~ Nn(0,I) 

(Theorem A) and Y1:n = µl + σZ1:n (rearranging the definition of Z1:n). 

 

Write  Y  = AY1:n with A = (l'l) −1l' 

 

From Theorem A:  Y  ~ N(µAl, σ2AIA'). But Al = 1 and AA' = n −1, so  Y  ~ N(µ,σ2/n) 

(i) then follows from Theorem A. 

 

For (ii), write 
	  

(Yi −Y )2 = (Y1:n −Yl)'
i=1

n

∑ (Y1:n −Yl)  . Note that Y1:n - l Y = MY1:n with  

M = I – l(l'l) −1l'. Note MY1:n = M(µl + σZ1:n) = σMZ1:n because Ml = 0. Thus  

σ −2(Y1:n - l Y )'(Y1:n - l Y )  = Z1:nMZ1:n ~ 	  χ rank ( M )
2 from Theorem J. 
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The results follows by noting that rank(M) = trace(M) = trace(In – l(l'l)-1l) = n  − 

trace[l(l'l) −1l]  = n  −  trace[(l'l)-1l'l] = n-1. 

 

For (iii) and using the results above, s2 = σ2(n-1)-1 Z1:nMZ1:n and  Y = AY1:n = µl + 

σAZ1:n, and the results follows from theorem K after noting the MA = 0. 

 

(iv) follows from (i)-(iii). 
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Exercise 2: A generalization of exercise 1 uses Yi each as a p×1 vector, with  
Yi ~ i.i.d. Np(µ, Σ) where now µ is an p×1 vector, and considers the distribution of  
 

	  
T 2 = (Y − µ)' 1

n−1 (Yi −Y )(Yi −Y )'
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

−1

(Y − µ) . 

 
In this exercise you will show that [(n −p)/((n-1)p)]T2 ~ Fp,n −p. 
 
You should carry out this exercise AFTER you have taken Week 2 with Bo Honore. 
 
Carry out the following preliminary exercises: 
 

1.  Let Z0, Z1, … Zq, be i.i.d.  k×1 random vectors, with Zi ~ Nk(0,I). Let 
   
A = ZiZi '

i=1

q

∑ .  

Let B  =Z0'(q −1A)-1Z0. 
 
(a) Let ι = (1 0 0 .. 0)' denote a k×1 vector.  Show that ι'ι/(ι'A −1ι) ~ 

    
χq−(k−1)

2 , using the 
following steps: 
 

(a.i) Write Zi = (Zi1 … Zik)'. Consider the least squares problem: 
 

 
   
SSR = minb (Zi,1−b1Zi,2−b2Zi,2−bk−1Zi,k )2

i=1

q

∑   

Show that SSR ~ 
    
χq−(k−1)

2 .  (Hint: Review Hayashi Chapter 1 and or Honore’s 
notes from one his early lectures.) 
 
(a.2) Show that SSR from (a.i) satisfies SSR = ι'ι/(ι'A −1ι). (Hint: use the 
partioned inverse formula.) 
 

(b) Generalize (a).  Let L be an arbitrary k×1 non-random vector with L ≠ 0.  Show 
that  
L' L/(L'A −1L) ~ 

    
χq−(k−1)

2 . 
 

(c)  Show that B, defined in part 1, can be written as
   
B = q

Z0 'Z0

Z0 ' A−1Z0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−1

(Z0 'Z0 ) . 

 
(d)  

(d.i) Use the result in (b) to show that  

   

Z0 'Z0

Z0 ' A−1Z0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−1

Z0 = z0  ~ 
    
χq−(k−1)

2 . 

(d.2) Does the distribution of 
   

Z0 'Z0

Z0 ' A−1Z0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−1

conditional on Z0 = z0 depend on 
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the value of z0?  Use your answer to show that 
   

Z0 'Z0

Z0 ' A−1Z0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−1

 and Z0 are 

independent. 
 
(e) Show that the distribution of Z0'Z0 ~    χk

2 . 
 

(f) Show that 

   

Z0 'Z0( ) / k

Z0 'Z 0

Z0 ' A−1Z0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
/ (q−(k−1))

~ Fk ,q−(k−1) . 

 

(g) Show that 
   

q−(k−1)
qk

B ~ Fk ,q−(k−1) . 

 
(h) Let X0, X1, … Xq, be i.i.d.  k×1 random vectors, with Xi ~ Nk(0,Σ), where Σ is non-
singular.  Let  
 

   
C = X0 ' 1

q
Xi Xi '

i=1

q

∑
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−1

X0  .  Show that 
   

q−(k−1)
qk

C ~ Fk ,q−(k−1) . 

 
(i) With this background, prove the result stated in Exercise 2. 
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Some Useful Inequalities: 

Jensen’s inequality: Let h( · ) be a convex function and X  a random variable.  Then 

E[h(X)] ≥ h(E(X)).  

Proof:  Recall that if the function h is convex, then for any value x0, there is a line 

through (h(x0), x0) such that h(x) is never below the line.  Equivalently, for any x0, 

there is a constant a, such that h(x) ≥ h(x0) + a(x – x0) for all x. 

Set x0 = E(X), thus  

                            E[h(X) ] ≥ h(x0) + a E(X – x0)  

                                          = h(E(X)) + a E(X − E(X)) = h(E(X)). 

Note: If h is concave, E[h(X)] ≤ hE(X)), by an analogous argument. 

Example: E(Y4) ≥ [E(Y2)]2, so that E(Y4) < ∞ implies that E(Y2) < ∞.  (This follows 

from Jensen’s inequality with X = Y2 and h(X)= X2). 
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Chebyshev’s inequality:  Let ε  > 0, then P(|X| ≥ ε) ≤ E(X2)/ε2  

 

Proof:  

                         

!!

E(X 2)= x2 f (x)dx
−∞

∞

∫

= x2 f (x)dx
−∞

−ε

∫ + x2 f (x)dx
−ε

ε

∫ + x2 f (x)dx
ε

∞

∫

≥ x2 f (x)dx
−∞

−ε

∫ + x2 f (x)dx
ε

∞

∫

≥ ε 2 f (x)dx
−∞

−ε

∫ + ε 2 f (x)dx
ε

∞

∫
= ε 2P(|X |≥ ε )

  

 

And rearranging yields the result.  

 

Markov’s inequality: The following result is called Markov's inequality and is proved 

in analogous fashion:  Let ε  > 0, then ( )( )
p

p

XP X ε
ε
| || |≥ ≤
| |
E  
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Large Sample Theory  

Convergence of Sequences of Random Variables 

Let {Xn} denote a sequence of non-stochastic variables.   

Recall limn→∞ Xn = X if for any ε > 0, there exists a number N (which may depend on 

ε, so write it as N(ε)) with |Xn  − X| < ε for all n > N(ε). We need to discuss 

convergence of random sequences {Xn(ω)} to random variables X(ω). There are a 

variety of notions of convergence:  

 

Almost Sure Convergence: For a given ω we can ask whether limn → ∞ Xn(ω) = X(ω) 
using the standard definition of a limit. If the set of ω for which this limit obtains has 

probability 1 then we say Xn(ω) converges to X(ω) almost surely (or with probability 

1).  This is written as  

 

  !Xn
as⎯→⎯ X  if P[ω | !!limn→∞  Xn(ω) = X(ω] = 1 

  

Convergence in Probability: For any ε > 0 we can calculate pn(ε) = P(|Xn −X| > ε). If 

for any value of ε > 0, this sequence converges to 0, then we say that Xn converges in 

probability to X.  

 if for any 0 lim ( ) 0
p

n nn
X X pε ε

→∞
→ > , = .  

This is sometimes written as plim nX X= .  

 

Mean Square convergence: Let msn = E(Xn  − X)2 denote the mean squared deviation 

of Xn from X. Then Xn converges to X in mean square if limn→∞ msn = 0. This 

sometimes written as  

 

 Xn ! ms⎯ →⎯  X    if     limn→∞ E(Xn  − X)2 = 0 

Weak Convergence (Convergence in Distribution): Suppose ( )
nX

F x  is the CDF for 

Xn and FX(x) is the CDF for X, both evaluated at x.  Then, in the limit Xn will have the 

same CDF as X if the function 
nX

F converges to FX.  This notion of convergence is 
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called weak convergence, or convergence in Distribution or convergence in Law .  

 

  Xn ⇒  X (or Xn 
d
→  X) if lim ( ) ( )

nX Xn
F x F x

→∞
=  

 

for all values of x where FX(.) is continuous. 

 

To see the implication of restricting the definition to points of continuity of FX, 

consider the following example.  Suppose Xn = 1/n with probability 1 and X = 0 with 

probability 1.  Then 
1( ) 1

nX
F x x

n
⎛ ⎞= ≥⎜ ⎟⎝ ⎠

, while FX(x) = 1(x ≥ 0) . Thus (0)
nX

F = 0 for 

all n, while FX(0) = 1. Yet, Xn is getting close to X, so that for all probability 

statements about values other than x = 0, ( )
nX

F x  is well approximated by FX(x) when 

n is large. In this sense, Xn ⇒  X. 

 

The following are alternative equivalent ways to characterize weak convergence: 

 

           Xn ⇒  X if  

 

       (1) lim ( ) ( )
nX Xn

F x F x
→∞

= for all values of x where FX(.) is continuous. 

 

       (2) E(g(Xn)) → E(g(X)) for any continuous bounded function g. 
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Vector- valued random variables: If Xn  is a vector, then Xn ! as⎯→⎯  X if each element 

of Xn converges a s. .  the corresponding element of X.  Convergence in probability and 

mean square convergence is defined analogously. Xn ! d⎯→⎯ X if the joint CDF of Xn  

converges to the joint CDF of X.  

 

As it turns out, convergence in distribution obtains when a′Xn 
d
→ a′X for arbitrary 

non-stochastic vector a.  This result is known as the Cramèr-Wold device.  We'll see a 

version of this following the univariate central limit theorem shown below. 
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Relationships between the modes of convergence and some useful results 

(1) If Xn ! ms⎯ →⎯  X    then Xn ! p⎯→⎯  X.  

 

Proof: From Chebychev’s inequality P(|Xn −X | ≥ ε) ≤ E(Xn −X)2/ε2  

 

(2) If Xn ! as⎯→⎯  X    then Xn ! p⎯→⎯  X. 

 

To prove this we need to show that for any ε > 0 and δ > 0, ∃  N(ε,δ) such that 

( |  ( ) ( ) )nP X Xω ω ω ε δ| − |> <  for n N> . For each ω  with lim ( ) ( )n nX Xω ω→∞ =  

we can find a ( )N ε ω, such that ( ) ( )nX Xω ω ε| − |<  for all ( )n N ε ω> , . Let ( )N ε δ,  

be the largest of these values such that ( |  ( ) ( ) ) 1nP X Xω ω ω ε δ| − |< > − , for all 

( )n N ε δ> , . (The existence of this value of N is guaranteed by the condition that 

{ lim ( ) ( )} 1n nP X Xω ω ω→∞| = = ). Then ( |  ( ) ( ) )nP X Xω ω ω ε δ| − |> < for all n N>  

as required.  

 

Note: Xn ! p⎯→⎯  X does not imply that Xn ! as⎯→⎯  X . 

