Exercises For Wednesday Evening

1. Presented by: Jeremy Zuchuat

Suppose that Y_{t} follows the $\mathrm{AR}(1)$ model with heteroskedastic errors: $Y_{t}=\phi_{1} Y_{t-1}+\varepsilon_{t}$, where $\varepsilon_{t} \mid Y_{0: t-1} \sim \mathrm{~N}\left(0, \sigma_{t-1}^{2}\right)$ where $\sigma_{t-1}^{2}=\omega+\alpha Y_{t-1}^{2}$ for $t=2, \ldots, T$. Suppose that $Y_{0}=0$.
(a) Write the explicit joint density/likelihood function for $Y_{1: T}$ (conditional on $Y_{0}=0$).
(b) The file 518_EX1_5.csv contains a realization of $T=100$ observations for Y_{t}.
(i) Suppose $\phi=0.8, \omega=1$ and $0.0 \leq \alpha \leq 0.9$. Compute the MLE of α.
(ii) You are Bayesian. Before looking at the data you know that $\phi=0.8$ and $\omega=1$, but are unsure about the value of α. Your prior is $\mathrm{P}(\alpha=0.4)=0.6$ and $\mathrm{P}(\alpha=0.7)=0.4$. Use the data to find the posterior for α.

2. Presented by: Juliette Cattin

Consider the model used in the notes to derive the Kalman filter. Assume that $E\left(w_{t} v_{t}^{\prime}\right)=G$. (In the notes $G=0$). Derive the Kalman filter.

3. Presented by: Giulia Sabbadini

Consider the model $y_{t}=s_{t}+\varepsilon_{t}$ where $\varepsilon_{t} \sim$ i.i.d. $\mathrm{N}(0,1)$ and s_{t} is a $0-1$ binary random variable with $P\left(s_{t}=1 \mid s_{t-1}=0\right)=0.3$ and $P\left(s_{t}=1 \mid s_{t-1}=1\right)=0.8$.
(a) Suppose that the history of information on y tells you that $P\left(s_{t-1}=1 \mid y_{1: t-1}\right)=0.6$. You observe $y_{t}=1.5$. Compute $P\left(s_{t}=1 \mid y_{1: t}\right)$.
(b) Generalize your calculations and derive a recursive algorithm for computing $P\left(s_{t}=1 \mid y_{1: t}\right)$ as a function of y_{t} and $P\left(s_{t-1}=1 \mid y_{1: t-1}\right)$. Explain how this result can be used the compute the likelihood function/joint density of $y_{1: T}$.

4. Presented by: Lorenz Driussi

Suppose that $Y_{t}=\tau_{t}+\varepsilon_{t}$, where $\tau_{t}=\tau_{t-1}+\eta_{t}$ and $\left\{\varepsilon_{t}\right\}$ and $\left\{\eta_{t}\right\}$ are mutually independent sequences of zero-mean normal random variables with standard deviations σ_{ε} and σ_{η}. The initial value $\tau_{0} \sim \mathrm{~N}\left(0, \kappa^{2}\right)$ and is independent of $\left(\varepsilon_{t}, \eta_{t}\right)$ for $t>0$.
(a) Let $\tau_{t \mid t}=\mathrm{E}\left(\tau_{t} \mid Y_{1: t}\right)$. Show that $\mathrm{E}\left(Y_{t+h} \mid Y_{1: t}\right)=\tau_{t \mid t}$ for all $h \geq 1$.
(b) The spreadsheet 518_EX1_6_FRED.xlsx contains quarterly values on the GDP deflator (P) for the U.S. from 1990:Q1-2018:Q3. Let $Y_{t}=400 \times \ln \left(P_{t} / P_{t-1}\right)$ denote the inflation rate (in percentage points at an annual rate).
(i) Compute the sample variance of ΔY_{t} and the sample covariance between ΔY_{t} and ΔY_{t-1}. Use these to compute estimates of $\left(\sigma_{\varepsilon}, \sigma_{\eta}\right)$.
(ii) Use the estimates of $\left(\sigma_{\varepsilon}, \sigma_{\eta}\right)$ from (i) and a reasonable value for κ^{2}, the variance of τ_{0}, to compute $\tau_{t \mid t}$ for 1990:Q3 $\leq t \leq 2018: \mathrm{Q} 3$.
(iii) Use the results in (ii) to forecast the average level of inflation in 2019. How precise is the forecast likely to be - that is, what is the mean and variance of the forecast error?

