Exercises For Wednesday Evening

1. Presented by: Christian Stettler

(a) $Z \sim \mathrm{~N}(0,1)$. Use the moment generating function to derive the first 4 moments of Z.
(b) $Y \sim \chi_{1}^{2}$. Use the result in (a) to derive $E(Y), E\left(Y^{2}\right)$, and the variance of Y.
(c) $W \sim \chi_{k}^{2}$. Use the result in (b) to derive $E(W)$, the variance of W, and $E\left(W^{2}\right)$.

2. Presented by: Ling Zhou

$X \sim N(1,4)$ and $Y=e^{X}$.
(a) What is the density of Y ?
(b) Use Jensen's inequality to show that $E(Y) \geq e^{E(X)}$.
(c) Compute $E(Y)$. (Hint: What is the MGF for X ?) Is the inequality in (b) strict?

3. Presented by: Anna B. Kis

Suppose that X and Y are two random variables with a joint normal distribution. Further suppose $\operatorname{var}(X)=\operatorname{var}(Y)$. Let $U=X+Y$ and $V=X-Y$.
(a) Prove that U and V are jointly normally distributed.
(b) Prove that U and V are independent.

4. Presented by: Jonas Meier

Suppose that the 3×1 vector X is distributed $N\left(0, I_{3}\right)$, and let V be a 2×3 non-random matrix that satisfies $V V^{\prime}=I$. Let $Y=V X$.
(a) Show that $Y^{\prime} Y \sim \chi_{2}^{2}$.
(b) Use Chebyshev's inequality to construct an upper bound for $\operatorname{Pr}\left(Y^{\prime} Y>6\right.$). (You will need some moments for a χ_{2}^{2} random variable. Use the results from the question 1.) (c) Find the exact value of $\operatorname{Pr}\left(Y^{\prime} Y>6\right.$). (You might find it useful to use Matlab, Stata, Excel, etc., to evaluate the χ_{2}^{2} cdf.)

5. Presented by: Andrea Berlanda

$X \sim \mathrm{~N}(3,10), Y \sim \mathrm{~N}(3,100), X$ and Y are independent, and $X_{n}=X+1 / n$.
(a) Show that $X_{n} \xrightarrow{p} X$.
(b) Show that $X_{n} \xrightarrow{d} X$.
(c) Show that $X_{n} \xrightarrow{d} Y$.
(d) Does $X_{n} \xrightarrow{p} X$? Explain.