 

(3) If Xn ! p⎯→⎯  X then Xn ! d⎯→⎯  X.  

 

Note: Xn ! d⎯→⎯  X. does not imply Xn ! p⎯→⎯  X. 

 

  



Gerzensee − Week 1 – 2017-18 

40 

Slutsky’s theorem (Rao page 122) 

(1) Xn ! d⎯→⎯  X and Yn ! p⎯→⎯  0 implies XnYn ! p⎯→⎯  0  

 

(2) Let c be a constant and suppose Xn ! d⎯→⎯  X and Yn ! p⎯→⎯  c, then 

 

(a) Xn + Yn ! d⎯→⎯  X + c 

(b) XnYn ! d⎯→⎯ Xc 

(c) Xn/Yn! d⎯→⎯ X/c  if c ≠ 0 

 

(3) (Yn  − Xn) ! p⎯→⎯  0 and Xn ! d⎯→⎯  X then Yn! d⎯→⎯  X 

 

 

Continuous Mapping Theorem (Rao page 124) 

Let g( · ) be a continuous function, then  

Xn ! d⎯→⎯  X implies g(Xn )! d⎯→⎯  g(X)  

Xn ! p⎯→⎯  X implies g(Xn )! p⎯→⎯  g(X)  

(Xn  − Yn) ! p⎯→⎯  0 and Yn ! d⎯→⎯  Y  then g(Xn)  − g(Yn) ! p⎯→⎯  0  
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Op  and op  notation  

Sometimes expressions contain many different sequences of random variables and 

"order of magnitude" notation is useful to keep track of which terms are most 

important.   

A quick review from your first calculus course: Let 1{ }n na ∞
=  and 1{ }n ng ∞

= denote two 

sequences of real numbers. Recall that  

 ( )  if lim 0n
n n n

n

aa o g
g→∞

= =  

and  

 ( )  if a number such that for alln
n n

n

aa O g M M n
g

= ∃ | |<  

 

Similar notation is used for sequences of random variables. Suppose that 1{ }n na ∞
= is a 

sequence of random variables, then  

 ( )  if 0
p

n
n p n

n

aa o g
g

= →  

and  

 ( ) if for any 0 a number such that ( ) 1 for alln
n p n

n

aa O g M P M n
g

ε ε= > , ∃ | |< > − .  

 

Let {fn} and {gn} be sequences of real numbers and let {Xn} and {Yn} be sequences of 

random variables.  You can verify the following: 

(1) If ( )n p nX o f=  and ( )n p nY o g= , then  

( )n n p n nX Y o f g=   

( )s s
n p nX o f| | = for 0s >   

(max{ })n n p n nX Y o f g+ = ,   
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(2) If ( )n p nX O f=  and ( )n p nY O g= , then  

( )n n p n nX Y O f g=   

( )s s
n p nX O f| | = for 0s >   

(max{ })n n p n nX Y O f g+ = ,   

 

(3) If ( )n p nX o f=  and ( )n p nY O g= , then  

( )n n p n nX Y o f g=   
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Laws of Large Numbers 

A Weak Law of Large Numbers:  

Let X1, X2, …  be a sequence of random variables with E(Xi) = µ and var(Xi) = σ2, and 

cov(Xi,Xj) = 0 for i ≠ j. Then X→
p

 µ.  

 

Proof:  

 
   
P(| X − µ |> ε ) ≤ E[( X − µ)2]

ε 2 = n−1σ 2

ε 2 → 0  

 

where the first inequality follows from Chebyshev’s inequality. 

 

Exercise: (An extension) Let X1, X2, …  be a sequence of random variables with 

( )i iX µ=E  and 2( )i iVar X σ= and ( ) 0i jCov X X, = for i j≠ . Let

1
1

n
n ii
X n X−

=
= ,∑  2 1 2

1

n
n ii
nσ σ−

=
= ∑  and 1

1

n
ii

nµ µ−
=

= ∑ with 1 2lim 0n nn σ−
→∞ = . 

Then 0
p

nX µ− → . 

 

 

 

A Strong Law of Large Number 

If X1, X2, … are i.i.d. with ( )X µ= <∞E , then 
as

nX µ→ . (Proof: Rao, pages 114-115)  
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Central Limit Theorems 

A CLT based on the moment generating function: 

 

Lemma (Continuity Theorem): Let Xn be a sequence of random variables with 

moment generating function Mn(t) that exist for some interval t ∈(−h, h), with h > 0. 

Let M0(t) be the moment generating function of the random variable X, which also 

exists on (−h, h). If limn→∞Mn(t) = M0(t) for all t ∈ (−h, h), then Xn 
d
→ X. 

 

A Central Limit Theorem:  Let Y1, Y2, … denote a sequence of i.i.d. random variables 

with E(Yi) = 0 and var(Yi) = 1 and MGF MY(t) that exists for t ∈ (−h, h) for some h > 

0.  Then 
  

1
n

Yi
i=1

n

∑ ⇒ Z ~ N (0,1) .  

Proof:  

Using a mean value expansion: 

MY(t) = MY(0) + t MY′(0) + 
1
2

t2 MY′′(τ) = 1 + 
1
2

t2 MY′′(τ) 

where τ  is between 0 and t.  Because MY′′(τ) is continuous, limt→0MY′′(τ) = MY′′(0)=1. 

Letting 
1

1 n
n ii
Z Y

n =
= ∑ , then 

2

( ) [ ( / )]

11    ''( )
2

n

n
Z Y

n

Y n

M t M t n

t M
n

τ

=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

 

 

where τn is between 0 and t/n1/2.   

Recall that if limn na a→∞ = , then lim 1
n

an
n

a e
n→∞

⎛ ⎞+ =⎜ ⎟⎝ ⎠
. 

 

Thus 
212

21lim ( ) lim 1    ''( )
2n

n
t

n Z n Y n
tM t M e
n

τ→∞ →∞
⎡ ⎤

= + =⎢ ⎥
⎣ ⎦

 

 

and the result follows from noting that 
21

2
t

e  is the mgf of a standard normal. 
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Corollary:  Let X1, X2, .. denote a sequence of i.i.d. random with mean µ, variance σ2 

and MGF that exists for t ∈ (-h,h) for some h > 0.  Then   n( X − µ)⇒ σZ ~ N(0,σ2). 

 

Proof:  Let Yi = 
 

Xi − µ
σ

 , and note that Yi satisfies the assumption of the CLT.  Note 

 

  
n( X − µ) =σ 1

n
Yi

i=1

n

∑  and the result follows directly. 
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We did not go over the following in class, but here is a more general treatment of the 
CLT based on the characteristic function. 

Characteristic Functions  

Consider a random variable X  with CDF F(x). The characteristic function of X ,
denoted ( )C t  is given by  

 ( ) ( ) ( )itX itxC t e e dF x= = ∫E  

where 1i = − . Thus, ( ) ( )C t M it= .  This change is useful because 

cos( ) sin( )ize z i z= +  so that 1ize| |= for all z . This means that ( )C t  will always 
exists, while ( )M t exists only for certain distributions.  
 
Some useful results:  

1. Let ( )rr Xα = E , which is assumed to exist. Then ( ) ( )
r

r r itx
r

d C t i x e dF x
dt

= ∫  exists. 

 
2. Suppose rα  exists, then expanding ( )C t in a Taylor Series expansion about (0)C  
yields:  

 1

1

( )( ) (0) [ ] ( )
jr

r
j

j

itC t C O t
j

α +

=

= + +
!∑  

and (0) 1C =   
 
3. Let ( ) ln( ( ))t C tφ = , then if rα  exists  

 1

0

( )( ) [ ] ( )
jr

r
j

j

itt O t
j

φ κ +

=

= +
!∑  

where jκ is called the k th′ cummulant. A direct calculation shows 0 0κ = , 

1 1κ α µ= = , and 2 2
2 2 1κ α α σ= − =  . 

 
4. If X ~ N(µ, σ2), then 2 2

2( ) ( ) exp[ ]tC t M it it σµ= = − , and thus 0 0κ = , 1κ µ= , 
2

2κ σ= , 0jκ = for 2j > .  
 
5. Let Z X Y= + , where X  and Y  are independent, then ( ) ( ) ( )Z X YC t C t C t=  and 
( ) ( ) ( )Z X Yt t tφ φ φ= + .  

 
6. Let Z = Xδ , where δ is a constant. Then ( ) ( )Z XC t C tδ=   
 
7. There is a 1-to-1 relation between ( )F x and ( )C t . 
 

8.  Let ( )nC t denote the CF of nX and ( )C t denote the CF of X . If 
d

nX X→ , then 
( ) ( )nC t C t→ for all t . Moreover, if ( ) ( )nC t C t→ for all t  and if ( )C t is continuous 

at 0t = , then 
d

nX X→ .  
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A Central Limit Theorem 

(Lindberg-Levy CLT): Let 1X , 2X ,... denote a sequence of iid random variables 

with ( )iE X µ=  and 2( ) 0ivar X σ= ≠ . Let 1
1

n
n ii
X n X−

=
= ∑ . Then  

 ( ) (0 1)
d

n
n X Nµ
σ

− → ,  

Proof:  
Let 

1
( ) ( )i

n Xn
n n ni
Z X µ

σ σ
µ −

=
= − = .∑ Since ( ) 0iX µ

σ
− =E  and ( ) 1iXvar µ

σ
− = ,the log-CF of 

iX µ
σ
−  is  

 2 31( ) ( )
2

t t O tφ = − +  

so that nZ  has log-CF  

 2 3

1

1( ) ( )( ) [( )
2n

n

Z
i

t tt O
n n

φ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎣ ⎦

= − +∑  

 

 
3

2 2
3 2

1 1( )
2 2

tt n O t
n /= − + × →−  

 
which is the log-CF of a (0 1)N , random variable. Since 21

2 t−  is continuous at 0t = ,  

Zn   d⎯→⎯  Z ~ N(0,1).  
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Example: Suppose that Xi are i.i.d. Bernoulli random variables with parameter p .  

 

The CLT says that  

 
1 2

( ) (0 1)
( (1 ))

dX pn N
p p /

− → ,
−

 

which implies that for large n   

 
1 2

( ) ~ (0 1)
( (1 ))

aX pn N
p p /

− ,
−

 

where“~
a

” means “approximately distributed as”. Thus  

 

 
(1 )~ ( )

a p pX N p
n
−,  

 

Suppose 25p = .  and n =100, and you are interested in the probability that X ≤ 0.20.   

Noting that X ≤ 0.20 is the same as Y ≤ 20, Y  100

1 ii
X

=
=∑ , the probability can be 

computed from the binomial distribution. A direct calculation yields: ( 20) 14P Y ≤ = . . 

The normal approximation gives  

 

 1 2 1 225 75 25 75
100 100

25 20 25( 20) ( )
( ) ( )

( 1 155) 12

XP X P

P Z

/ /. ×. . ×.

− . . − .≤ . ≈ ≤

= ≤ − . = . ;
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Multivariate CLT: 

Suppose Xi ~ iid (µ, Σ). Then !! n(X − µ)
d⎯→⎯ N(0,Σ)  . 