Some Additional Exercices

1. Suppose

$$
\begin{aligned}
& y_{t}=\xi_{t}+w_{t} \\
& \xi_{t}=0.8 \xi_{t-1}+v_{t}
\end{aligned}
$$

where $w_{t} \sim \operatorname{iid} N(0,2)$ and $v_{t} \sim \operatorname{iid} N(0,3)$ and $\left\{w_{t}\right\}$ and $\left\{v_{t}\right\}$ are independent. Suppose that you know $\xi_{t-1}=3.4$, and $y_{t}=4.1$. Find $E\left(\xi_{t} \mid \xi_{t-1}=3.4, y_{t}=4.1\right)$ and $\operatorname{var}\left(\xi_{t} \mid \xi_{t-1}=3.4, \quad y_{t}=4.1\right)$.
2. Suppose that y_{t} follows the $\operatorname{AR}(1)$ model $y_{t}=\phi y_{t-1}+\varepsilon_{t}$, for $t=1,2, \ldots, 100$, with $y_{0}=0$ and ε_{t} $\sim \operatorname{Niid}\left(0, \sigma^{2}\right)$. Suppose data on y_{50} is missing.

Suppose that you know the values of ϕ and σ^{2}.
(a) Find an expression for $E\left(y_{50} \mid y_{49}\right)$
(b) Write down an expression that would allow you to calculate $E\left(y_{50} \mid\left\{y_{49}, y_{51}\right\}\right)$
(c) How would you construct $E\left(y_{50} \mid\left\{\left\{y_{1}, y_{2}, \ldots y_{49}, y_{51}, y_{52}, \ldots, y_{100}\right\}\right)\right.$?
3. Suppose that $y_{1 t}$ and $y_{2 t}$ are scalar random variables with

$$
\begin{aligned}
& y_{1 t}=x_{t}+\varepsilon_{1 t} \\
& y_{2 t}=x_{t}+\varepsilon_{2 t}
\end{aligned}
$$

where $x_{t}, \varepsilon_{1 t}$, and $\varepsilon_{2 t}$ are mutually independent i.i.d. sequences of $N(0,1)$ random variables. A researcher has data on $y_{1 t}$ and $y_{2 t}$ and would like to use these data to estimate the value of x_{t}. He proposes the estimator $\hat{x}_{t}=\frac{1}{2}\left(y_{1 t}+y_{2 t}\right)$.
(a) Compute the mean squared error of \hat{x}_{t}.
(b) A more general estimator is $\tilde{x}_{t}=\lambda_{1} y_{1 t}+\lambda_{2 t} y_{2 t}$, where λ_{1} and λ_{2} are two constants. What values of λ_{1} and λ_{2} yield the estimator with the smallest mean squared error?
4. Suppose that $y_{t}=x_{t}+\varepsilon_{t}$, where $x_{t}=0.8 x_{t-1}+e_{t}$, and were $\left[\begin{array}{l}\varepsilon_{t} \\ e_{t}\end{array}\right] \sim \operatorname{iidN}\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]\right)$. Suppose you know that $x_{0}=2$ and $y_{1}=6$.
(a) Derive the minimum mean square error estimate of x_{1}.
(b) What is the mean squared error of the estimate in (a)?

