

Exercises For Wednesday Evening

1. Presented by: Paolo Campli

(a) Suppose $Z \sim N(0,1)$. Use the moment generating function to derive the first four moments for Z .

(b) Suppose $W \sim \chi^2_5$. Use the result in (a) to derive the mean and variance of W .

(c) The distribution of X given $W=w$ is $U[0, w]$ (that is uniform on 0 to w). Use the law of iterated expectations to find $E(X)$, $E(X^2)$ and $\text{var}(X)$.

2. Presented by: Marius Faber

$X \sim N(1, 4)$ and $Y = e^X$.

(a) What is the density of Y ?

(b) Use Jensen's inequality to show that $E(Y) = E(e^X) \geq e^{E(X)} = e^\mu$

(c) Compute $E(Y)$. (Hint: What is the MGF for X ?)

3. Presented by: Ksenia Melnikova

$X \sim N(0,1)$. The distribution of $Y|X=x$ is $N(x,1)$.

(a) Find

- (i) $E(Y)$
- (ii) $\text{Var}(Y)$
- (iii) $\text{Cov}(X, Y)$

(b) Prove that the joint distribution of X and Y is normal. (Hint: how do you find a joint distribution from a marginal and a conditional?)

4. Presented by: Lea Wirth

Suppose X_i , $i = 1, \dots, n$ are a sequence of *iid* random variables with $E(X_i) = 0$ and $\text{var}(X_i) = 1$.

Let $Y_i = iX_i$ and $\bar{Y} = n^{-2} \sum_{i=1}^n Y_i$. Prove $\bar{Y} \xrightarrow{P} 0$. (Hint – can you show mean square convergence?)