Sketch of proof:  (We'll use the "Cramer-Wold device").  Let Yn =  n X − µ( )  , with 

MGF, 
  
MYn

(t) .  The goal is the show that 	  MYn
(t)→ et 'Σt /2 , the MGF for a N(0,Σ) 

random variable. Note that 	  MYn
(t) = E(et 'Yn ) = E(en−1/2 (t ' Xi−t 'µ )

i=1
n∑ ) .  But (t'Xi  −t'µ) ~ 

iid(0,t'Σt), so the proof to the univariate CLT shows 	  MYn
(t) = Mt 'Yn

(1)→ et 'Σt /2  
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The Delta Method 

Let Yn denote a sequence of random variables, and let Xn =n1/2(Yn − a), where a is a 

constant. Let g( · ) be a continuously differentiable function.  

 

Suppose Xn ⇒ X ~ N(0, σ2).  

 

Then n1/2[g(Yn) − g(a)] ⇒ X ∂g(a)/∂a ~ N(0, [∂g(a)/∂a]2σ2). 

 

Proof: By the mean value theorem  

 g(Yn) = g(a) + (Yn − a) ∂g( 
!Yn  ) /∂ 

!Yn  

where  
!Yn  is between a and Yn. Since Xn ⇒ X, n−1/2Xn →

p
 0, so that Yn →

p
 a.  

Since g is continuously differentiable ∂g( 
!Yn  ) /∂ 

!Yn  →
p

 ∂g(a) /∂a. Thus  

 

n1/2[g(Yn) − g(a)] = n1/2[(Yn − a)] ∂g( 
!Yn  ) /∂ 

!Yn  ⇒ X∂g(a)/∂a ~ N(0, [∂g(a)/∂a]2σ2) 

 

by Slutsky’s theorem.  

 

A similar result can also be proved for vectors.  With Yn, X, a, etc., denoting vectors: 

Suppose Xn ⇒ X ~ N(0, Σ), then  

 

n1/2[g(Yn) − g(a)] = [∂g( 
!Yn  ) /∂ 

!Yn '] n1/2[(Yn − a)] ⇒ GX ~ N(0, GΣG) 

 

where G = ∂g(a)/∂a'. 
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Example: Suppose Xi is distributed i.i.d. N(5,4) for i = 1, … , n. Then we know  

 

 X  ~ N(5, 4/n)  

or  

 n  ( X  − 5) ~ N(0, 4)  

 

Let Y = X 2 . The delta-method implies  

 

n (Y − 52) ~
a

  N(0, 10 × 4 × 10)  

  

Suppose n = 100 and we want to know P(Y  ≤ 23.5).  

 

An exact calculation yields P(Y  ≤ 23.5). = 0.223. 

 

The delta-method yields: 

 

  
P(Y ≤ 23.5) = P Y − 25

(400 /100)1/2 ≤ 23.5− 25
(400 /100)1/2

⎛
⎝⎜

⎞
⎠⎟
≈ P(Z ≤ −0.75) = 0.227  
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Estimators 
 

Let Y denote an n×1 vector of observations with CDF F(y,θ). Let θ̂  = g(Y) denote an 

estimator of θ.  The realization of an estimator is an estimate 

 

Example: Method of Moments Estimators find θ̂ so that sample moments of Y match 

the population moments of Y .  

 

Let Yi , i = 1, … n be scalar i.i.d.N(µ,σ2) random variables. Then E(Yi) = µ and  

E[(Yi −µ)2] = σ2. Method-of-moment estimators are therefore  

 

 1 2 1 2

1 1

ˆ ˆ ˆand ( )
n n

i i
i i

n Y n Yµ σ µ− −

= =

= = −∑ ∑  

 

which use sample moments as estimators of corresponding population moments.  
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Properties of Estimators 

A natural question is what constitutes a “good” estimator. One way to answer this 

question is to define a Loss Function, say L(θ̂ , θ) which shows the loss that occurs 

when θ̂  is used, when the true value of the parameter is θ.  (Think of Loss as the 

negative of utility). 

 

For any θ̂ = g(Y), the expected value of the loss is  

 

                                  R(θ̂ , θ) = E[L(θ̂ , θ)] = E[L(g(Y)), θ)]. 

 

R(θ̂ , θ)  is called the Risk Function. (With Loss interpreted as the negative of utility, 

then risk is the negative of expected utility.) 

 

A good estimator is an estimator that yields small risk (high expected utility). The 

best estimator has the smallest risk (highest expected utility).  

 

In most cases, the risk of an estimator will depend on the value of θ (hence the 

notation R(θ̂ , θ)) and thus the “best” estimator will depend the value of θ. Since θ is 

unknown we must find an estimator that works well for a range of values of θ.  
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Examples: 

(1) If we know that θ ∈ Θ, then we might try to find an estimator that solves  

minθ̂ maxθ∈Θ R(θ̂ ,θ)  

This produces a mini-max estimator.  

 

(2) We might want to find an estimator that minimizes the weighted average risk 

using a weight function ( )w θ . Thus we could consider  

 

r(θ̂ ) = ∫R(θ̂ , θ)w(θ)dθ 

  

which is called the average risk of θ̂ .  The best estimator is the function θ̂  that 

minimizes r(θ̂ ).  

 

Jargon: R(θ̂ ,θ) is sometimes called Classical or Frequentist risk.  

r(θ̂ ) is often called Bayes risk.   

 

Note that the average risk r(θ̂ ) depends on the weighting function w, so that different 

weighting functions give rise to difference measures of average (or Bayes) risk and 

different optimal Bayes estimators. 

 



Gerzensee − Week 1 – 2017-18 

55 

Admissability: θ̂  is said to be inadmissable is there exists another estimator, say  !θ  

such that R( !θ ,θ ) ≤ R(θ̂ , θ) for all θ, and where the inequality is strict from some θ.  

Thus, inadmissable estimators are dominated. 

 

Quadratic Loss: A useful loss function is  

L(θ̂ ,θ) = (θ̂ −θ)2 

which is quadratic loss. The associated risk is called mean squared error (m.s.e.).  

Since  

θ̂ − θ = [θ̂ − E(θ̂ )] + [E(θ̂ ) − θ] 

then 

 

E[(θ̂ − θ)2]  = E[(θ̂ − E(θ̂ ))2] + [E(θ̂ ) − θ]2 + E[(θ̂ − E(θ̂ ))(E(θ̂ ) − θ)], 

 

and the last term is equal to zero, so that  

 

m.s.e, = var(θ̂ ) + [Bias(θ̂ )]2 

 

where the Bias is defined by  

 Bias(θ̂ ) = E(θ̂ ) − θ. 

 

An estimator is unbiased if Bias(θ̂ ) = 0, or equivalently, E(θ̂ ) = θ.  

 

Exercise: Xi is i.i.d. (µ, 1). Consider the estimator 1ˆ Xµ =  and 1
2 2ˆ Xµ = . Loss is 

quadratic. Derive the risk functions, R(!µ̂1 , µ) and R(!µ̂2 , µ). 
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Often it is difficult to deduce the exact distribution of an estimator, and so various 

approximations based on large-sample theory are used.  The relevant jargon is  

 

θ̂ is consistent if  θ̂  →
p

 θ.  (When θ̂ →
as

 θ, some say  θ̂ is "strongly" consistent.) 

 

If θ̂ −θ is Op(1/an), then θ̂  is said to be an-consistent.  Typically an = n1/2 as will see. 

 

Suppose some scaled and centered version of an estimator satisfies a CLT, e.g.,  

an(θ̂  −  γ) →
d

N(0,1)  

where  an is sequence of real numbers (usually an = n /σ ) and γ  is a constant. We 

then say that θ̂ is asymptotically normal.  

 

When θ̂ is asymptotically normal, probabilities involving θ̂ can be computed using 

the normal distribution: If  

 an(θ̂  −  γ) →
d

N(0,1) 

then (at least for n large)  

 an(θ̂  −  γ) ~
a

 N(0,1) 

where I use the symbol ~
a

 to denote “approximately distributed as.” Thus,  

 θ̂ ~
a

 N(γ, 1/ an
2 )  

Example:  if Yi ~ i.i.d. (µ, σ2) then  

 ( n /σ ) ( µ̂  − µ) →
d

N(0,1) 

where µ̂ = n−1 Yi
i=1

n

∑ = Y . This suggests using the approximation  

µ̂ ~
a

N(µ, σ2/n).
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Bayes Estimators 

 

Consider a probability model in which θ is random with pdf w( · ).  The thought 

experiment is that the random variable Y is generated in a two-step process. First, θ is 

drawn from w, and then Y is drawn from fY|θ.  Here we can think of the estimation 

problem as estimating the value of θ drawn in the first step after seeing the value of Y 

drawn in the second step. 

 

In this setting, both θ and Y are random variables. The risk R(θ̂ , θ) is the expected 

value of the loss, conditional on the value of θ: R(θ̂ , θ) = |
ˆ[ ( , )]YE Lθ θ θ . The overall 

risk (over both Y and θ) is , |
ˆ ˆ ˆ[ ( , )] [ ( , )] ( , )Y YE L E E L E Rθ θ θ θθ θ θ θ θ θ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . Thus, the 

risk is   

r(θ̂ ) = ∫R(θ̂ ,θ)w(θ)dθ, 

 

which is the “average” or “Bayes” risk that was introduced above, where w is the 

marginal pdf of θ. 

 

From what we know about marginal, joint and conditional distributions. 

• The joint density of θ and Y is the product of the marginal density of θ, w(θ), 

and the conditional density of Y given θ, fY|θ. Thus the joint density of Y and θ 

evaluated at Y = y and θ = !θ   is given by 

   
fY ,θ ( y, !θ ) = fY |θ ( y | !θ )w( !θ )   

• The marginal density of Y is the joint density, integrated with respect to θ. 

That is  

fY(y) =  ∫fY,θ(y,θ)dθ = ∫ fY|θ(y|θ)w(θ)dθ. 

 

• The conditional density of θ given Y=y is given by  

 

   
fθ |Y ( !θ | y) =

fY ,θ ( y, !θ )
fY ( y)

=
fY |θ ( y | !θ )w( !θ )

fY ,θ ( y,θ )dθ∫
=

fY |θ ( y | !θ )w( !θ )

fY |θ ( y |θ )w(θ )dθ∫
 .

 
 



Gerzensee − Week 1 – 2017-18 

58 

Jargon:  w(θ) is called the prior density for θ. (It is the density of θ prior to seeing the 

value of Y.) 

 

fY|θ (y |θ = !θ ) is called the Likelihood function.  With y fixed, it is a function of the 

value !θ . 

 

   
fθ |Y ( !θ |Y = y) is called the posterior density of θ. (It is the density of θ after seeing the 

value of Y.) 

 

fY(y) is the called the marginal likelihood of y. 

 

Using this notation: 

 

Posterior = Likelihood × Prior
Marginal  Likelihood

, 

 

and noting that the Marginal likelihood does not depend on θ: 

 

Posterior(θ) ∝ Likelihood(θ) × Prior(θ) 
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The Posterior Risk, or Posterior Expected Loss is Eθ|Y[L(θ̂ ,θ) | Y = y] . 

