Exercises For Wednesday Evening

1. Presented by: Christian Stettler

- (a) $Z \sim N(0,1)$. Use the moment generating function to derive the first 4 moments of Z.
- (b) $Y \sim \chi_1^2$. Use the result in (a) to derive E(Y), $E(Y^2)$, and the variance of Y.
- (c) $W \sim \chi_k^2$. Use the result in (b) to derive E(W), the variance of W, and $E(W^2)$.

2. Presented by: Ling Zhou

 $X \sim N(1, 4)$ and $Y = e^X$.

- (a) What is the density of *Y*?
- (b) Use Jensen's inequality to show that $E(Y) \ge e^{E(X)}$.
- (c) Compute E(Y). (Hint: What is the MGF for X?) Is the inequality in (b) strict?

3. Presented by: Anna B. Kis

Suppose that *X* and *Y* are two random variables with a joint normal distribution. Further suppose var(X) = var(Y). Let U=X+Y and V=X-Y.

- (a) Prove that U and V are jointly normally distributed.
- (b) Prove that U and V are independent.

4. Presented by: Jonas Meier

Suppose that the 3×1 vector X is distributed $N(0, I_3)$, and let V be a 2×3 non-random matrix that satisfies VV' = I. Let Y = VX.

(a) Show that $Y'Y \sim \chi_2^2$.

(b) Use Chebyshev's inequality to construct an upper bound for Pr(YY>6). (You will need some moments for a χ_2^2 random variable. Use the results from the question 1.) (c) Find the exact value of Pr(YY>6). (You might find it useful to use Matlab, Stata, Excel, etc., to evaluate the χ_2^2 cdf.)

5. Presented by: Andrea Berlanda

 $X \sim N(3,10)$, $Y \sim N(3,100)$, X and Y are independent, and $X_n = X + 1/n$.

- (a) Show that $X_n \xrightarrow{p} X$.
- (b) Show that $X_n \xrightarrow{d} X$.
- (c) Show that $X_n \xrightarrow{d} Y$.
- (d) Does $X_n \xrightarrow{p} X$? Explain.