Exercises For Thursday Evening

1. Presented by: Janasch Weiss

 X_i are distributed *i.i.d.* Bernouli, with $E(X_i) = p$, for i = 1, ..., n. Let \overline{X} denote the sample mean.

- (a) Prove that $\sqrt{n}(\overline{X}-p) \xrightarrow{d} N(0,V)$ and derive an expression for V.
- (b) Prove that $\sqrt{n}(\ln(\overline{X}) \ln(p)) \xrightarrow{d} N(0,W)$ and derive an expression for W.

2. Presented by: Marc Brunner

A researcher wants to estimate the parameter p from a Bernoulli population. She plans to choose a random sample estimate p using \bar{X} . She wants to choose a sample size, n, large enough so that $P(|\bar{X} - p| > 0.02) \le 0.01$. Using the approximation based on Question 1a:

- (a) How large should n be if p = 0.3?
- (b) How large should n be if p = 0.1?
- (c) What advice would you give the researcher that would work regardless of the value of *p*?

3. Presented by: Federica Braccioli

 $X_i \sim i.i.d.$ with mean 0 and variance σ^2 . Consider the method of moments estimator $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

- (a) Show that $\sqrt{n}(\hat{\sigma}^2 \sigma^2) \xrightarrow{d} N(0,V)$ and derive an expression for V. (Hint and some notation: Let $a_i = X_i^2 \sigma^2$. Show that $a_i \sim i.i.d.$ and derive the mean and variance of a_i . Write the problem in terms of a_i . Note: you will have to make additional assumptions about the existence of moments. State your assumptions carefully.)
- (b) Propose an estimator for V and prove that your estimator is consistent.

4. Presented by: Armando Näf

Suppose $X_i = \varepsilon_i + \varepsilon_{i-1}$ where ε_i are *i.i.d.* with mean 0 and variance 1 for i = 0, ..., n. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- (a) Show that $\overline{X} = 2\frac{1}{n}\sum_{i=1}^{n} \varepsilon_i + R_n$ (where R_n is a "remainder term") and derive an expression for R_n .
- (b) Show that $R_n \xrightarrow{p} 0$.
- (c) Show that $\overline{X} \xrightarrow{p} 0$.
- (d) Show that $\sqrt{n}R_n \xrightarrow{p} 0$.
- (e) Show that $\sqrt{n}\overline{X} \xrightarrow{d} N(0,V)$ and derive an expression for V.

5. Presented by: Alice Antunes

 $Y \sim N(\mu, 1)$. I have a prior on μ that puts weight of 1/3 on $\mu = 1$ and a weight of 2/3 on $\mu = 2$. I observe Y = 1.

- (a) Derive the posterior for μ .
- (b) Loss is quadratic: $L(\hat{\mu}, \mu) = (\hat{\mu} \mu)^2$. What is the Bayes estimate of μ ?