 

Bayes estimators are constructed to minimize posterior risk. When L(θ̂ ,θ) = (θ̂ − θ)2, 

the Bayes estimator is θ̂ Bayes = Eθ|Y(θ | Y = y), the mean of the posterior distribution. 

(This is the result that the mean minimizes quadratic loss that was proved earlier in 

these notes.)  

 

Here's an important result: by minimizing posterior risk, Bayes estimators also 

minimize Average (or Bayes) risk, r(θ̂ ).  Here's an identity for r(θ̂ ) that shows why: 

 

r(θ̂ ) = R(∫ θ̂ ,θ )w(θ )dθ

= EY |θL(θ̂ ,θ )⎡⎣ ⎤⎦w(θ )dθ∫
= L(θ̂ ,θ ) fY |θ (y |θ )dy∫⎡⎣ ⎤

⎦w(θ )dθ∫
= L(θ̂ ,θ ) fθ |Y (θ | y) fY (y)dθ dy∫∫
= Eθ |Y [L(θ̂ ,θ ) |Y = y] fY (y)dy∫

 

 

Thus, the Bayes risk is the posterior risk averaged over all values of Y.   

 

By minimizing  Eθ|Y[L(θ̂ ,θ) | Y = y] for each value of y, the Bayes estimator 

minimizes the average value, r(!θ̂  ). 
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Example 1: 

Y|µ ~ N(µ,1)  Y is a scalar.  Prior µ = 2 w.p. 1/3 and µ = 4 w.p. 2/3.  You observe Y = 

2.7.  Derive posterior for µ.   

 

First, note that the posterior is (Likelihood×prior)/(Marginal likelihood).  Thus, if 

prior = 0, then so will posterior. Thus, the posterior will only have mass at µ =2 and µ 

= 4. 

	  
P(µ = 2 |Y = 2.7) =

fY |µ (2.7 |µ = 2)P(µ = 2)
fY |µ (2.7 |µ = 2)P(µ = 2)+ fY |µ (2.7 |µ = 4)P(µ = 4)

  

 

where 
	  
fY |µ (2.7 |µ = 2) = 1

2π
e−1/2(2.7−2)2  , and similarly for µ = 4. 

 

Plugging in the numbers we find: 

 

	  
P(µ = 2 |Y = 2.7) = e−1/2(2.7−2)2 (1 / 3)

e−1/2(2.7−2)2 (1 / 3)+ e−1/2(2.7−4)2 (2 / 3)
 ≈ 0.65 

so  

 

P(µ = 4 | Y=2.7) ≈ 1 −0.65 = 0.35. 
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Example 2:  Now suppose the prior is µ ~ N(1,4).  We carry out the same calculations 

 

	  
fµ|Y (µ = m |Y = 2.7) =

fY |µ (2.7 |µ = m) fµ (m)

fY |µ (2.7 |µ = u) fµ (u)du∫
 

 

We can solve this directly. Alternatively, from our work on the multivariate normal 

we know that if fY|µ(y|µ=m) ~ N(m,1) and fµ(m) ~ N(1,4), then 

 

	  
Y
µ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

~ N 1
1

⎡

⎣
⎢

⎤

⎦
⎥ , 5 4

4 4
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟   

 

and fµ|Y(m|Y=y) ~ N(1 + (4/5)(2.7-1), 5-42/4). 
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Example 3:  Suppose Yi|µ  are i.i.d. N(µ, 1) and µ ~ N(τ, ω2), where τ and ω are 

known constants. Let Y  = (Y1, … , Yn)  and Y|µ=m ~ N(ml, In ), where l is an n×1 

vector of 1’s.  w(θ) is therefore the N(τ, ω2) density and fY|µ=m is the N(ml, In ) density.  

The normal-normal densities imply that (Y′ µ)′ have a joint normal density, and you 

can verify that  

 

   

Y
µ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∼ N τ l

τ
⎡

⎣
⎢

⎤

⎦
⎥ ,

ω 2ll '+ In ω 2l

ω 2l ' ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 

 

so that µ| Y = y  ~ 
  
N τ +ω 2l '(ω 2ll '+ In )−1( y −τ l),ω 2 −ω 2l '(ω 2ll '+ In )−1ω 2l( ) . 

 

Note that (ω2ll′ + In)−1 = (In − κll′) where κ = nω2/(n + ω2).  Plugging this in and 

simplifying yields: 

 

µ | Y = y ~ N( (1 )yλτ λ+ − , (1 )λ− 2 /n ), where λ = 1/(1+nω2) 

 

This is the posterior for µ. If loss is quadratic, the Bayes estimator is therefore  

 

  µ̂
Bayes = (1 )yλτ λ+ −  

 

Jargon: Note that the posterior has the same form as the prior − it is normal − but 

with different parameter.  When the posterior and prior have the same form, the prior 

is said the be conjugate. 
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Some Properties of Bayes Estimators: 

 

Bayes Estimators are admissible: Consider a model in which θ can take on only k 

values, say θ1, … , θk. Let ˆwθ  denote a Bayes estimator using a prior w(θ) = w1 , … , 

wk, where wi =P(θ=θi). Assume that wi is positive for all θi.  

 

Suppose that ˆwθ is inadmissible. Then there exist an estimator θ̂ such that  

R(θ̂ ,θi) ≤ R( ˆwθ ,θi) for all i, and R(θ̂ ,θi ) < R( ˆwθ ,θi ) for some i. But this means that 

  
r(θ̂ ) = wi R(θ̂ ,θ i )

i=1

k

∑ < wi R(θ̂ w ,θ i )
i=1

k

∑ = r(θ̂ w ) . This is a contradiction because  θ̂
w is a 

Bayes estimator, and Bayes estimators minimize Bayes risk.  

 

(Note: If we have time later in the semester we'll work through a “complete class 

theorem” which says that any admissible estimator can be interpreted as a Bayes 

estimator.) 

 

In general, Bayes Estimators are biased: By “biased” I mean 
  
EY |θ=θ0

(θ̂ Bayes ) ≠θ0 .  

That is, if θ is fixed at θ0 and multiple draws of Y are obtained, the average value of 

ˆBayesθ  is not equal to θ0. 

 

• In example 3,   µ̂
Bayes = (1 )yλτ λ+ − , so that  

 

  

E(µ̂ Bayes |µ = µ0 ) = λτ + (1− λ)E(Y |µ = µ0 )
= λτ + (1− λ)µ0

= µ0 + λ(τ − µ0 )
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Bayes Estimators minimize r(  θ̂ Bayes ) but may have large values R(  θ̂ Bayes , θ) for 

certain values of θ:  

 

Consider example 3: Conditional on µ = µ0 the Risk is  

 

R(  µ̂
Bayes , µo) = [Bias(  µ̂

Bayes )]2 + Variance(  µ̂
Bayes )]  

                      = λ2(τ − µ0)2 + (1−λ)2var(Y )  

                      = λ2(τ − µ0)2 + n−1(1−λ)2.   

 

Which is quite large when τ  differs significantly from µ0. 

 

In contrast, the frequentist risk of the estimator Y is  R(Y , µ0) = n−1.  

 

Note that R(Y , µ0) > R(  µ̂
Bayes , µ0)  for values of µ0 close to τ,  

but R(Y , µ0) ≪ R(  µ̂
Bayes , µ0)  when (τ − µ0)2 is large.  

 

(Note: r(Y ) = n−1, while (a calculation shows) r(  µ̂
Bayes ) = n−1(1−λ).  Thus (of 

course)  r(  µ̂
Bayes ) < r(Y ), so that “on average” R(  µ̂

Bayes , µ0) < R(Y , µ0), where the 
“averaging” uses the prior/weight function w for the values of µ0.) 
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Unbiased Estimators 

We’ll now discuss some a general result about unbiased estimators and then study the 

asymptotic properties of maximum likelihood and Bayes estimators. A useful result in 

this regard is the Cramer-Rao inequality, which gives a lower bound on the variance 

of any unbiased estimator.  

Cramer-Rao Inequality 

Some preliminaries: Suppose Y ~ F(y | θ) with density f(y | θ). Then  

 

 1 ( | )f y dyθ= ∫ , 

 

Differentiating both sides, and assuming the support of Y does not depend on θ 

 

 
( | )0 f y dyθ
θ

∂=
∂

∫  

Let  

 
ln ( | )( ) f yS y θθ

θ
∂, =

∂
 

 

which is called a Score function. (When I want to emphasize dependence of this 

function on θ  I will write the function as S(θ).)  

 

Note  

 
( | ) ( ) ( | )f y S y f yθ θ θ
θ

∂ = , ×
∂

 

so that   

 
( | )0 ( ) ( | ) [ ( )]f y dy S y f y dy E S Yθ θ θ θ
θ

∂= = , = ,
∂∫ ∫ . 

 

Evidently the Score function has an expected value of 0. (Note the randomness in the 

score function comes from evaluating the function at the random value Y.)  
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Differentiating again, yields:  

 

 2( )0 ( | ) ( ) ( | )S y f y dy S y f y dyθ θ θ θ
θ

∂ ,= + ,
∂

∫ ∫  

so that  

 [ ]2( ) ( ) ( )S YE E S Y var S Yθ θ θ
θ

∂ ,⎡ ⎤ ⎡ ⎤− = , = ,⎣ ⎦⎢ ⎥∂⎣ ⎦
 

 

Let  

 [ ]
2

2
2

( ) ln[ ( | )]( ) ( ) ( )S Y f YI E E E S Y var S Yθ θθ θ θ
θ θ

⎛ ⎞∂ , ∂⎡ ⎤ ⎡ ⎤= − = − = , = ,⎜ ⎟ ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦ ⎝ ⎠
 

 

which is called the Information. 

 

Now, let θ̂  = g(Y) denote an unbiased estimator of θ . Then  

 

 ( ) ( | )g y f y dyθ θ= ∫  

 

Differentiating both sides with respect to θ yields: 
 

 1 ( ) ( , ) ( | )g y S y f y dyθ θ= ∫  

with θ̂ = g(Y) this implies  

 

E θ̂ × S(θ ,Y )⎡⎣ ⎤⎦ = cov[θ̂ ,S(θ ,Y )]= 1   

  

so that  

var(θ̂ )var S(θ ,Y )( ) ≥1  

and thus  

var(θ̂ ) ≥ 1
var S(θ ,Y )( ) = I(θ )

−1  

which is the Cramer-Rao inequality.  
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The same set of results obtain when θ is a 1k ×  vector. 

 

S(θ,Y)  is a 1k ×  Score vector with E[S(θ,Y)] = 0.  

 

( )( ( )) ( ( ) ( ) ) ( / ( )Var S Y E S Y S Y E S Y Iθ θ θ θ θ θ′ ′, = , , = − ∂ , ∂ =  
a k×k  Information 

matrix  

 

If θ̂ is an unbiased estimator, then E[(θ̂ −θ)(θ̂ −θ)′] ≥ I(θ)−1. 
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Maximum Likelihood Estimators 

Let Y denote a random vector with density f(y | θ). Then  

 

 Lik(θ ) = f(Y |θ) 

 

the density of Y evaluated at Y = y and viewed as function of θ  is referred to as the 

Likelihood Function.  

