Thursday Evening

1. Lukas Heim (SNB)

A time series x_t exhibits substantial persistence. To eliminate the persistence, a researcher transforms x as $y_t = (1-L)x_t$.

(a) Derive the gain of the filter (1-L) and discuss how the filter has altered x. (Has the filter attenuated the long-period components (persistence) of x? What has it done to the other periodic components of x?)

(b) Another researcher transforms x as $w_t = (1+L)(1-L)x_t$. Explain what this filter does to the periodic components of x_t ?

2. Florian Eckert (ETH)

Suppose that *y* and *x* follow the process

$$y_{t} = \alpha x_{t-1} + \varepsilon_{t}$$
$$x_{t} = \phi x_{t-1} + v_{t}$$

where $v_t = \varepsilon_t + e_t$, where ε and e are mutually independent iid(0,1) processes. Suppose that $|\phi| < 1$. Let $\hat{\alpha}$ and $\hat{\phi}$ denote the OLS estimators of α and ϕ .

(a)

(i) Derive asymptotic distribution of $\hat{\alpha}$.

(ii) Derive asymptotic distribution of $\hat{\phi}$.

(iii) Derive asymptotic distribution of the 2×1 vector $(\hat{\alpha}, \hat{\phi})$.

(b) In a sample of 100 observations $\hat{\alpha} = 1.3$ and $\hat{\phi} = 0.72$. Derive a 95% confidence interval for α .

3. Olaf Verbeek (EPFI) ... (2nd time)

Suppose that $y_t = x_t \beta + u_t$, where $u_t = \phi u_{t-1} + \varepsilon_t$, $x_t = e_t + \theta e_{t-1}$, where ε_t and e_t are both i.i.d. with mean zero and variance σ_{ε}^2 and σ_{e}^2 , and ε_t and e_{τ} are independent for all t and τ . Let $\hat{\beta}$ denote the OLS estimator of β based on a sample of size T, and let \hat{u}_t denote the OLS residual.

(a) Show that
$$\sqrt{T}(\hat{\beta}-\beta) \xrightarrow{d} N(0,V) \sqrt{T}(\hat{\beta}-\beta) \xrightarrow{d} N(0,V)$$
 and derive an expression for V .

(b) Suppose that T = 100, $\hat{\beta} = 2.1$, $\frac{1}{100} \sum_{t=1}^{100} x_t^2 = 5$, $\frac{1}{99} \sum_{t=2}^{100} x_t x_{t-1} = 2.5$, $\frac{1}{98} \sum_{t=3}^{100} x_t x_{t-2} = 1.0$, $\frac{1}{100} \sum_{t=1}^{100} \hat{u}_t^2 = 4$, $\frac{1}{99} \sum_{t=2}^{100} \hat{u}_t \hat{u}_{t-1} = 3.6$, $\frac{1}{98} \sum_{t=3}^{100} \hat{u}_t \hat{u}_{t-2} = 3.1$, $\frac{1}{99} \sum_{t=2}^{100} x_t \hat{u}_{t-1} = 0.8$, $\frac{1}{99} \sum_{t=2}^{100} \hat{u}_t x_{t-1} = 0.2$. Use your result in (a) to construct an approximate 95% confidence interval for β .

4. Wild Card

Suppose that $y_t = x_t \beta + u_t$, with $u_t = \varepsilon_t - 0.8\varepsilon_{t-1}$, and $x_t = \varepsilon_{t+1}$, where ε_t is iid(0,1). Let $\hat{\beta}$ denote the OLS estimator of β .

(a) Show that $\sqrt{T}(\hat{\beta}-\beta) \xrightarrow{d} N(0,V)$, and derive an expression for *V*.

(b) Noting that $(1-0.8L)^{-1}u_t = \varepsilon_t$, the GLS estimator of β can be formed by regressing $(1-0.8L)^{-1}y_t$ onto $(1-0.8L)^{-1}x_t$. Derive the probability limit of the GLS estimator.