Now suppose now that $\left\{\varepsilon_{t}\right\}$ and $\left\{e_{t}\right\}$ are mutually independent iid processes with (i) $\varepsilon_{t}=-2$ with probability 0.5 and $\varepsilon_{t}=2$ with probability 0.5 , and (ii) $e_{t}=-1$ with probability 0.5 and $e_{t}=1$ with probability 0.5 . Suppose you know that $x_{0}=2$ and $y_{1}=6$
(c) Derive the linear minimum mean square error estimate of x_{1}.
(e) What is the mean squared error of this estimate?
(f) Is the estimate in (e) the minimum mean squared estimate? Explain.
5. Suppose that $y_{t}=x_{t}+u_{t}$, where $x_{t}=\varepsilon_{t}+0.8 \varepsilon_{t-1}$, and
$\left[\begin{array}{l}\varepsilon_{t} \\ u_{t}\end{array}\right] \sim \operatorname{iidN}\left(\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{ll}9 & 3 \\ 3 & 4\end{array}\right]\right)$. You are told that $y_{100}=6$.
(a) Compute the best (minimum mean square error) estimate of x_{100}.
(b) Compute the best (minimum mean square error) estimate of x_{101}.
6. Suppose that $y_{i t}=x_{t}+\varepsilon_{i t}$, for $i=1, \ldots, n,\left(x_{t},\left\{\varepsilon_{i t}\right\}_{i=1}^{n}\right)$ are i.i.d. through time, and normally distributed with $x_{t} \sim \mathrm{~N}\left(0, \sigma_{X}^{2}\right), \varepsilon_{i t} \sim \mathrm{~N}\left(0, \sigma_{\varepsilon}^{2}\right)$, and $\varepsilon_{i t}$ is independent of $\varepsilon_{j t}($ for $j \neq i)$ and x_{t}.
(a) Show that $x_{t / t}=\lambda \bar{Y}_{t}$, where $\bar{Y}_{t}=\frac{1}{n} \sum_{i=1}^{n} y_{i t}$, and derive an expression for λ.
(b) Show that $\lim _{n \rightarrow \infty} \lambda=1$
(c) Show that plim $_{n \rightarrow \infty} x_{t / t}=x_{t}$.
(d) Show that $x_{t / t}$ converges in mean square to x_{t} as $n \rightarrow \infty$.
7. Y_{t} follows the stationary $\operatorname{AR}(2)$ model $Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\varepsilon_{t}, \varepsilon_{t} \sim \operatorname{Niid}\left(0, \sigma^{2}\right)$. Write the explicit joint density/likelihood function for $Y_{1: T}$.
8. Y_{t} follows the MA(1) model $Y_{t}=\varepsilon_{t}-\theta \varepsilon_{t-1}$, where $\varepsilon_{t} \sim \operatorname{Niid}\left(0, \sigma^{2}\right)$ for $t=1, \ldots, T$, and $\varepsilon_{t}=0$ for t ≤ 0.
(a) Write the explicit joint density/likelihood function for $Y_{1: T}$. Discuss how you would compute the MLE of θ and σ^{2}.
(b) Does the result in (a) require that $|\theta|<1$? Explain.
(c) Suppose $\varepsilon_{t} \sim \operatorname{Niid}\left(0, \sigma^{2}\right)$ for $t \leq 0$. How would you modify your answer to (a) and (b)?
9. Y_{t} follows the stationary $\operatorname{AR}(1)$ model $Y_{t}=\phi_{1} Y_{t-1}+\varepsilon_{t}, \varepsilon_{t} \sim \operatorname{Niid}\left(0, \sigma^{2}\right)$. You have data for $Y_{1: 100}$ and $Y_{102: T}$ (so that data are missing at time $t=101$). Write the joint density/likelihood for ($Y_{1: 100}$, $Y_{102: T)}$.
10. Hamilton (1994) derives the Kalman "smoother" as a recursive algorithm for computing $\xi_{t / T}$ and $P_{t / T}$ from ($\xi_{t+1 / T}, P_{t+1 / T}, \xi_{t+1 / t}, P_{t+1 / t}$, and $\left.P_{t / t}\right)$. The recursion (as reported in Hamilton) is
(1) $J_{t}=P_{t / t} F^{\prime} P_{t+1 / t}^{-1}$
(2) $\xi_{t / T}=\xi_{t / t}+J_{t}\left(\xi_{t+1 / T}-\xi_{t+1 / t)}\right.$
(3) $\quad P_{t / T}=P_{t / t}+J_{t}\left(P_{t+1 / T}-P_{t+1 / t)}\right) J_{t}^{\prime}$