 

Let Y1, Y2, … , Yn  be iid , each with density f(Y |θ) Then  

 1:
1

( | ) ( | )
n

n i
i

f Y f Yθ θ
=

=∏  

is the likelihood function, where I have used the notation Y1:n to denote Y1, Y2, … , Yn 

Let  

Ln(θ) = ln(f(Y1:n | θ )) 

denote the log-likelihood function.  

Suppose that θ is a k×1 vector. Let  

 

    Si(θ) =   ∂L(Yi |θ ) / ∂θ   

and 

   S1:n = 
	  

Si(θ )
i=1

n

∑   

 

denote the Score. (Note that these functions are evaluated at the random value Y. For 

notational simplicity I write Si(θ) instead of Si(θ,Y), etc.)  
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Let  

  I(θ) = E(Si(θ)Si(θ)') =   −E[∂Si(θ ) / ∂θ ']   

where there is no i subscript on I because Yi are iid.  

 

Let  

  I1:n(θ) = nI(θ) = E[S1:n(θ)S1:n(θ)'] 
  

denote the information in the sample.  

 

Let M̂LEθ solve  

 max ( )nLθ
θ . 

 

M̂LEθ is the maximum likelihood estimator of θ. 
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Some asymptotic properties of MLEs (consistency, asymptotic normality, 

efficiency): 

 

Given a set of “regularity” conditions:  

 ˆ
p

oMLEθ θ→  

and  

   n1/2(  θ̂MLE   − θ0) ⇒  X ~ N(0, I(θ0) −1) 

so that  

   θ̂MLE    ~
a

  N(θ0, n-1 I(θ0) −1) 

where oθ is the true value of θ .   Note that nI(θ0) = I1:n(θ0).
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 Sketch of consistency proof under iid sampling: 

Let  

C(θ) = 	 Eθ0
[ln(f (Y|θ))  − ln(f(Y|θ0))] 

where θo is the true value of θ and 
o

Eθ means taking the expected value using the 

density f(y |θo).  Note that C(θ0) = 0.  

 

Suppose θ ≠ θ0 

 
   
C(θ ) = Eθo

ln f (Y |θ )
f (Y ,|θo )

⎡

⎣
⎢

⎤

⎦
⎥ ≤ lnEθo

f (Y |θ )
f (Y |θo )

⎡

⎣
⎢

⎤

⎦
⎥ = ln(1) = 0  

 

where the first inequality follows from Jensen’s inequality since the log function is 

concave, and the inequality is strict unless 
  
ln f (Y |θ )

f (Y |θ0 )
⎡

⎣
⎢

⎤

⎦
⎥  has a degenerate 

distribution.  When it does, we say that θ is unidentified, otherwise θ is identified. 

Thus, when θ is identified C(θ) is uniquely maximized at θ = 0.  

 

To complete the discussion of consistency, assume that  

   Cn(θ ) = n−1∑{ln( f (Yi ,θ ))− ln( f (Yi ,θo ))}→
p

C(θ )  

 

uniformly in θ over some set Θ. (This is Uniform LLN result —- see, for example, 

Gallant, A. R. (1997), An Introduction to Econometric Theory, Princeton University 

Press., page 135).  

 

This means that the maximizer of Cn(θ) converges to the maximizer of C(θ), which 

we just showed was 0.   

 

Thus the maximizer of 1 ln( ( )in f Y θ− , =∑  1 ( )nn L θ−  converges to θ0, so the MLE is 

consistent. 
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Sketch of Asymptotic Normality  
 
First (Asymptotic normality of score): 
 

     
	  
1
n

S1:n(θ0) d⎯ →⎯ N (0, I(θ0))   

 

follows immediately from applying the CLT to 
	  
1
n

Si(θ0)
i=1

n

∑ .  

 
Next (mean-value expansion) 
 

 
Sn (θ̂MLE ) = Sn (θ0 )+

∂Sn ( !θ )
∂θ

(θ̂MLE −θ0 )    

 
where  !θ  is between θ0 and M̂LEθ .  
 
(First Order Conditions for Maximum): Since ˆ( ) 0n MLES θ = ,  
 

 
n(θ̂MLE −θ0 ) = − 1

n
∂Sn ( !θ
∂θ

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

−1
1
n
Sn (θ0 )

⎡
⎣⎢

⎤
⎦⎥

  

 
 
and (Asymptotic behavior of Hessian) 
 

 
− 1
n
∂Sn ( !θ )
∂θ

→
p
I (θ0 )

 
 

(uniform LLN, CMT, Consistency of m̂leθ ) .   
 
Thus  

 1ˆ( ) (0 ( ) )
d

MLE o on N Iθ θ θ −− → ,  

by Slutsky’s Theorem.  
 
These results also hold for vector M̂LEθ  and vector values S1:n(θ0), etc.  
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Method of Moment Estimators 

Suppose Yi, i = 1, … , n is a sequence of i.i.d.(µ, Σ) random 1l×  vectors.  

The method of moments estimator of µ is  

 1ˆMM in Yµ −= .∑  

From the LLN and CLT, we have  

 ˆ
as

MMµ µ→  

and  

 ˆ( ) (0 )
d

MMn Nµ µ− → ,Σ . 

Notice that the estimator can be constructed and these properties obtained without 

knowing very much about the probability distribution of Y .  

 

Now suppose that µ = h(θ0) where µ is l×1, θ0 is k×1 with k ≤ l. The goal is to 

estimate θ0. A Method of Moments estimator can be obtained by solving  

 

 min ( )nJθ
θ  

where  

 1 1

1 1( ) [ ( ( ))] [ ( ( ))]

( ( )) ( ( ))

n n

n i i
i i

J Y h Y h
n n
Y h Y h

θ θ θ

θ θ

′

− −

′

= − −

= − −

∑ ∑  

 

Let ˆMMθ  denote the method of moments estimator. The properties of ˆMMθ  can be 

derived in a way that parallels the discussion of the maximum likelihood estimator.  

 

Consistency follows by arguing that Jn(θ) → J(θ) where J(θ) is minimized at θ = θ0.  
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Asymptotic normality is proved using the following steps  

(Asymptotic normality of gradient): The gradient is  

 

 
( ) ( )( ) 2[ ] ( ( ))n

n
J hg Y hθ θθ θ
θ θ

′
′

∂ ∂= = − −
∂ ∂

 

so that  

 
( ) ( ) ( )( ) 2[ ] [ ( ( ))] (0 4[ ] [ ]

d
o o o

n o o
h h hng n Y h Nθ θ θθ θ
θ θ θ

′ ′
′ ′ ′

∂ ∂ ∂= − − → , Σ
∂ ∂ ∂

 

 

(Mean Value Expansion):  Linearize ˆ( )n MMg θ  around ( )n og θ and solve for ˆMMθ .  

 
gn (θ̂MM ) = gn (θ0 )+

∂gn ( !θ )
∂θ '

(θ̂MM −θ0 )   

where  !θ  is between oθ and ˆMMθ .  

(Asymptotic Behavior of Hessian): Show 
 

∂gn ( !θ )
∂θ '

→
p
2H where 

  
H =

∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥

′
∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥   is a a constant, non-singular matrix. To do this, write 

 

 
  

∂gn(θ )
∂θ ′ = 2 ∂h(θ )

∂θ ′

⎡

⎣⎢
⎤

⎦⎥

′
∂h(θ )
∂θ ′

⎡

⎣⎢
⎤

⎦⎥
+ mn(θ )(Y − h(θ ))

 
 
where ( )nm θ denotes the derivatives of ( )h θ θ ′∂ /∂  with respect to θ . Evaluating this 

expression at oθ θ= , the second term vanishes in probability and the first term is 2H. 

To finish argument, expand gn(  θ̂MM ) around gn(θo) to yield 

 

   

n(θ̂MM −θo ) =
∂gn( !θ )
∂θ '

⎡

⎣
⎢

⎤

⎦
⎥

−1

ngn(θ0 )⎡
⎣

⎤
⎦→

d

N 0,H −1 ∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥

′

Σ
∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥H −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

 

so that  ˆ ~ ( )
a

MM o nN Vθ θ , , where Vn = 
  

1
n

H −1 ∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥

′

Σ
∂h(θo )
∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥H −1   . 
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Sufficiency 

A key task is statistics is data reduction, by which I mean summarizing the 

information in a large data set using a small number of “statistics” (functions of the 

data). A useful concept in this regard is a sufficient statistic.  Loosely speaking, if θ  is 

an unknown parameter affecting the probability density of {Y1, Y2, … , Yn}, then a 

statistic S(Y1, Y2, … , Yn) is sufficient for θ , if S(Y1, Y2, … , Yn) summarizes all of the 

information in {Y1, Y2, … , Yn} about θ.  Thus, if interest focuses on the value of θ, 

one only needs to retain the statistic S(Y1, Y2, … , Yn), and the rest of the data can be 

discarded. 

 

To formalize this, let Y ={Y1´, Y2´, … , Yn´}´ denote the vector of random variables 

under study, and S(Y) denote a statistic.  Write the pdf of Y as  fY(y;θ), the pdf of S as 

fS(s;θ) and the conditional pdf of Y given S=s as fY|S(y|s;θ), where each has been 

written to emphasize that the density depends on θ.  The statistic S is sufficient if 

fY|S(y|s;θ) = fY|S(y|s), that is the conditional density of Y given S does not depend on θ.   
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Two examples:  

 (1) Suppose Y1 and Y2 are iid Bernoulli random variables with P(Yi = 1) = θ. Let S = 

Y1 + Y2, and note that S can take on the values 0, 1, or 2.  If S = 0, then Y1 = Y2 = 0, so 

P({0,0}|S = 0) = 1; similarly if S = 2, then Y1 = Y2 = 1, so P({1,1}|S = 2) = 1. If S = 1, 

then one of Yl or Y2 is equal to 1 and the other is equal to 0, with both events being 

equally likely, thus P({0,1}|S = 1) = P({1,0}|S = 1) = 0.5.  In all of these case P(y|S=s) 

does not depend on the value of θ, so S is a sufficient statistic. 

 

(2) Suppose Yi ~ i.i.d. N(µ,1), for i = 1, …, n. Equivalently Y ~ N(µ×l, In), where l is 

an n×1 vector of 1’s.  Let S(Y) = 1
1

n
ii

Y n Y−
=

= ∑  denote the sample mean. Using the 

conditional normal formula, the pdf of  Y | S is normal with mean vector  

µ×l + l×(n−1/ n−1)(Y − µ) = Y × l, and covariance matrix In − n−1ll´. Because this 

conditional distribution does not depend on µ, Y  is sufficient for µ. 
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 2 useful results for Sufficient Statistics: 

 

(1) Factorization Theorem:  Let fY(y;θ) denote the density of Y. Then S is a sufficient 

statistic for θ  if and only if fY(y;θ) can be factored as fY(y;θ) = h(y)g(s;θ), where h(.) 

does not depend on θ.  (The proof is straightforward, and you can see it in the HCM 

textbook). 

