Exercises For Tuesday Evening

1. Presented by: David Torun

Suppose X has probability density function (pdf) $f(x)=1 / x^{2}$ for $x \geq 1$, and $f(x)=0$ elsewhere.
(a) Compute $P(X \geq 5)$.
(b) Derive the CDF of X.
(c) Show that the mean of X does not exist.

2. Presented by: Nadia Ceschi

(a) X has probability density $f(x)=1 / 4$ for $2 \leq x \leq 6$. Let $Y=X^{2}$.
(i) What is the CDF of Y ?
(ii) What is the probability density function for Y ?
(b) X has probability density $f(x)=1 / 4$ for $-2 \leq x \leq 2$. Let $Y=X^{2}$.
(i) What is the CDF of Y ?
(ii) What is the probability density function for Y ?

3. Presented by: Oliver Kalsbach

X is a continuous random variable with density $f(x)$ and CDF $F(x)$ where F is 1-to-1. Let $Y=$ $F(X)$. Show that $Y \sim \mathrm{U}[0,1]$. (Y is called the "probability integral transform" (PIT) of X).

4. Presented by: Seda Basihos

(a) Suppose X and Y are independent discrete random variables. X can take on the values $0,1,2$, 3 each with probability $1 / 4$. Y can take on the values $10,11,12$, each with probability $1 / 3 . Z$ $=X+Y$. What is the pdf of Z ? (Jargon: the pdf of Z is called the convolution of the pdfs of X and Y.)
(b) Consider the same setup as (a), so X can take on the values $0,1,2,3$ and Y can take on the values $10,11,12$. The pdf of Y is as in (a). The pdf of X is different and unknown. Suppose you know the pdf of Z. Show how to compute the pdf of X. (Jargon: This is called deconvolution.)
(c) Now suppose X and Y are independent and continuously distributed with densities f_{X} and f_{Y}. Z $=X+Y$. Write an expression for the pdf of Z in terms of the pdfs of X and Y.

Gerzensee - Week 1 - 2017-2018

5. Presented by: Simon Tiechi

The joint density of X and Y is given by $f_{X, Y}(x, y)=c\left(x^{2}+y\right)$ for $0<x<2$ and $0<y<1$, and is equal to zero elsewhere, where $c>0$ is a constant. You are told that $X=1.2$
(a) Compute the minimum mean square error forecast of Y.
(c) Compute the mean squared error of your forecast.

