Exercises For Tuesday Evening

1. Presented by: Anja Garbely

Consider the AR(2) model:

$$
X_{t}=2.0+1.3 X_{t-1}-.5 X_{t-2}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim \operatorname{iid}(0,4)$.
(a) Verify that the roots of the autoregressive polynomial are outside the unit circle.
(b) Compute the eigenvalues of model's companion matrix are verify that they are the inverses of the roots you computed in (a).
(c) Assume that the initial conditions are chosen so that the process is covariance stationary.
(i) What is the mean of X ?
(ii) What is the variance of X ?
(iii) What it the correlation between X_{t} and X_{t-5} ?

2. Presented by: Felix Schonenberger

Consider the MA(2) process:

$$
X_{t}=\varepsilon_{t}+.5 \varepsilon_{t-1}-.36 \varepsilon_{t-2},
$$

where $\varepsilon_{t} \sim \operatorname{iid}(0,4)$.
(a) Verify that the process is invertible.
(b) Construct three other MA processes that have the same autocovariances as the process above. (That is, construct three MA processes with MA coefficients and/or innovation variances different from the one above and from one another.)

3. Presented by: Elio Bolliger

(a) Suppose that X_{t} follows the MA(1) process: $X_{t}=e_{t}-0.5 e_{t-1}$ where e_{t} is i.i.d. with mean 0 and unit variance. Derive the Wold representation for X_{t}. Denote the Wold shocks as ε_{t}. Derive the variance of ε_{t}. Derive a formula that expresses ε_{t} as a function of current and lagged values of e_{t}.
(b) Suppose that X_{t} follows the MA(1) process: $X_{t}=e_{t}-2.0 e_{t-1}$ where e_{t} is i.i.d. with mean 0 and unit variance. Derive the Wold representation for X_{t}. Denote the Wold shocks as ε_{t}.

Derive the variance of ε_{t}. Derive a formula that expresses ε_{t} as a function of current and lagged values of e_{t}.

4. Presented by: Matthias Van Den Heuvel

Suppose that X_{t} follows the $\mathrm{MA}(1)$ process: $X_{t}=\mu+\varepsilon_{t}-\theta \varepsilon_{t-1}$ where μ is a constant and ε_{t} is i.i.d. with mean 0 and variance σ^{2}.
(a) Show that $\bar{X}=\mu+(1-\theta) T^{-1} \sum_{t=1}^{T} \varepsilon_{t}+R$ (where R is a "remainder term") and derive an expression for R.
(b) Show that $\sqrt{T} R \xrightarrow{p} 0$.
(c) Show that $T^{-1 / 2} \sum_{t=1}^{T} \varepsilon_{t} \xrightarrow{d} N\left(0, \sigma^{2}\right)$
(d) Use the result in (a)-(c) to show that $\sqrt{T}(\bar{X}-\mu) \xrightarrow{d} N(0, V)$, and derive V.
(e) (b) In a sample of $T=100, \bar{X}=31.2, T^{-1} \sum_{t=1}^{100}\left(X_{t}-\bar{X}\right)^{2}=5$ and $T^{-1} \sum_{t=2}^{100}\left(X_{t}-\bar{X}\right)\left(X_{t-1}-\bar{X}\right)$ $=1.5$. Construct a 95% confidence interval for μ.

Some Additional Exercices

1. For the general $\operatorname{AR}(p)$ model, prove that the roots of the AR polynomial are the reciprocals of the eigenvalues of the companion matrix.
2. Consider the MA(2) process:

$$
X_{t}=\varepsilon_{t}-\varepsilon_{t-1}-6.0 \varepsilon_{t-2}
$$

where $\varepsilon_{t} \sim \operatorname{iid}(0,1)$. Suppose that you have data on X_{t} for $t \leq T$. How would you use these data to forecast X_{T+1} ? Be specific, and provide an explicit formula.
3. Suppose u_{t} follows the stationary $\operatorname{ARMA}(1,1)$ process $u_{t}=\phi u_{t-1}+\varepsilon_{t}-\theta \varepsilon_{t-1}$, and let
$\lambda_{k}=E\left(u_{t} u_{t+k}\right)=E\left(u_{t} u_{t-k}\right)$.
(a) Derive the moving average representation for u_{t}. (That is, find the values of c_{i} in the
representation $\left.u_{t}=c_{0} \varepsilon_{t}+c_{1} \varepsilon_{t-1}+c_{2} \varepsilon_{t-2}+c_{3} \varepsilon_{t-3}+\ldots\right)$
(b) Show that $\lambda_{k}=\phi \lambda_{k-1}$ for $k \geq 2$.
4. Let $\phi(L)=\left(1-1.2 L+.6 L^{2}\right)$ and $\phi(L)^{-1}=c(L)=c_{0}+c_{1} L+c_{2} L^{2}+\ldots$. Calculate c_{i}, for $i=1,2, \ldots, 10$.
5. Suppose that a random variable y_{t} is generated by one two possible stochastic processes: (i) $y_{t}=0.4 y_{t-1}+\varepsilon_{t}$ or (ii) $y_{t}=\varepsilon_{t}+0.4 \varepsilon_{t-1}$, where ε_{t} is iid with mean 0 and variance σ^{2}. Suppose that you had a partial realization of the process (a sample) of length $T,\left(y_{1}, y_{2}, \ldots, y_{T}\right)$. How would you use these data to choose between process (i) and process (ii)? Explain.
6. Suppose that y_{t} follows the stationary $\operatorname{AR}(p)$ process $\phi(\mathrm{L}) y_{t}=\varepsilon_{t}$, where ε_{t} is $\operatorname{iid}\left(0, \sigma_{\varepsilon}^{2}\right)$. Let x_{t} $=(1+\mathrm{L}) y_{t}$. Prove that x_{t} is covariance stationary.
7. Suppose that Y_{t} follows a MA(2) model:

$$
Y_{t}=\varepsilon_{t}-.2 \varepsilon_{t-1}+.4 \varepsilon_{t-2}
$$

where $\varepsilon_{t} \sim \operatorname{iid} N(0,1)$. You need to make a forecast of Y_{T+1}, but the only piece of information that you have is $Y_{T}=2.0$.
(a) What is your forecast value of Y_{T+1} ?
(b) What is the variance of the forecast error associated with this forecast?
(c) Suppose that you used data $\left\{Y_{t}\right\}_{t=1}^{T}$ to construct your forecast of Y_{T+1}, and suppose that T was large. What would be the variance of the forecast error? (Does your answer depend on the invertibility of the $M A$ process?)
8. Suppose that Y_{t} follows the $\operatorname{AR}(1)$ model with heteroskedastic errors: $Y_{t}=\phi_{1} Y_{t-1}+\varepsilon_{t}$, where $\varepsilon_{t} \mid Y_{0: t-1} \sim \mathrm{~N}\left(0, \sigma_{t-1}^{2}\right)$ where $\sigma_{t-1}^{2}=\omega+\alpha Y_{t-1}^{2}$ for $t=2, \ldots, T$. Suppose that $Y_{0}=0$.
(a) Write the explicit joint density/likelihood function for $Y_{1: T}$ (conditional on $Y_{0}=0$).
(b) The file 518_EX1_5.csv contains a realization of $T=100$ observations for Y_{t}.
(i) Suppose $\phi=0.8, \omega=1$ and $0.0 \leq \alpha \leq 0.9$. Compute the MLE of α.
(ii) You are Bayesian. Before looking at the data you know that $\phi=0.8$ and $\omega=1$, but are unsure about the value of α. Your prior is $\mathrm{P}(\alpha=0.4)=0.6$ and $\mathrm{P}(\alpha=0.7)=0.4$. Use the data to find the posterior for α.