 

This theorem is useful for two reasons:  

 

(i) as a mechanical matter it provides another way to check that a candidate S 

is sufficient.  For example, in the Yi ~ iidN(µ,1) example, the pdf fY(y;θ) is 

proportional to 2

1

1exp ( )
2

n

i
i
y µ

=

⎡ ⎤− −⎢ ⎥⎣ ⎦
∑ , but 2

1
( )

n

i
i
y µ

=

−∑  = 

2

1
( ) ( )

n

i
i

y Y Y µ
=

⎡ ⎤− + −⎣ ⎦∑  = 2 2

1
( ) ( )

n

i
i
y Y n Y µ

=

− + −∑  so that the pdf factors as 

required. 

 

(ii) Because fY(Y;θ) = h(Y)g(S;θ) is the likelihood, any likelihood inference 

will be based on g(S;θ) and only involve the data through the sufficient 

statistic.  Thus the MLE of θ is  

 

    θ̂(Y ) = argmaxθ f (Y ;θ) = argmaxθ g(S;θ) = θ̂(S)  

 

and the Bayes posterior is 

 

    

f (θ |Y = y) =
fY |θ ( y |θ)w(θ)

fY |θ ( y |θ)w(θ)dθ∫
=

h( y) fS|θ (s |θ)w(θ)

h( y) fS|θ (s |θ)w(θ)dθ∫

=
fS|θ (s |θ)w(θ)

fS|θ (s |θ)w(θ)dθ∫
= f (θ | S = s)
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(2) Rao-Blackwell Theorem:   

Background: Suppose Y is a random variable with E(Y) = µ and variance 2
Yσ . Let X 

denote another random variable and let µ(x) = E(Y | X = x).  From the law of iterated 

expectations we know that E(µ(X)) = µ. Further, write Y = µ(X) + (Y − µ(X)), and note 

the two terms on the rhs of this expression are uncorrelated (from the law of iterated 

expectations), so that  
2
Yσ = var(µ(X)) + var(Y − µ(X)).  This implies that var(µ(X)) ≤ 2

Yσ . 

 

Application:  Suppose θ̂ (Y) is an unbiased estimator of θ, so that θ = E[θ̂ (Y)] and let 

S be a sufficient statistic for θ. Using the law of iterated expectations:  

θ = E [θ̂ (Y)] = E[E[θ̂ (Y) |S]] = E[   
!θ(S) ], where    

!θ(S) = E[  θ̂(Y ) |S]. 

 

Note that while    
!θ(S) = E[  θ̂(Y ) |S] is a function of S, it is not a function of θ, because 

the conditional distribution of Y given S does not depend on θ.  Thus,    
!θ(S) is an 

estimator in the sense that it depends on the data (S) but not the unknown value of θ.  

 

Now, E(  θ̂(Y ) ) = E(E(  θ̂(Y ) | S) ) = E(   
!θ(S) ) from the law of iterations, so    

!θ(S)  is 

unbiased, and from our result above, it has a variance that is weakly smaller than θ̂

(Y).  Thus, the MSE of an unbiased estimator, θ̂ (Y), can be reduced, by computing the 

expected value of the estimator conditional on a sufficient statistic,    
!θ(S) .  

 

Example:  Yi ~ i.i.d. N(µ, 1). Let S = Y . Let µ̂ = Y1.  This estimator is unbiased and 

has a variance equal to 1.  Now E( µ̂ |S) =   !µ  = E(Y1 | Y ) = ( )1/
1/
n Y Y
n

µ µ+ − = , so 

that the variance of the estimator  !µ  is 1/n. 
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Hypothesis Testing 

We will first cover hypothesis testing in a specific (important) example. We'll then 
move on to more general discussion of the hypothesis testing problem.  Suppose we 
are interested in a k×1 vector of parameters, say θ, that characterize the probability 
distribution of Y. Also, suppose we have an estimator of θ, say  θ̂ , where (perhaps 
based on an asymptotic approximation) we have  θ̂  ~ Nk(θ, Ω) where we know Ω but 
we don't know the value of θ. Suppose there are two competing hypotheses:  
 

Ho: θ = θ0 (where θ0 is a known value of θ) 
 
and 
 

Ha: θ ≠ θ0. 
 

In the jargon of hypothesis testing, H0 is called the null hypothesis and Ha is called 

the alternative hypothesis.  How might we decide between H0 and Ha? The standard 

procedure is based on the following logic:  

If θ = θ0, then  θ̂  should be close to θ0, that is || θ̂  − θ0|| is likely to be small. 
 
But if θ ≠ θ0, then || θ̂  − θ0|| is likely to be large. 
 
We are helped with "likely" and "small" and "large" because we know that  
 θ̂  ~ N(θ, Ω).  Thus, we can form a "test-statistic", say ξ, as  
 
ξ = ( θ̂  − θ0)'Ω-1( θ̂  − θ0). 
 
Under Ho:  ξ ~ 	 χ k

2  , where k is the number of elements in θ.  
 
Under Ha:  ξ will have a distribution that puts more mass on larger values than under 
the 	 χ k

2  distribution because the wrong mean has been used for the distribution of  θ̂ . 
 
This gives rise the decision rule of the form: 
 
(1) Choose H0 if ξ ≤ c  and (2) Choose Ha if ξ > c. 
 
where the number c is called the critical value of the test. 
 
The critical value is chosen so the probability of incorrectly choosing Ha (that is 
incorrectly "rejecting" Ho) is set equal to a pre-specified value (typically 1%, 5%, or 
10%). This probability is called the size of the test. 
 
Suppose we want the size of the test to be α, how do we choose c?  That's easy. c 
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solves   
 
 P(ξ > c | θ = θ0) = α 
 
so that c is the 1-α percentile of the 	 χ k

2
 distribution.  

 
The power of the test is defined as P(ξ > c | Ha is true). But because Ha includes 
many value of θ (the hypothesis is said to be composite), the power will be different 
for the different value of θ included in Ha. 
 
We can say a few general things, however. Suppose the normal distribution for  θ̂   
was based on a CLT argument, say 	  n(θ̂ −θ ) d⎯ →⎯ N (0,V ) . In this case we know 
that Ω = n −1V, and Ω-1 = nV-1.  In this case the test statistic is 
 
ξ = n( θ̂ -θ0)'V −1( θ̂ -θ0) 
 
so that if the mean of  θ̂  is equal to a fixed constant that differs from θ0, then ξ → ∞. 
In this case P(ξ > c) → 1 for any fixed value of c.  The test therefore has power = 1 
for any (fixed) value of θ under the alternative.   
 
When power → 1, a test is said to be consistent. 
 
A test of the form ξ is called a Wald test.  It's basic form can generalized in several 
ways.    
 
Hypotheses involving linear functions of θ: 
 
Suppose the null does not involve restrict all the elements of θ, but rather the linear 
combinations Rθ where R is a j×k matrix with rank j. Suppose the null and alternative 
are: 
 
H0: Rθ = r0 where r0 is known value and Ha: Rθ ≠ r0. 
 
Note that R θ̂  ~ N(Rθ, RΩR'), so the hypotheses can be tested using the Wald statistic 
 
ξ = (R θ̂ -r0) '(RΩR') −1(R θ̂ -r0)  
 
which will be distributed as a 	 χ j

2   random variable under the null.  (Thus, the critical 

value will be the 1 −α percentile of the 	 χ j
2  distribution.) 

 
Hypotheses involving nonlinear functions of θ: 
 
When the normal approximation is motivated by the CLT: 	  n(θ̂ −θ ) d⎯ →⎯ N (0,V ) , 
then nonlinear functions can be handled via the delta method.  Thus, consider the j 
non-linear functions R(θ), with null and alternative: 
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H0: R(θ) = r0 where r0 is known value and Ha: R(θ) ≠ r0. 
 
The delta-method implies 
 

	  n(R(θ̂ )− R(θ )) d⎯ →⎯ N (0, HVH ')  where 
  
H = ∂R(θ )

∂θ '
  

 

so that    R(θ̂ )∼
a

N (R(θ ), "Ω) , where  !Ω=n −1HVH'. 
 
The Wald statistic becomes ξ = (R( θ̂ )  − r0) '( !Ω ) −1 (R( θ̂ )  − r0). 
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With this important specific case out of the way, let's discuss the hypothesis testing 
problem more generally. 
 
General Framework: Suppose that we have two competing hypotheses about the 
distribution of a random variable Y. 
 
Hypothesis 1 will be called the Null and is written as  

Ho: Y ~ Fo 

 

Hypothesis 2 will be called the Alternative and is written as 

Ha: Y ~ Fa 

 

It is useful to categorize the errors in inference that we can make 

 

We can say that Ha  is true when Ho is true. This is called Type 1 Error  

We can say that Ho is true when Ha is true. This is called Type 2 Error 

  

We will consider tests based on realizations of the random variable Y. Specifically, we 

will define a region of the sample space, say W, and reject Ho (Accept Ha) if Y ∈ W,  

and otherwise reject Ha (Accept Ho). W is called a Critical Region . 

 

Our goal is to find procedures for choosing W to minimize the probability of making 

errors. However, we can also always make the probability of type 1 error smaller by 

making W smaller, and make the probability of type 2 error smaller by making W 

larger. A standard procedure in test design (procedures for choosing W) is to fix the 

probability of type 1 error at some pre-specified value, and choose the critical region 

to minimize the probability of type 2 error.  

 

The pre-chosen probability of type 1 error is called the size of the test. 

  

The probability of accepting Ha when Ha is true is called the power of the test: Power 

= 1 − P(type 2 error).  

 

The hypothesis testing design problem is: Choose a test to maximize power subject to 

a pre-specified size.  
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Likelihood Ratio Tests and the Neyman-Pearson Lemma 

The Neyman-Pearson Lemma says that power is maximized, subject to a size 

constraint, by choosing the critical region based on the likelihood ratio  

 

    
( )( )
( )
a

o

Lik YLR Y
Lik Y

=  

 

where Lika(Y) and Liko(Y) are the likelihoods under the alternative and null, 

respectively. The critical region for a test with size α is  

 

Wα = {y | LR(y) > cα}  

where cα is chosen so that  

 

P[LR(Y) > cα | Y ~ Fo ] = α 

 

 

The proof of this result is given on the next page.  
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Suppose the random variables have a continuous distribution with density fa and fo 

under the alternative and null. Then Liko = fo and Lika = fa.  

 

Let Wα denote the NP critical region. Let Xα denote any other critical region with size 

α. Note  

Wα  = (Wα ⋂ Xα) ⋃ (Wα ⋂ Xα
c ) 

and  

Xα = (Xα ⋂ Wα) ⋃ (Xα ⋂ Wα
c ) 

Now (because tests have size α):  

 ( ) ( )o oW X
f y dy f y dy

α α
α = =∫ ∫  

so that   

  
α =

Wα∩Xα
∫ fo( y)dy +

Wα∩Xα
c∫ fo( y)dy =

Xα∩Wα
∫ fo( y)dy +

Xα∩Wα
c∫ fo( y)dy  

which implies 

 
  Wα∩Xα

c∫ fo( y)dy =
Xα∩Wα

c∫ fo( y)dy  

But, for any Y ∈ Wα  (and hence for any Y ∈ (Wα ⋂ Xα
c )), fa(Y) > c fo(Y), and for any Y 

∈ Wα
c   (and hence for any Y ∈ (Xα ⋂Wα

c ))  fa(Y) ≤ c fo(Y)). Thus  

 

 
  Wα∩Xα

c∫ fa ( y)dy ≥
Xα∩Wα

c∫ fa ( y)dy . 

so that  

 

  Wα
∫ fa ( y) =

Wα∩Xα
∫ fa ( y)+

Wα∩Xα
c∫ fa ( y)dy ≥

Xα∩Wα
∫ fa ( y)dy +

Xα∩Wα
c∫ fa ( y)dy =

Xα
∫ fa ( y)dy  

or 

P(Y ∈ Wα | Y ~ Fa) ≥ P(Y ∈ Xα | Y ~ Fa). 
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Parametric Restrictions 

Write the density of Y as ( )f y θ, , where θ is a 1k × vector of parameters. Suppose  

θ∈Θ, where  

     Ho: θ ∈ Θo 

     Ha: θ ∈ Θa 

where Θ = Θo∪Θa  and Θo∩Θa = ∅.  

