Tuesday Evening

1. Gema Lax-Martinez (Lausanne)

(a) For an AR(2) model, prove that the roots of the AR polynomial are the reciprocals of the eigenvalues of the companion matrix. (Hint: write out the characteristic polynomial of the companion matrix.)

(b) Extend the result in (a) to the general AR(p) model.

2. David Gallusser (Basel)

- (a) Consider the MA(1) process: $X_t = \varepsilon_t 0.9\varepsilon_{t-1}$ where $\varepsilon_t \sim iid(0,1)$.
 - (i) Verify that the process is invertible.
 - (ii) Construct another MA process with the same autocovariances as the process above.
- (b) Consider the MA(2) process: $X_t = \varepsilon_t 1.1\varepsilon_{t-1} + 0.18\varepsilon_{t-2}$ where $\varepsilon_t \sim iid(0,1)$.
 - (i) Verify that the process is invertible.
 - (ii) Construct three other MA processes that have the same autocovariances as the process above. (That is, construct three MA processes with MA coefficients and/or innovation variances different from the one above and from one another.)

(c) Suppose that X_t follows the MA(1) process: $X_t = \varepsilon_t - 4.0\varepsilon_{t-1}$ where ε_t is *i.i.d.* with mean 0 and variance 1. Derive the Wold representation for X_t .

3. Yu Wu (EPFI)

 $Y_t = X_t + V_t$. Let $\{\varepsilon_t\}$ and $\{e_t\}$ be mutually uncorrelated white noise processes with unit variances.

(a) Suppose $X_t = \varepsilon_t$ and $V_t = e_t$.

(i) Show that Y_t has the representation $Y_t = a_t$, where a_t is white noise. Derive the value of σ_a .

(ii) Write an expression for a_t as a function of current and lagged values of ε_t and e_t .

(b) Suppose $X_t = (1 - 0.5L)\varepsilon_t$ and $V_t = (1 + 0.9L)e_t$.

(i) Show that Y_t has an invertible MA(1) representation, say $Y_t = (1 - \theta L)a_t$, where a_t is

white noise. Derive the value of θ and the σ_a .

(ii) Write an expression for a_t as a function of current and lagged values of ε_t and e_t .

(c) Suppose $(1 - 0.5L)X_t = \varepsilon_t$ and $(1 + 0.9L)V_t = e_t$.

(i) Show that Y_t has an ARMA(2,1) representation $(1 - 0.5L)(1 + 0.9L)Y_t = (1 - \theta L)a_t$, where a_t is white noise. Derive the value of θ and the σ_a .

(ii) Write an expression for a_t as a function of current and lagged values of ε_t and e_t .

(d) (Not For Presentation in Class. Everyone should do this after working (a)-(c)) Suppose X_t follows the ARMA(p_X,q_X) process $\phi_X(L)X_t = \theta_X(L)\varepsilon_t$ and V_t follows the ARMA(p_V,q_V) process $\phi_V(L)X_t = \theta_V(L)e_t$. Show that Y_t follows the ARMA(p_Y, q_Y) process $\phi_Y(L)Y_t = \theta_Y(L)a_t$, where a_t is white nose, $p_Y = p_X + p_V$ and $q_Y = \max(p_X + q_V, p_V + q_X)$.

4. Robert Oleschak (SNB)

Suppose $Y_t = \phi Y_{t-1} + \varepsilon_t$, where $\varepsilon_t = \sigma_t e_t$, $e_t \sim i.i.d$. N(0,1), $ln(\sigma_t) = \rho ln(\sigma_{t-1}) + \varepsilon_{t-1}$ and $Y_0 = 0$, $\sigma_0 = 1$, $\varepsilon_0 = 0$. Let $\theta = (\phi, \rho)$. You have data Y_t , for t = 1, ..., T collected in a vector $Y_{1:T}$.

- (a) Find the likelihood function $f(Y_{1:T} | \theta)$.
- (b) In the Excel file Tuesday.XLSX you will find data for $Y_{1:T}$ with T = 100.
 - (i) Assume that $\rho = 0.9$. Plot the log-likelihood as a function of ϕ . Find the MLE of ϕ .
 - (ii) Assume that $\phi = 0.8$. Plot the log-likelihood as a function of ρ . Find the MLE of ρ .
 - (iii) Find the MLE of $\theta = (\phi, \rho)$.