Prove the validity of this algorithm.
11. Consider the model

$$
y_{t}=\beta s_{t}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim \operatorname{iid} N(0,1)$, and s_{t} is a binary $(0-1)$ variable that follows a Markov process with $p\left(s_{t}=1 \mid s_{t-1}=0\right)=p_{0}, p\left(s_{t}=0 \mid s_{t-1}=0\right)=1-p_{0}, p\left(s_{t}=1 \mid s_{t-1}=1\right)=p_{1}$, and $p\left(s_{t}=0 \mid s_{t-1}=1\right)=1-p_{1}$. Let $s_{t \mid t}=\mathrm{E}\left(s_{t} \mid y_{1: t}\right)$.
(a) Derive a recursive algorithm that computes $s_{t \mid t}$ as a function of $s_{t-1 \mid t-1}$ and y_{t}. (The filter will be a function of the model parameters β, p_{0}, and p_{1}. (Hint: recall that for a binary variable $E(s)=p(s=1)$.)
(b) Derive $p\left(s_{0}=1\right)$ as a function of p_{0} and p_{1}.
(c) In the spreadsheet EX2_1.xlsx you will find the realization $y_{1: 100}$ constructed from a model with $\beta=1, p_{0}=0.2$ and $p_{1}=0.7$.
(i) Plot the log-likelihood function $L(\beta)$ for $-1 \leq \beta \leq 3$ by computing the likelihood over a equally spaced grid of 100 values of β in this interval.
(ii) Use calculations like those in (i) to compute the MLE of β.
(iii) Suppose I have a prior that β is a draw from a truncated normal distribution with mean 1 and variance 1 , and with $-1 \leq \beta \leq 3$.
(iii.a) Approximate this prior by a discrete prior on the 100 grid points from β in (i). Plot the prior probabilities.
(iii.b) Use the approximate prior from (iii.a) to compute the posterior for β. Plot the posterior.
12. Consider the state-space model:

$$
y_{t}=H \xi_{t}+w_{t}, \quad \xi_{t}=F \xi_{t-1}+v_{t} \text { and where }\left[\begin{array}{c}
w_{t} \\
v_{t}
\end{array}\right] \sim i . i . d N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
R & 0 \\
0 & Q
\end{array}\right]\right)
$$

and for simplicity, suppose that all variables are scalars, (H, F, R, Q) are known, and you know that $\xi_{0}=0$. Let $\xi_{1: T}$ denote the $T \times 1$ vector $\left(\xi_{1}, \xi_{2}, \ldots \xi_{T}\right)^{\prime}$, and similarly for $Y_{1: T}$. Suppose I observe $Y_{1: T}$. Because everything is Gaussian I know $\xi_{1: T} \mid Y_{1: T} \sim \mathrm{~N}(\mu, \Sigma)$ for suitable values of μ and Σ. I want to obtain a random draw from this $\mathrm{N}(\mu, \Sigma)$ distribution. On was to do this is to use brute force to compute μ and Σ, and then compute the draw as $\xi_{1: T}=\mu+\Sigma^{1 / 2} z_{1: T}$, where $\Sigma^{1 / 2}$ satisfies $\Sigma=\Sigma^{1 / 2} \Sigma^{1 / 2}$, and $z_{1: T}$ is a vector of iidN $(0,1)$ random variables.

I want you to design a recursive algorithm to obtain a draw from the $\xi_{1: T} \mid Y_{1: T}=y_{1: T}$ distribution. Here's what I have in mind:

Step 1: Run a Kalman filter and find $\xi_{T T}$ and $P_{T \mid T}$. Draw ξ_{T} from the $\mathrm{N}\left(\xi_{T \mid T}, P_{T \mid T}\right)$ distribution.
Step 2: Find the distribution of $\xi_{T-1} \mid\left(\xi_{T}, y_{1: T}\right)$. It will be of the form $\mathrm{N}\left(m_{T-1}, \sigma_{T-1}^{2}\right)$, where you need to find m_{T-1} and σ_{T-1}^{2}. Draw ξ_{T-1} from the $\mathrm{N}\left(m_{T-1}, \sigma_{T-1}^{2}\right)$ distribution.

Step 3: Use the analogues of Step 2 to draw $\xi_{T-2}, \ldots, \xi_{1}$.
As you derive the algorithm, You will need to recursively find distributions of, say, $\xi_{t} \mid\left(\xi_{t+1}, \ldots, \xi_{T}, Y_{1: T}\right)$. You should be able to show that these simplify, and that it suffices to find the distributions of $\xi_{t} \mid\left(\xi_{t+1}, Y_{1: t}\right)$ Moreover, it should be possible to show that the mean and variances of these distributions can be computed using things already computed by the Kalman filter ($\xi_{t t,}, P_{t \mid t}$, and so forth) plus a few more things that will need to be calculated.