Example: Yi ~ iid N(µ, 1), for i = 1, … , n.  

Ho: µ = µ0 

Ha: µ = µa 
with µo ≠ µa. Note  

 2 2

1

1( ) (2 ) exp[ ( ) ]
2

n
n

i
i

f y yµ π µ−

=

, = − −∑  

and thus 

 
2 21( ) ln( ( )) [ ( ) ( ) ]

2
( ) ( )

i o i a

o a i a o

lr Y LR Y Y Y

a Y

µ µ

µ µ µ µ

= = − − −

= , + −

∑ ∑
∑

 

 

Evidently, when µa > µo, the LR test rejects for large values of iY∑ , or equivalently 

large values of 1
iY n Y−= .∑   

 

This means that we can write the LR testing procedure as  

Reject Ho  when aY c>  where ac is chosen so that  

 

 
  
P(Y > ca |Y ~ N (µo,

1
n

) =α  

 

where the notation makes clear that the probability is computed under the assumption 

that the sample was drawn from the null distribution.  
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Notice that the critical region is the same for any Ha with µa > µ0. That is, we use the 

same critical region for  

Ho: µ = µ0 

Ha: µ > µo 
 

Since the LR critical regions are the same for all of the simple hypotheses making up 

aH and each is most powerful, then the LR procedure is said to be Uniformly Most 

Powerful (UMP) for Ho vs. Ha in this instance.  

 

As a general matter, UMP tests don't exist.  That is, there is no single test (critical 

region) that maximizes power for all values of the parameter under the alternative.  

What can be done in this case? One approach is to use a weighting function to capture 

the tradeoff between the various values under the alternation and then to construct a 

test that maximizes weighted average power. 

 

Maximizing Weighted Average Power: 

Consider the simple null and composite alternative hypotheses: 

 

Ho: θ = θo   and Ha: θ ∈Θa. 

 

Suppose you want to construct a test that maximizes weighted average power using 

the weight function w(θ) for values of θ ∈Θa. Write the density of y, conditional on a 

particular value of θ as f(y|θ). For critical region W, the power of the test for a 

particular θ is ( | )
W

f y dyθ∫ , so that weighted average power is  

WAP = ( | ) ( )
a W

f y dy w dθ θ θ
Θ

⎡ ⎤
⎢ ⎥
⎣ ⎦
∫ ∫ .  This can be written as  

( | ) ( ) ( )
aW W

WAP f y w d dy g y dyθ θ θ
Θ

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫ , where g(y) = ( | ) ( )

a

f y w dθ θ θ
Θ
∫ . 

 

Notice that g(y) is the density of Y under the assumption that θ is a random variable 

with density w(θ) and f(y|θ) is the density of Y conditional on θ.  Thus, the problem is 
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equivalent to the testing problem with a simple alternative:   
!Ha : y ~ g( y) . The best 

test is given by the Neyman-Pearson test, that is the null is rejected for large values of  

 

LR(Y) = 
( | ) ( )

( )
( | ) ( | )

a

o o

f Y w d
g Y
f Y f Y

θ θ θ

θ θ
Θ=
∫

. 

 
Example 1:  Yi ~ iid N(µ,1), where Y is a scalar. We are interested in H0: µ = µ0 
versus Ha: µ ≠ µ0. Without loss of generality, set µ0 = 0.  Suppose we put weight of ½ 
on each of µ = 1 and µ = -1. One shortcut to constructing the test is to note that  Y  is 
sufficient for µ, so we need only consider the scalar random variable  Y ~ N(µ,1/n). A 
calculation shows that the WAP test rejects for large values of ζ =  enY + e−nY  = 

 e
nY + e−nY  = ζ(| Y |), where the function is increasing in the value of | Y |.  Thus, the 

test rejects for large values of | Y |. 
 
 
Example 2: Yi ~ iid Nk(µ,Σ) where Y is a k×1 vector.  We are interested in H0: µ = µ0 
versus Ha: µ ≠ µ0.  Suppose we use a weight function with µ ~ N(0,ω2Σ).  In this case 
we can see that the distribution of Y under this weighted average alternative is  
Ha,weightd: Y ~ N(0,(1+ω2)Σ).  Using sufficient statistics, the null and weighted-average 
alternative are:  
 
 H0:  Y  ~ N(µ0,n-1Σ) versus Ha,weights:  Y  ~ N(0, (1+nω2)n −1Σ) 
 
The WAP test is then the LR, which is 
 

 ζ =   e
0.5 n(Y −µ0 )'Σ−1((Y −µ0 )−nY 'Σ−1Y /(1+nω 2 )( )  , 

 
so the test rejects for large values of the exponent.  When ω2 → ∞, the test rejects for 
large values of  
 
 ξ  = n( Y - µ0)'Σ −1( Y - µ0) 
 
which is the Wald statistic that we studied earlier as an ad hoc test. 
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Tests based on the maximized value of the likelihood ratio. 

 

Another way to accommodate a composite alternative is to use the largest value of the 

LR statistic under all values of θ ∈ Θa.  For testing  

 

                               Ho: θ = θ0 versus Ha: θ ≠ θo 

  

this yields: 

    
  
maxθ≠θ0

f (Y1:n |θ )
f (Y1:n |θ0 )

⎛

⎝⎜
⎞

⎠⎟
=

f (Y1:n |θ̂ )
f (Y1:n |θ0 )

= ζ (θ̂ )   

where θ̂  is the MLE (and I have assumed that θ̂  ≠ θ0). The Likelihood Ratio 

Statistic is defined as   

   ξLR = 2(ln(ζ (θ̂ ))  

 

and the null hypothesis is rejected for large values of ξLR, that is for ξLR > c, where c is 

a critical value that satisfies 
  
PHo

(ξLR > c)  = α, where α is the size of the test.  To find 

c we need the distribution of ξLR under the null. 

 

Let Ln(θ) = ln(f(Y1:n|θ)), so that ln(ζ(θ̂ )) = Ln(θ̂ )  − Ln(θ0) 

 

Write  

   
Ln(θo ) = Ln(θ̂ )+ (θo −θ̂ )'

∂Ln(θ̂ )
∂θ

+ 1
2

(θo −θ̂ )'
∂2 Ln( !θ )
∂θ ∂θ ′ (θo −θ̂ )  

 

where  !θ  is between oθ and !θ̂ . Since 
ˆ( ) 0nL θ

θ
∂ =
∂  

   

ξLR = −(θ̂ −θo )′
∂2 Ln( !θ )
∂θ ∂θ ′ (θ̂ −θo )

= [ n(θ̂ −θo )]′[− 1
n
∂2 Ln( !θ )
∂θ ∂θ ′ ][ n(θ̂ −θo )]

 

From our earlier results  

 
,

1ˆ( )] (0 ( ) )
od H

o on N Iθ θ θ −− → ,  



Gerzensee − Week 1 – 2017-18 

89 

and  

 

 

   
− 1

n
∂2 Ln( !θ )
∂θ ∂θ ′

⎡

⎣
⎢

⎤

⎦
⎥ = − 1

n
∑∂2 ln f (Yi , !θ )

∂θ ∂θ ′ →
p,Ho

I(θo ) . 

 

Thus 

      ξLR
d ,H0⎯ →⎯⎯ ξ ~ χ k

2   

  

This final result follows from noting that LRξ  is asymptotically a quadratic form of a 

(0 )N I,  variable around the inverse of its covariance matrix. 

 

Thus, we see that ξLR is (essentially) the same as the Wald statistic ξW that we 

discussed last week, using the MLE of θ.  They differ in only to the extent that they 

use different estimators of the covariance matrix. 

 

Thus, as we discussed last week suppose 	  n(θ̂ −θ ) d⎯ →⎯ N (0,V )  

We could then form a statistic: 

 

ξ = n( θ̂ -θ0)'  V̂ −1 ( θ̂ -θ0) where   V̂  is consistent for V.  Then ξ   
d ,Ho⎯ →⎯⎯    χ k

2  random 
variable.   
 
For MLEs we know that V is the information matrix.  We could estimate it in a variety 
of ways.  Here are a few 
 

  
V̂ = 1

n
∑ si(θ̂ )si(θ̂ )'

⎡

⎣⎢
⎤

⎦⎥

−1

 

 

  
V̂ = 1

n
∑ si(θ0 )si(θ0 ) '

⎡

⎣⎢
⎤

⎦⎥

−1

 

 

 
V̂ = 1

n
si ( !θ )si ( !θ )'∑
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where   !θ  is between θ and  θ̂ .  

 

Score tests:  use 
  

1
n

si(θ0 )
i=1

n

∑   … etc. 
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Confidence Sets 

A (1 ) 100%α− ×  confidence set for θ  is a (random) set of values of θ that contains θo, 

the true value of with probability 1–α. Let C(Y) denote such a set.  That is, suppose 

that P[θo ∈C(Y)] = 1 – α.  (Note that the randomness comes from Y conditional on θ 

= θ0).  

 

An easy way to construct such a set is to use hypothesis tests.  Let Θ denote a set that 

contains the true value of θ.  Consider carrying out hypothesis tests using every value 

of θ  in Θ as a null hypothesis using a test with size α.  Let C(Y) denote the set of 

values for which the test does not reject the null. 

 

Note that, since θo ∈  Θ, the null θ = θo was one of the tests constructed.  This test 

rejected the null with probability α, hence did not reject with probability 1–α.  Hence 

P[θo ∈C(Y)] = 1 – α. 

 

When the hypothesis test is carried out using a Wald-statistic with a limiting χ2 

distribution, the confidence set is particularly easy to form. Note that Ho: θ = θ0 is not 

rejected using a test of size α if  

 2
1κ αξ χ , −≤  

where 2
1k αχ , − denotes the 1 α−  quantile of the 2

kχ distribution. The confidence set is 

therefore  

 C(Y)  = 
   
{θ | (θ! −θ )′[1

n
V"]−1(θ! −θ ) ≤ χκ ,1−α

2 }  

which is recognized as the interior of an ellipse centered at θ = !θ̂ .  

In the one dimensional case ( 1)k = , the normal distribution can be used in the place of 

the χ2 yielding  

 C(Y)  = 
   
{θ |θ! − Z

1−α
2
[1
n

V"]
1
2 ≤θ ≤θ! + Z

1−α
2
[1
n

V"]
1
2 }  

where 
21Z α−

denotes the 21 α− ordinate of the (0 1)N , distribution.   
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Note that confidence sets are “frequentist” constructs.  They treat θ as fixed and the 

randomness in the set comes from Y in C(Y).  Bayes methods can be used to construct 

analogous sets called credible sets, although their interpretations differ from 

confidence sets. Credible sets are discussed below. 
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Efficient Confidence Sets and Pratt's Insights 

We have discussed constructed confidence sets by "inverting" test statistics, but this is 
not the only way to form such sets.  Perhaps the easiest is to simply flip a coin for 
each value of θ  and include that value if a "heads" appears, and otherwise exclude 
that value.  Such a confidence set will contain the true value with probability 0.50 (the 
probability of a head appearing).  Of course, this is a silly way to form a confidence 
set because it ignores the information in Y, yielding a confidence set that is "larger" 
than it needs to be. 
 
Pratt (1961)1 discusses efficient confidence sets and shows how these are related to 
most powerful (i.e., efficient) tests.  Here is a version of his insights. 
 
Let C(Y) denote a confidence set for a parameter θ.  The "volume" of C(Y) is 
  
   VC(Y) = ∫ 1[θ ∈ C(Y)]dθ  
 
where 1[ ] is the indicator function.  ( 1[x] = 1 if x is 'true' and 1[x] = 0 if x is 'false'.) 
 
Because the set C(Y) depends on Y, the set is random, and so is its volume.  Suppose Y 
~ f.  Then the expected volume is: 
 
   RC = E[VC(Y)] = ∫ VC(y)f(y)dy. 
 
which serves as a criteria for evaluating confidence sets: C1(Y) is preferred to C2(Y) if 
RC1 < RC2. 
 
Now, consider the testing problem:  Ho: Y ~ fθ versus Ha: Y ~ f. If we have a 1-α 
confidence set C(Y), an α-level test can be constructed as:  'accept Ho if θ ∈ C(Y), and 
otherwise reject Ho'.  The probability of Type II error (i.e., 1-Power) is therefore  
 
 P(accept H0|Ha is true) = P[(θ ∈ C(Y) | Y ~ f  ]= ∫ 1[θ ∈ C(y)]f(y)dy. 
 
Now, rewrite the expression for expected volume: 
 

	    

RC = E[Vc(Y )]= Vc( y) f ( y)dy∫
= 1 θ∈C( y)( )dθ∫⎡⎣⎢

⎤
⎦⎥∫ f ( y)dy

= 1 θ∈C( y)( ) f ( y)dy∫⎡⎣⎢
⎤
⎦⎥∫ dθ

  

 
So that RC can be minimized by choosing a test, 1(θ ∈ C(y), that minimizes the 
probability of type II error .. i.e., that maximizes power.   This is achieved using a 
Neyman-Pearson test. 
 

                                                
1 Pratt, John W. (1961), "Length of Confidence Intervals," Journal of the American Statistical 
Association, 56 (295), pp. 549-567. 
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Example:   
 
Above we considered the testing problem with Yi|µ ~ i.i.d. Nk(µ, Σ) and  
 

H0: µ = µ0 versus Ha: µ ~ N(0,ω2Σ). 

We showed that, when ω2 was large, the optimal test was the Wald test 

 

	    ξ= (Y −µ0)'(n−1Σ)−1(Y −µ) . 

 

Pratt's results show that a confidence interval formed by inverting this test will have 
the smallest expected volume, with the expectation computed using  µ ~ N(0,ω2Σ) for 
large ω2. 
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More on Bayes Procedures 
 
Recall the "normal-normal" example we studied a few days ago with  
 
Yi|µ ~ i.i.d.N(µ, σ2)  and µ ~ N(m, ω2).  Because  Y  is sufficient for µ, we can 
summarize the sample information with the conditional distribution  Y |µ ~ N(µ, σ2/n).  
The properties of the normal tell us that  
 

  

Y
µ

⎛

⎝
⎜

⎞

⎠
⎟ ~ N m

m
⎡

⎣
⎢

⎤

⎦
⎥ , σ 2 / n+ω 2 ω 2

ω 2 ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟   

 
The posterior for µ follows directly: µ| Y ~ N(λn Y + (1-λn)m, ω2(1-λn)) with  
 

  
λn =

ω 2

ω 2 +σ 2 / n
 . 

 
If loss is quadratic, risk is MSE and the Bayes estimator is the posterior mean: 

  
µ̂Bayes = λnY + (1− λn )m . 
 
Some properties of: 
 
(a.0) E(µ| Y ) = 

  
µ̂Bayes = λnY + (1− λn )m  

(b.0) var(µ| Y ) = ω2(1-λn) 
 
 
(a.1) E(

  
µ̂Bayes ) = m 

(b.1) var(
  
µ̂Bayes ) =   λn

2  (σ2/n + ω2) 

(c.1) E(
  
µ̂Bayes− µ)2 =   λn

2  σ2/n + (1 −λn)2ω2 
 
(a.2) E(

  
µ̂Bayes | µ) = λnµ + (1 −λn)(m −µ) 

(b.2) var(
  
µ̂Bayes | µ) =   λn

2 σ2/n 

(c.2) E[(
  
µ̂Bayes − µ)2 | µ] =   λn

2  σ2/n + (1 −λn)2(m −µ)2 
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(d.0.1) 

  

µ − λnY − (1− λn )m

ω 2(1− λn )
Y  ~ N(0,1)  

 
 
(d.0.2) 

  
P λnY + (1− λn )m−1.96 ω 2(1− λn )( ) ≤ µ ≤ λnY + (1− λn )m+1.96 ω 2(1− λn )( ) |Y( )  

= 0.95 
 
(Note: (d.0) hold unconditionally as well .. over the joint normal distribution given 
above) 
 
 

(d.2.1) 
  

Y − µ
σ 2 / n

µ ~ N(0,1) 

 

(d.2.2) 
  
P Y −1.96 σ 2 / n( ) ≤ µ ≤ Y +1.96 σ 2 / n( ) |µ( ) = 0.95  

 
(Note: (d.2) hold unconditionally as well .. over the joint normal distribution given 
above.) 
 
Which is the narrower .. the Bayes "credible set" or the Frequentist "confidence set"? 
 
 
Large-sample results: 
 
Suppose n is large and ω2 is a fixed positive number.  Then  n (1-λn) → 0, so that  

 n (
  
µ̂Bayes −  Y )  p⎯ →⎯  0. 

 
Also 

  
n µ − µ̂Bayes( ) = n µ − λnY − (1− λn )m( ) p⎯ →⎯ n µ −Y( )  (conditional on  Y ). 

 
But  n µ −Y( )  |  Y  ~ N(0,σ2). 
 
Large-n Posterior:  µ |  Y  ~ N( Y , σ2/n) 
 
Large-n Samplings distribution:   Y |µ  ~ N(µ, σ2/n) 
 
and 
 
 Y −µ ~ N(0,σ2/n) (conditional on µ, conditional on  Y , and unconditionally) 
The general result that the posterior is approximately normal, centered at the MLE 

with variance given by the inverse of the information is called the "Bernstein – von 



Gerzensee − Week 1 – 2017-18 

97 

Mises theorem", which says (loosely) that (under a set of regularity conditions) that 

the posterior distribution of θ is well approximated in large samples by the 

  N (θ̂ MLE ,n−1I(θ0 )−1) , where I(θ0) is the information. The proof is sketched here: 

 
Let Y1:n denote the sample of size n of i.i.d. observations.  The likelihood is f(Y1:n|θ), 

and the log-likelihood is Ln(θ) = ln(f(Y1:n|θ)). The prior is w(θ). 

 

The posterior for θ | Y1:n is 1:
1:

1:

( | ) ( )( | )
( | ) ( )

n
n

n

f Y wf Y
f Y w d

θ θθ
θ θ θ

=
∫

 . 

Let γ = ˆ( )MLEn θ θ− , so that ˆ /MLE nθ θ γ= + . Then  

 

  

f (γ |Y1:n ) =
f (Y1:n |θ̂ MLE + γ / n)w(θ̂ MLE + γ / n)

f (Y1:n |θ̂ MLE + γ / n)w(θ̂ MLE + γ / n)dγ∫
n−1

n−1

=
f (Y1:n |θ̂ MLE + γ / n) / f (Y1:n |θ̂ MLE )⎡

⎣
⎤
⎦w(θ̂ MLE + γ / n)

f (Y1:n |θ̂ MLE + γ / n) / f (Y1:n |θ̂ MLE )⎡
⎣

⎤
⎦w(θ̂ MLE + γ / n)dγ∫

= eLn (θ̂ MLE+γ / n )− Ln (θ̂ MLE )w(θ̂ MLE + γ / n)
eLn (θ̂ MLE+γ / n )− Ln (θ̂ MLE )w(θ̂ MLE + γ / n)dγ∫

 

Now as n grows large 0
ˆ( / ) ( )

p
MLEw n wθ γ θ+ →  and  

   
Ln(θ̂ MLE + γ / n)− Ln(θ̂ MLE ) = 1

2
∂2 Ln( !θ )
∂θ 2

γ 2

n
, where  !θ  is between ˆMLEθ and 

ˆ /MLE nθ γ+ .  Thus 2
0

1ˆ ˆ( / ) ( ) ( )
2

p
MLE MLE

n nL n L Iθ γ θ θ γ+ − →− .  

 

Using these approximations  
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while the final equality follows by noting that the denominator of the preceding 

expression is 1. 

 

The results then follows by noting that 2
00.5 ( )1

01/ 2 ( ) II e θ γπ θ −−  is the normal density 

with mean = 0 and variance = 1
0( )I θ − .  That is, for large n, γ | Y1:n ~ N(0, 1

0( )I θ −  ). 

Because ˆ /MLE nθ θ γ= +  the posterior of θ is approximately   N (θ̂ MLE ,n−1I (θ0 )−1) . 
 
 
A key assumption in this argument is that   θ̂

MLE is consistent for the true value of θ. 
 
Here is an example in which θ is "set-identified" and the MLE is not unique, and thus 
not consistent:  Suppose (Xi, Yi) are iid N with means µX and µY and identity 
covariance matrix.  It is known that µX < µY.  The parameter of interest is θ with µX ≤ 
θ ≤ µY. The likelihood is maximized by any value of satisfying   X ≤ θ̂MLE ≤ Y .  Let 
w(θ) denote the prior for θ.  The posterior will converge to P(θ | X1:n, Y1:n) → 

  
w(θ ) / w(θ )dθµX

µY∫   for µX ≤ θ ≤ µY and zero elsewhere. The Bayes credible sets will 

have asymptotic Frequentist coverage of 0 or 1. 
 
 

  

f (γ |Y1:n ) = e−0.5I (θ0 )γ 2

e−0.5I (θ0 )γ 2

dγ∫
w(θ0 )
w(θ0 )

=
1/ 2π I (θ0 )−1

1/ 2π I (θ0 )−1

e−0.5I (θ0 )γ 2

e−0.5I (θ0 )γ 2

dγ∫
= 1/ 2π I (θ0 )−1e−0.5I (θ0 )γ 2


